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Integrative analysis of metabolomics 
and proteomics reveals amino acid metabolism 
disorder in sepsis
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Abstract 

Background:  Sepsis is defined as a systemic inflammatory response to microbial infections with multiple organ 
dysfunction. This study analysed untargeted metabolomics combined with proteomics of serum from patients with 
sepsis to reveal the underlying pathological mechanisms involved in sepsis.

Methods:  A total of 63 patients with sepsis and 43 normal controls were enrolled from a prospective multicentre 
cohort. The biological functions of the metabolome were assessed by coexpression network analysis. A molecular 
network based on metabolomics and proteomics data was constructed to investigate the key molecules.

Results:  Untargeted metabolomics analysis revealed widespread dysregulation of amino acid metabolism, which 
regulates inflammation and immunity, in patients with sepsis. Seventy-three differentially expressed metabolites (|log2 
fold change| > 1.5, adjusted P value < 0.05 and variable importance in the projection (VIP) > 1.5) that could predict 
sepsis were identified. External validation of the hub metabolites was consistent with the derivation results (area 
under the receiver operating characteristic curve (AUROC): 0.81–0.96/0.62–1.00). The pentose phosphate pathway 
was found to be related to sepsis-associated encephalopathy. Phenylalanine metabolism was associated with sepsis-
associated acute kidney injury. The key molecular alterations of the multiomics network in sepsis compared to normal 
controls implicate acute inflammatory response, platelet degranulation, myeloid cell activation involved in immune 
response and phenylalanine, tyrosine and tryptophan biosynthesis, and arginine biosynthesis.

Conclusions:  Integrated analysis of untargeted metabolomics and proteomics revealed characteristic metabolite 
and protein alterations in sepsis, which were mainly involved in inflammation-related pathways and amino acid 
metabolism. This study depicted the pathological characteristics and pathways involved in sepsis and potential thera-
peutic targets.
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Background
Sepsis is a complicated life-threatening syndrome with 
organ dysfunction caused by the maladjustment of the 
host response to infection [1]. A study in 2020 showed 
that there were 48.9  million sepsis patients worldwide, 
resulting in 11  million deaths and accounting for 19.7% 
of the total death toll [2]. The WHO identified sepsis as 
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a global health priority and urged countries to reduce 
the global burden of sepsis [3]. At present, the standard 
treatment for sepsis is early resuscitation, infection focus 
clearance, use of antibiotics and organ support therapy. 
However, although there have been many advances in 
treatment strategies for sepsis in recent years, the mor-
tality rate of sepsis remains high. The reason is that the 
pathophysiology involved in sepsis progression remains 
unclear. There is an urgent need to accurately define 
sepsis, reveal its complex molecular characteristics, and 
establish technology for the accurate detection of mul-
tiple molecular markers for early diagnosis, early warn-
ing and prediction of sepsis to ensure that patients can 
receive accurate and effective intervention in a timely 
manner.

Metabolomics is a research method of qualitatively 
and quantitatively analysing all the metabolites of small 
molecules in organisms and identifying the relationship 
between metabolites and physiological and pathologi-
cal changes [4]. Most of the analytes are small molecules 
with molecular weights of less than 1500 Da that can be 
used as important indicators of physiological or patho-
logical states and help to understand the occurrence 
and progression of diseases [5]. Several studies have 
used metabolomics analysis to identify novel biomark-
ers associated with the disease progression, mechanism 
and prognosis of sepsis and found distinct metabolic 
profiles in sepsis [6–8]. These studies used only metab-
olomics techniques with differential analysis and path-
way enrichment analysis to illustrate the metabolic 
disorder underlying the mechanism in sepsis. Identifica-
tion of coexpression patterns based on multiomics data 
might reveal new insights into the mechanism of sepsis. 
Weighted gene coexpression network analysis (WGCNA) 
is a topological algorithm that can be used to investi-
gate the relationship between omics data and clinical 
phenotypes and has been widely used in transcriptom-
ics, proteomics and metabolomics studies [9]. With the 
development of multiomics detection and analysis tech-
nology, the establishment of an accurate detection system 
for multiple molecular markers for early diagnosis, early 
warning and prediction of sepsis based on evidence-
based medicine and big multiomics data would be a stra-
tegic breakthrough [10]. Integrative multiomics analysis 
could provide valuable insight into biological functions 
with mutual validation, which might not be revealed in a 
single dataset.

In this study, metabolomics was used to measure the 
aggregation of all metabolized small molecular compo-
nents in sepsis. WGCNA and integrative multiomics 
analysis of the same biological samples were performed 
to study the changing rules of metabolites, reveal the 
metabolic nature of sepsis, and identify the metabolic 

micromolecular features or markers of sepsis diagnosis 
and pathogenesis.

Methods
Study design
In this study, patients with sepsis were enrolled from 
three intensive care units (ICUs) from April 1, 2019, to 
August 16, 2020. The clinical and follow-up data were 
collected from the electronic data capture system and 
case report forms. The final follow-up was completed on 
November 20, 2020. Patients were diagnosed with sep-
sis according to an acute change in the total Sequential 
Organ Failure Assessment (SOFA) score of 2 or more 
points due to an infection [1]. At the same time, healthy 
normal control (NC) subjects (with a SOFA score of 0 
and no infection) were recruited as the control group 
from the Physical Examination Center. The patients and 
NC subjects were randomly allocated into the deriva-
tion and validation groups (Fig.  1). Differential expres-
sion analysis and coexpression network analysis were 
performed to identify variations in metabolites and 
pathways associated with the clinical pathophysiology of 
sepsis. Integrative analysis combining metabolomics and 
proteomics data of the same biological samples was con-
ducted to acquire the comprehensive landscape of sepsis. 
The study protocol was approved by the Clinical Research 
Ethics Committee of Taizhou Central Hospital (Taizhou 
University Hospital) (Registration Number: 2019–016; 
principal investigator: Yinghe Xu; date of registration: 26 
February 2019). Written informed consent was obtained 
from all participants or their legal representatives.

Sample collection and preparation for metabolomic 
analysis
Blood samples were collected from patients diagnosed 
with sepsis at admission to the ICU. Blood samples of 
patients and NC subjects were drawn using serum sepa-
ration tubes and allowed to clot at room temperature for 
60 min. The samples were centrifuged for 10 min within 
30  min (1600×g, 4  °C) to remove insoluble solids. Each 
aliquot of serum was collected and immediately stored at 
−  80  °C until ultrahigh-performance liquid chromatog-
raphy with quadrupole time-of-flight mass spectrometry 
(UPLC-Q-TOF/MS) analysis.

Metabolomic LC–MS/MS analysis
Metabolomic LC–MS/MS analysis was performed using 
ultrahigh-performance liquid chromatography (1290 
Infinity LC, Agilent Technologies) coupled to a quad-
rupole time-of-flight instrument (AB Sciex TripleTOF 
6600, Shanghai Applied Protein Technology Co., Ltd).

For hydrophilic interaction liquid chromatography 
(HILIC) separation, a 2.1 mm × 100 mm ACQUIY UPLC 
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BEH 1.7 μm column (Waters, Ireland) was used to ana-
lyse the samples. In both positive and negative ion-mode 
electrospray ionization (ESI), the mobile solutions con-
sisted of 25  mM ammonium acetate, 25  mM ammo-
nium hydroxide in water and acetonitrile. The gradient 
was 85% acetonitrile for 1  min and was then linearly 
decreased to 65% in 11 min, reduced to 40% in 0.1 min, 
maintained for 4  min, increased to 85% in 0.1  min and 
maintained for 5 min.

For reversed-phase liquid chromatography (RPLC) 
separation, a 2.1  mm × 100  mm ACQUIY UPLC HSS 
T3 1.8  μm column (Waters, Ireland) was used to ana-
lyse the samples. In ESI positive ion mode, the mobile 
solutions consisted of water with 0.1% formic acid and 
acetonitrile with 0.1% formic acid. In ESI negative ion 
mode, the mobile phase consisted of 0.5  mM ammo-
nium fluoride in water and acetonitrile. The gradient was 
1% acetonitrile for 1.5  min and was gradually increased 
to 99% in 11.5 min and maintained for 3.5 min. Then, it 
was reduced to 1% in 0.1  min, and a 3.4  min re-equili-
bration period was employed. The gradients had a flow 
rate of 0.3  mL/min, and the column temperatures were 

kept constant at 25 °C. A 2 μL aliquot of each sample was 
injected.

The ESI source conditions were set as follows: ion 
source gas 1 at 60  psi, ion source gas 2 at 60 psi, cur-
tain gas at 30  psi, source temperature: 600  °C, and ion 
spray voltage floating ± 5500 V. In MS-only acquisition, 
the instrument was set to acquire over an m/z range of 
60–1000 Da, and the accumulation time for the TOF MS 
scan was set at 0.20  s/spectra. In auto MS/MS acquisi-
tion, the instrument was set to acquire over an m/z range 
of 25–1000 Da, and the accumulation time for the prod-
uct ion scan was set at 0.05  s/spectra. The product ion 
scan was acquired using information-dependent acquisi-
tion with high sensitivity mode selected. The parameters 
were set as follows: the collision energy was fixed at 35 V 
with ± 15 eV; declustering potential, 60 V (+) and − 60 V 
( −); exclusion of isotopes within 4  Da; and candidate 
ions to monitor per cycle: 10.

Metabolomic data processing
ProteoWizard MSConvert was applied to convert the 
raw MS data (wiff.scan files) to MzXML files. XCMS 
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Fig. 1  Overview of the study design and patient group allocation. One hundred six subjects were studied, of whom 72 were randomly selected for 
proteomic and metabolomic analysis, and 34 were the validation group. NC normal control
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software was used for peak alignment, retention time 
correction and peak area extraction. For peak finding, the 
parameters were set as follows: centWave m/z = 25 ppm, 
peakwidth = c (10, 60), prefilter = c (10, 100). For peak 
grouping, the parameters were set as follows: bw = 5, 
mzwid = 0.025, minfrac = 0.5. For peak annotation, Col-
lection of Algorithms of MEtabolite pRofile Annota-
tion was used to annotate the isotopes and adducts. The 
extracted ion features with more than 50% of the nonzero 

measurement values in at least one group were included 
in further analysis. The identification of metabolites met 
the following criteria: narrow window retention index, 
accurate m/z value with variation less than 25 ppm and 
MS/MS spectra with high scores based on comparisons 
with the in-house database (Shanghai Applied Protein 
Technology) established with available authentic stand-
ards [11, 12]. The identified metabolites met the level 
2 and above requirements by the Chemical Analysis 

Table 1  Characteristics of enrolled patients with sepsis included in the derivation group and validation group

Data are expressed as the mean ± SD, median (IQR) or number of patients (percentages). Continuous variables were compared by using Student’s t test and the 
Mann–Whitney U test, and categorical variables were compared by using the χ2 or Fisher’s exact test between the derivation and validation groups

APACHE II acute physiology and chronic health evaluation II, SOFA sequential organ failure assessment on day of sampling

Derivation group Validation group P value

n 42 21

Male (%) 26 (61.9%) 14 (66.7%) 0.926

Age (years) 71.5 [61.0, 78.0] 70.00 [63.0, 79.0] 0.743

Laboratory data

 Mean arterial pressure (mm Hg) 79.7 [74.0, 89.0] 76.3 [62.7, 90.7] 0.635

 White blood cell count (109/L) 14.3 [10.1, 21.1] 14.00 [9.4, 23.5] 0.931

 Haemoglobin (g/L) 119.0 [101.5, 129.5] 103.0 [87.0, 118.0] 0.027

 Haematocrit (%) 35.8 [31.5, 38.8] 31.6 [27.0, 37.4] 0.084

 Platelet count (109/L) 136.0 [60.7, 209.5] 118.0 [71.0, 202.0] 0.849

 Albumin (g/dL) 27.0 [24.4, 30.9] 24.90 [23.2, 28.0] 0.251

 Aspartate aminotransferase (U/L) 45.0 [21.2, 89.5] 33.0 [15.0, 127.0] 1.000

 Alanine aminotransferase (U/L) 29.5 [14.5, 61.5] 25.0 [17.0, 74.0] 0.905

 Total bilirubin (μmol/L) 16.5 [9.0, 25.1] 11.1 [8.4, 20.4] 0.424

 Creatinine (μmol/L) 133.0 [98.7, 226.0] 163.0 [104.0, 229.0] 0.553

 INR 1.2 [1.1, 1.3] 1.2 [1.1, 1.4] 0.951

Infection 0.661

 Gram-positive bacteria (%) 4 (9.5%) 4 (19.0%)

 Gram-negative bacteria (%) 18 (42.9%) 7 (33.3%)

 Viral (%) 1 (2.4%) 0 (0.0%)

 Other (%) 19 (45.2%) 10 (47.7%)

 CRRT​ 8 (13.6%) NA NA

Vasopressors 0.124

 0 (%) 18 (42.9%) 6 (28.6%)

 1 (%) 20 (47.6%) 15 (71.4%)

 NA (%) 4 (9.5%) 0 (0.0%)

Mechanical ventilation 0.190

 0 (%) 21 (50.0%) 12 (57.1%)

 1 (%) 15 (35.7%) 9 (42.9%)

 NA (%) 6 (14.3%) 0 (0.0%)

Severity at time of admission to ICU

 SOFA 6.0 [4.0, 9.0] 8.0 [6.0, 10.0] 0.115

 APACHE II 19.0 [10.2, 22.7] 22.0 [18.0, 25.0] 0.074

Mortality

 28-day 6 (14.3%) 3 (14.3%) 1

 90-day 6 (14.3%) 3 (14.3%) 1
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Working Group of the Metabolomics Standards Ini-
tiative. Open database sources, including the Human 
Metabolome Database, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway database and MetaboAnalyst, 
were used to identify metabolic pathways.

Serum proteomics data
Proteomics analysis has been described previously [13] 
and used the same biological samples as metabolomics. 
All proteomic data from the patients with sepsis and 
NCs analysed in this study were obtained from the Pro-
teomeXchange Consortium (http://​prote​omece​ntral.​
prote​omexc​hange.​org) via the iProX partner repository 
with the dataset identifier IPX0003225000.

Metabolite coexpression network analysis
WGCNA was performed to identify metabolite coexpres-
sion modules based on untargeted metabolomics data 
[14]. The dimensions of the dataset were reduced by clus-
tering highly correlated metabolites into modules, and 
the module membership measure was defined as kME. 
The correlation between the module and sample clini-
cal traits was calculated to identify metabolite modules 
that were highly associated with the clinical phenotype 
of interest. The function WGCNA:blockwiseModules() 
was applied to construct the coexpression network 
with the following settings: soft threshold power β = 3 
(calculated based on the scaled-free topology model 
parameters), deepSplit = 4, minModuleSize = 10, 
mergeCutHeight = 0.05, threshPercent = 50, and merge-
Percent = 25; all other parameters were set to the default.

Multiomics data integration
To integrate the analysis of metabolomic and proteomic 
data, sparse generalized canonical correlation discri-
minant analysis via Data Integration Analysis for Bio-
marker Discovery using Latent cOmponents (DIABLO) 
[15] in the R package mixOmics [16] was performed. 
The method applied the generalized, supervised partial 
least-squares approach to integrate multiple data types 
across the same biological samples and jointly identify 
key omics features across multiple datasets. Normalized 
metabolomic and proteomic data were log-transformed 
before integration by DAIBLO.

Statistical analysis
The measurement results are presented as numbers (per-
centages) for categorical variables, the mean ± standard 
deviation (SD) for normally distributed variables, and the 
median with interquartile range (IQR) for nonnormally 
distributed variables, unless indicated otherwise. Welch’s 
t test was applied to compare two continuous variables 
when each compared group was normally distributed 
(Shapiro–Wilk test when P value > 0.05). The nonpara-
metric Mann–Whitney U test was applied to compare 
the nonnormally distributed data between groups. The 
false discovery rate with the Benjamini–Hochberg pro-
cedure was used to control type I error in multiple tests. 
The extracted ion features with more than 50% of the 
nonzero measurement values were included in further 
analysis. Missing values were imputed with minimal val-
ues in the metabolomics dataset. Log10 transformation 
of the metabolite abundance was performed after sum-
normalization. The χ2 test was used to compare categori-
cal variables. Statistical significance and differentially 
expressed metabolites (DEMs) were defined as “log2 fold 
change (FC) > 1.5, adjusted P value < 0.05”.

Statistical analysis was performed using R software 
unless noted otherwise. Principal component analysis 
(PCA) was performed by using the “PCA” function in the 
FactoMineR package. Orthogonal partial least-squares 
discrimination analysis (OPLS-DA), pathway analysis 
and visualization were performed by using MetaboAna-
lyst 5.0 (http://​www.​metab​oanal​yst.​ca/​Metab​oAnal​yst/).

Results
Patients and clinical characteristics
A total of 63 patients with sepsis and 43 NC subjects 
were enrolled in the study and randomly allocated to 
the derivation group (42 patients with sepsis and 30 
NCs) and validation group (21 patients with sepsis and 
13 NCs) (Fig. 1). The clinical characteristics of patients 
with sepsis in the derivation and validation groups are 
provided in Table 1. The disease severity was consistent 
between these two groups, of which the SOFA scores 
were 6.0 [4.0, 9.0] and 8.0 [6.0, 10.0], and the Acute 
Physiology and Chronic Health Evaluation (APACHE) 
II scores were 19.0 [10.2, 22.7] and 22.0 [18.0, 25.0], 
respectively. The short-term (28/90 day) mortality was 
14.3%/14.3% in the two groups. Most patients had a 
gram-negative bacterial infection (42.9% and 33.3%, 

Fig. 2  Comprehensive analysis of untargeted metabolomics of serum from patients with sepsis and normal controls. A The number of metabolites 
detected in positive and negative ion modes. B The proportion of the identified metabolites in each chemical classification. C Principal component 
analysis (PCA) of the identified metabolites showing that patients with sepsis differed from normal controls (NC) in both positive ion mode (left) 
and negative ion mode (right). D The volcano plot of differentially expressed metabolites (DEMs) between patients with sepsis and NCs in positive 
ion mode (left) and negative ion mode (right). The metabolites whose expression increased in sepsis are shown in red and those whose expression 
decreased are shown in blue. E–F Pathway analysis of upregulated and downregulated metabolites

(See figure on next page.)

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
http://www.metaboanalyst.ca/MetaboAnalyst/
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respectively), and some patients had a gram-positive 
bacterial infection (9.5% and 19.0%, respectively). Age, 
sex and clinical laboratory indices were not signifi-
cantly different between these two groups (P > 0.05). 
The clinical characteristics of patients with sepsis and 
NC subjects in the derivation group are summarized in 
Additional file 2: Table S1. Age and sex were not differ-
ent between the patients and NCs (P > 0.05).

Untargeted metabolomic profiling of serum from patients 
with sepsis
To ensure the reliability of untargeted metabolomic data, 
the total ion chromatogram of quality control (QC) sam-
ples showed that the response intensity and retention 
time of each chromatographic peak basically overlapped, 
indicating the stability of the instrument (Additional 
file 1: Figure S1A). The PCA plot showed that QC sam-
ples closely clustered in positive and negative ion modes, 
demonstrating the good repeatability of the LC–MS 
analysis during the experiment. (Additional file 1: Figure 
S1B).

A total of 987 metabolites (Fig. 2A), including organic 
acids and derivatives, organoheterocyclic compounds, 
lipids, benzenoids and others (Fig.  2B), were identified. 
The PCA plot based on the identified untargeted metab-
olites showed that patients with sepsis were different 
from NC subjects in both the positive and negative ion 
modes (Fig. 2C). Differential expression analysis with the 
cut-off of a Benjamini–Hochberg adjusted filter of < 0.05 
and log2 FC > 1.5 showed that 106 (95 upregulated and 
11 downregulated) and 76 (69 upregulated and 7 down-
regulated) metabolites were significantly changed in the 
patients with sepsis in positive and negative ion modes, 
respectively (Fig.  2D). Further details of the DEMs are 
shown in Additional file 3: Table S2 and Additional file 4: 
Table  S3. Pathway analysis of the upregulated metabo-
lites revealed a combination of metabolites from posi-
tive and negative ion modes that were most enriched in 
amino acid metabolism, such as phenylalanine, tyrosine 
and tryptophan biosynthesis, phenylalanine metabolism, 
tyrosine metabolism, etc. (Fig.  2E). The downregulated 
metabolites in sepsis mainly participated in valine, leu-
cine and isoleucine biosynthesis, linoleic acid metabolism 
and glycine, serine and threonine metabolism (Fig. 2F).

Candidate biomarker metabolites for diagnosing patients 
with sepsis
OPLS-DA analysis showed a substantial separation 
between patients with sepsis and NC subjects in both 
the positive and negative ion modes, indicating that 
there were obvious differences in their serum untar-
geted metabolomic profiles (Fig. 3A). Permutation analy-
sis validated the OPLS-DA model with R2Y = 0.776 and 
Q2 = 0.647 for positive ion mode and R2Y = 0.753 and 
Q2 = 0.651 for negative ion mode (Additional file 1: Fig-
ure S2). The top 30 metabolites with high variable impor-
tance in the projection (VIP) scores are shown in Fig. 3B, 
illustrating that they have great potential to distinguish 
patients with sepsis from NC subjects. To explore the 
candidate biomarker metabolites that could diagnose 
patients with sepsis, 51 and 25 metabolites that were sig-
nificant DEMs (log2 FC > 1.5 & adjusted P value < 0.05) 
and had VIP scores > 1.5 were identified in positive and 
negative ion modes, respectively (Additional file 1: Figure 
S3). The area under the receiver operating characteristic 
curve (AUROC) was calculated to assess the discrimi-
natory accuracy of candidate biomarker metabolites. 
The results showed that the AUROCs of 73 metabolites, 
comprising the 51 and 25 metabolites indicated above, 
ranged from 0.81 to 0.96 (Fig. 3C). The validation group 
exhibited consistent results, of which the AUROC ranged 
from 0.62 to 1.00. Among the 73 metabolites, some fatty 
acids, such as 3-hydroxybutyrylcarnitine and l-hex-
anoylcarnitine, have functions in energy production, 
and glycerophospholipids have a vital role in lipid signal 
transduction.

Construction of a sepsis metabolite coexpression network
A metabolite coexpression network was constructed 
using WGCNA based on the correlation patterns among 
the identified metabolites. A total of 16 metabolite mod-
ules with high coexpression were identified (Additional 
file 1: Figure S4). The size of the modules ranged from 13 
metabolites (module midnight blue) to 389 metabolites 
(module turquoise). Correlation analysis between each 
metabolite module and the disease phenotype was per-
formed to identify the modules that were significantly 
associated with the clinical phenotypes of interest. The 
results showed that module turquoise was highly cor-
related with sepsis (R = 0.65, P value = 8e−10) (Fig. 4A). 
In addition to module turquoise, module cyan was found 
to be relevant to sepsis-associated encephalopathy (SAE, 

(See figure on next page.)
Fig. 3  Dysregulated metabolites in patients with sepsis. A Orthogonal partial least-squares discriminant analysis (OPLS-DA) of serum metabolism 
showing that patients with sepsis substantially differed from normal controls (NCs) in both positive (left) and negative ion modes (right). B The top 
30 metabolites with high discriminatory accuracy ranked by variable importance in projection (VIP) score in positive ion mode (left) and negative 
ion mode (right). C The area under the receiver operating characteristic curve (AUROC) to assess the discriminatory accuracy of 51 metabolites (left) 
and 25 metabolites (right) in differentiating patients with sepsis from normal controls in the derivation and validation groups
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R =  − 0.34, P value = 0.003), and module yellow was cor-
related with sepsis-associated acute kidney injury (sep-
sis-AKI, R = 0.45, P value = 8e−10). The eigenmetabolite 
value of module cyan significantly decreased across the 
NC, NoSAE and SAE phenotypes (Fig.  4B). Similarly, 
the eigenmetabolite value of module yellow significantly 
increased across the NC, Sepsis-NoAKI and Sepsis-
AKI phenotypes (Fig.  4C). The categories of metabo-
lites in each module are shown in Fig.  4D. Benzenoids, 
organic acids and their derivatives were the majority of 
metabolite members of the turquoise, cyan and yellow 
modules. Lipids and lipid-like molecules were present 
in the turquoise and yellow modules but not in mod-
ule cyan, which included metabolites of phenylpropa-
noids and polyketides. Pathway analysis showed that the 
metabolites of module turquoise were mainly enriched 
in phenylalanine, tyrosine and tryptophan biosynthesis, 
phenylalanine metabolism, and histidine metabolism, etc. 
(Fig.  4E). Metabolites of module cyan, which was nega-
tively correlated with SAE, were enriched with the pen-
tose phosphate pathway (Fig.  4F). The metabolites that 
were positively associated with sepsis-AKI in module yel-
low played a part in phenylalanine metabolism (Fig. 4G).

Integrative analysis of untargeted metabolomic 
and proteomic data
To construct a comprehensive profile of sepsis and iden-
tify the relationships between metabolites and proteins, 
multiomics analysis integrating proteomic and untar-
geted metabolic data based on the same biological sam-
ples was performed. The sample plot of the DIABLO 
model showed that patients with sepsis were significantly 
different from NC subjects in both the proteomic and 
untargeted metabolomic data (Fig. 5A). The latent com-
ponents of the two omics datasets were highly correlated, 
illustrating that the DIABLO model of the two datasets 
had good agreement (Fig. 5B). A significantly positive and 
negative correlation between proteins and metabolites 
were identified (Fig. 5C). A cluster of coregulated features 
strongly relevant to the latent components of the multi-
omics dataset was identified, which might be a potential 
characteristic of sepsis (Fig. 5D). Functional enrichment 
analysis revealed that proteins of the coregulated features 

were mainly involved in the acute inflammatory response, 
Toll − like receptor signalling pathway, defense response 
and myeloid cell activation involved in immune response 
(Fig. 5E). Metabolites were mostly enriched in amino acid 
metabolism, such as phenylalanine, tyrosine and trypto-
phan biosynthesis and phenylalanine metabolism, which 
has an important function in adaptive and innate immu-
nity (Fig. 5F). These results indicated a potential regula-
tory crosstalk of inflammatory response and amino acid 
metabolism, which might provide a viable approach to 
suppress the systemic inflammatory response syndrome 
of sepsis.

Discussion
Sepsis is a life-threatening organ dysfunction syndrome 
caused by a dysregulated host response to infection 
[17]. Sepsis has been found to be associated with meta-
bolic alterations [18]. Elucidating the pathophysiologi-
cal characteristics of sepsis could help to reduce its high 
morbidity and mortality. In this study, we analysed untar-
geted metabolomics data in blood samples to unveil the 
alteration of metabolites in sepsis. Combined multiomics 
analysis of metabolomics and proteomics data based on 
the same biological samples was performed to construct 
a reliable network for system biology analysis of sepsis 
from protein to the final metabolic product and identify 
the signatures associated with the characteristics of sep-
sis as changes in proteins and metabolites.

Amino acid pathways have been found to be dysregu-
lated in bacterial infection [19]. Studies have reported 
that amino acid metabolism plays an essential role in 
adaptive and innate immunity, regulating the activa-
tion of immune cells and the production of antibodies 
[20]. In this study, amino acid metabolism, including 
phenylalanine, tyrosine and tryptophan biosynthesis, 
phenylalanine metabolism, and histidine metabolism, 
was observed to be the most marked and widespread 
alteration in sepsis. The occurrence of metabolic dis-
turbances along with variations in amino acid levels has 
been found in septic patients and might have a func-
tion in the pathogenesis of septic encephalopathy [21]. 
Amino acid sensing is related to controlling intestinal 
inflammation [22]. Changes in amino acid consumption 

Fig. 4  The coexpression network of serum metabolites constructed by weighted gene coexpression network analysis. A Heatmap representation 
of the correlation between module eigenmetabolites and different phenotypes of normal control (NC) and sepsis (left), sepsis-associated 
encephalopathy (SAE) (middle), and sepsis-associated acute kidney injury (Sepsis-AKI) (right). B Synthetic eigenmetabolite analysis of the module 
cyan module, which is highly correlated with SAE, except the module turquoise. C Synthetic eigenmetabolite analysis for module yellow, which 
is highly correlated with sepsis-AKI, except for module turquoise. D The distribution of metabolite members in each module according to the 
metabolite categories in Fig. 1B. E Pathway analysis of metabolites in module turquoise. F Pathway analysis of metabolites in module cyan. G 
Pathway analysis of metabolites in module yellow

(See figure on next page.)
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and the downstream molecular pathways have generally 
become a field of interest in generating novel drugs and 
therapeutic targets that might control immunity [23]. 
The essential intermediary metabolites in the aromatic 
amino acid-related (phenylalanine, tyrosine and tryp-
tophan) pathways were found to have changed in sepsis 
(Fig.  6). We observed that most aromatic amino acid-
related pathway intermediates, including phenylpyruvate, 
l-phenylalanine, homogentisate, dopamine, etc., were 
significantly increased in sepsis. The ratio of the phe-
nylalanine-to-tyrosine ratio is associated with immune 
activation, which decreases with effective antiretroviral 
therapy [24]. The catabolic pathway converting pheny-
lalanine to phenylpyruvate was revealed to promote the 
neutrophil-evasive state in an Acinetobacter baumannii 
study [25]. An excess of l-phenylalanine was found to 
inhibit protein synthesis, which had an effect on antibody 
production [26]. Moreover, dopamine inhibits the release 
of cytokines to modulate cellular immune function and 
suppress systemic inflammation via electroacupuncture 
[27, 28]. Treatments with removing various harmful and 
excess metabolites from body to purify the blood and 
acid–base have been widely used, like dialysis and arti-
ficial liver support system. And targeting metabolism is 
an effective way in cancer treatments, such as that with 
methotrexate, glycolytic inhibitor. Optimizing concen-
trations of metabolites might effectively regulate hyper-
inflammatory responses of sepsis, which further support 
the hypothesis that they change the mechanisms under-
lying poor outcomes in sepsis and thereby present poten-
tial therapeutic targets. And the effects of modulating 
metabolism on systemic inflammatory response in sepsis 
would be validated ex vivo in the further study.

Multiomics analysis of metabolomics and proteom-
ics datasets based on the same biological samples was 
applied in this study. Integration of multiple omics data 
might provide novel biological information that is not 
revealed in a single dataset. In addition, identifying the 
correlation of variables across different methodologically 
and biologically distinct datasets could help to construct 
a reliable network with mutual functional validation, pro-
viding the biological process from the encoding gene to 
the final metabolic products and revealing key drivers 
associated with disease pathological mechanism [29]. 
And these features might serve as biomarker candidates 
for diagnosis and therapeutic targets. Sixteen proteins, 
including FIBA, SAA2, A2GL, AACT, CRP, LBP, SAA1, 

and S10A9, were identified as potential biomarkers in 
sepsis through integrative multiomics analysis, which is 
consistent with prior evidence [13]. These results illus-
trated that the multiomics analysis results had high relia-
bility. Functional enrichment analysis of proteins showed 
the characteristic biological functions of sepsis, such as 
the acute inflammatory response and Toll-like receptor 
signalling pathway. The results showed that the down-
stream metabolites of proteins were mainly involved in 
amino acid metabolism, including phenylalanine and 
arginine biosynthesis, further illustrating that the main 
metabolic disorder in sepsis is amino acid imbalance. 
The coexpression network analysis revealed that mod-
ule cyan was significantly correlated with SAE, with the 
eigenmetabolite value decreasing during disease develop-
ment. Module cyan was enriched the pentose phosphate 
pathway, which regulates the production of NADPH and 
promotes antioxidant defence [30]. Studies have revealed 
dysregulation of the pentose phosphate pathway in Alz-
heimer’s disease, which is an incurable neurodegenera-
tive disease [31]. Module yellow was highly positively 
associated with sepsis-AKI and mostly contained ben-
zenoids and organic acids. Due to the limited number of 
metabolites, no specific metabolic pathways were signifi-
cantly enriched in module yellow. Further information on 
patients with SAE and sepsis-AKI should be clarified in 
future studies.

The metabolites for discriminating patients with sepsis 
were identified in this study based on differential expres-
sion analysis and OPLS-DA. In addition to amino acids, 
some glycerophospholipids, fatty acids, beta hydroxy 
acids and carbonyl compounds had statistical signifi-
cance, high fold changes and VIP scores in the compari-
son between sepsis and NC subjects. These metabolites 
could discriminate sepsis patients from NC subjects 
with high accuracy and sensitivity due to their specific 
concentration in sepsis patients, indicating they are bio-
marker candidates in the diagnosis of sepsis. The results 
revealed that the level of glycerophospholipids decreased 
in sepsis. Glycerophospholipids are a vital part of 
biomembranes and participate in signal transduction and 
the immune response. The production of glycerophos-
pholipids regulates phagocytosis and platelet degranu-
lation [32]. Crucial fatty acids are upregulated in sepsis 
and have protective effects on epithelial cells [33]. The 
increased level of fatty acids probably has anti-inflamma-
tory functions.

(See figure on next page.)
Fig. 5  Integrative network analysis of proteomics and untargeted metabolomics data. A The considerable discrimination between patients with 
sepsis and normal controls (NC) in both proteomics (left) and untargeted metabolomics (right) data. B The Pearson correlation between proteomics 
and untargeted metabolomics data of their first component. C Circos plot of close correlations (Pearson coefficient cut-offs set at ≥ 0.6 or ≤  − 0.6) 
between proteomics and untargeted metabolomics data. D The network of key features across proteomics and untargeted metabolomics. The 
thickness of the edge represents the correlation coefficient. E GO terms enriched by the key proteins. F Pathway analysis of the key metabolites
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Conclusions
In summary, this study presents an integrative analysis 
of metabolomic and proteomic data based on the same 
biological samples from patients with sepsis and NC sub-
jects. The characteristic proteins and metabolites iden-
tified formed a complex network to depict the crucial 
immunometabolism linked to sepsis. Amino acid-related 
pathways, including phenylalanine metabolism, tyrosine 
metabolism and tryptophan biosynthesis, were illustrated 
to be essential mechanisms of sepsis. The pentose phos-
phate pathway was revealed to have a potential effect on 
SAE. The changed metabolites might provide useful diag-
nostic and therapeutic methods for sepsis.
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