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Alternative splicing (AS) of pre-mRNA has been widely reported to be associated with the
progression of malignant tumors. However, a systematic investigation into the prognostic
value of AS events in glioblastoma (GBM) is urgently required. The gene expression profile
and matched AS events data of GBM patients were obtained from The Cancer Genome
Atlas Project (TCGA) and TCGA SpliceSeq database, respectively. 775 AS events were
identified as prognostic factors using univariate Cox regression analysis. The least
absolute shrinkage and selection operator (LASSO) cox model was performed to
narrow down candidate AS events, and a risk score model based on several AS events
were developed subsequently. The risk score-based signature was proved as an efficient
predictor of overall survival and was closely related to the tumor purity and
immunosuppression in GBM. Combined similarity network fusion and consensus
clustering (SNF-CC) analysis revealed two distinct GBM subtypes based on the
prognostic AS events, and the associations between this novel molecular classification
and clinicopathological factors, immune cell infiltration, as well as immunogenic features
were further explored. We also constructed a regulatory network to depict the potential
mechanisms that how prognostic splicing factors (SFs) regulate splicing patterns in GBM.
Finally, a nomogram incorporating AS events signature and other clinical-relevant
covariates was built for clinical application. This comprehensive analysis highlights the
potential implications for predicting prognosis and clinical management in GBM.
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INTRODUCTION

Glioblastoma (GBM) is the most common primary brain
neoplasm in adults (1). Although given surgical resection
followed by radiotherapy and temozolomide chemotherapy,
GBM patients still show poor prognosis with a median overall
survival of fewer than 15 months (2). One of the reasons
accounting for the limited efficacy of regular treatment is the
incomplete debulking surgery, which is subjected to the
penetration of malignant cells into healthy tissues. Resistance
to conventional chemotherapeutic drugs also poses a critical
challenge to clinical GBM therapy (3). Therefore, an improved
understanding of the molecular mechanisms underlying GBM
progression for developing accurate prognostic markers and
novel effective therapeutic strategies is urgently required.

The surge of advances in next-generation sequencing and other
multi-omics technologies have made the revelation of the genomic
features of GBM increasingly feasible (4, 5). Various pathways
involved in gliomagenesis have been widely studied and improved
our understanding of the complex mechanisms of GBM, such as
PI3K/AKT/mTOR, PDGF/PDGFR, receptor tyrosine kinase, and
p53 signaling. More importantly, high heterogeneity is a hallmark
of GBM, and different GBMmolecular subclasses were categorized
based on gene expression or methylation data, which may guide
the diagnosis and clinical therapy (6–9). However, these molecular
classifications have not considered alternative splicing (AS) events.

AS has been proved to be a key factor underlying functional
complexity in eukaryotes cells (10). Splicing of pre-mRNA
contributes to proteomic diversity from a limited number of
genes and therefore regulates the vast majority of biological
processes and cellular phenotypes, some of which could be
associated with malignant progression (11, 12). AS has been
reported to be a universal phenomenon during regular cell
activities, with approximately 95% of genes underwent this
process (13). Recently, the AS landscapes in several human
cancer types have been delineated, including head and neck
squamous cell carcinoma, pancreatic ductal adenocarcinoma,
colorectal cancer, and hepatocarcinoma (14–17). Cancer-related
AS events can not only serve as predictive or prognostic factors but
also as effective therapeutic targets. For example, Hu et al. found
that MET-exon-14-skipping (METex14) was significantly
enriched in secondary GBMs (sGBMs) and was responsible for
the bleak prognosis. A MET kinase inhibitor targeting this specific
splicing pattern has been invented and applied to the clinical
treatment of sGBM patients (18). Also, accumulating evidence
shows that the dysregulation of AS in the tumor can influence
and remodel the microenvironment of the neoplastic niche (19,
20). In GBM, malignant niche recruits immune cells to create an
immunosuppressive tumor microenvironment, therefore facilitate
the proliferation and encroachment of tumor cells into normal
tissues (21). To date, there have been very few systematic studies
conducted to investigate the cross-talk between AS events and
cancer-immune in GBM.

In our study, we deeply mined the AS events in GBM based
on the large-scale transcriptome data from The Cancer Genome
Atlas Project (TCGA). Overall survival-related AS events were
identified, and an AS events-based signature was constructed to
Frontiers in Oncology | www.frontiersin.org 2
predict the clinical outcomes of GBM patients. Integrative
bioinformatics analyses were carried out to explore the
underlying biological mechanisms contributed by AS events.
Additionally, we classified GBM into two distinct subtypes, and
further assessed the association between these clusters and
prognoses, clinicopathological features as well as the immune
microenvironment. Finally, we developed a robust prognostic
model to direct the decision-making in clinical management.
Our study revealed the AS landscape of GBM and may shed new
light on developing novel therapeutic methods.
MATERIALS AND METHODS

Data Acquisition and Pre-Processing
In this cohort study, RNA sequencing data were obtained from
the TCGA patients diagnosed with glioblastoma. Publically
available level 3 transcriptome fragments per kilobase million
(FPKM) data of the TCGA-GBM project (n = 166, Illumina
HiSeq platform) were downloaded from the TCGA data portal
(https://portal.gdc.cancer.gov). In the present study, FPKM
values were transformed into transcripts per kilobase million
(TPM) values, which are more comparable between different
samples (22). Raw counts data of these corresponding GBM
samples were also downloaded for differential expression
analysis. The GISTIC copy number and methylation status of
splicing factors in the TCGA-GBM cohort were downloaded
from cBioPortal for Cancer Genomics (https://www.cbioportal.
org/). Curated clinical information of these glioblastoma patients
was derived from a TCGA Pan-Cancer research (23).

AS events profile of 152 glioblastoma patients in the selected
TCGA-GBM cohort, a matrix consists of the Percent Spliced In
(PSI) value of each sample, was obtained from the TCGA
SpliceSeq database (https://bioinformatics.mdanderson.org/
TCGASpliceSeq/PSIdownload.jsp). PSI value means the ratio
between exons inclusion and exclusion read counts and
indicates the efficiency of certain splicing process (24). To
ensure the reliability of subsequent analyses, we predefined
stringent filtering criteria: the PSI values of AS events in all
GBM samples with a standard deviation > 0.05, mean > 0.1, and
the percentage of samples with PSI values > 80 were included.

Identification of Prognostic AS
Events and Construction of an AS
Events-Based Risk Model
Univariate Cox regression analysis was carried out to find out the
prognostic relationship between AS events and overall survival of
GBM patients. AS events with P-value less than 0.05 in the
univariate Cox regression analysis were regarded as survival-
related factors and were selected for the next analysis. The least
absolute shrinkage and selection operator (LASSO) cox model
using 10-fold cross-validation was performed on the top 20
significant survival-related AS events that have the highest
prognostic value to select the most useful prognostic markers
of all types of AS events. The optimal lambda value was estimated
based on the minimum criteria. Then, these candidate survival-
January 2021 | Volume 10 | Article 555632

https://portal.gdc.cancer.gov
https://www.cbioportal.org/
https://www.cbioportal.org/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/PSIdownload.jsp
https://bioinformatics.mdanderson.org/TCGASpliceSeq/PSIdownload.jsp
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Alternative Splicing Events in GBM
related AS events were further subjected to multivariate Cox
regression analysis (25). The risk-score model of AS events for
predicting survival of GBM was constructed based on the
combination of an AS PSI value and the corresponding
regression coefficient (b) obtained from the multivariate Cox
regression analysis (26). The formula of calculating the risk score
of each GBM patient was as follows:

Risk score =o
N

i=1
(PSIASi � bASi)

where N is the number of AS events in the signature, bASi is the
regression coefficient, and PSIASi represents the PSI value of a
certain AS event in a single sample. GBM patients were divided
into a high- and low-risk group according to the median risk
score. Kaplan-Meier survival analysis based on the log-rank test
was used to evaluate the predictive value of the risk model.
Hazard ratios (HRs) and 95% confidence intervals (95% CIs)
were calculated both in univariate and multivariate Cox
regression analyses. The following clinical-relevant factors were
included in the multivariate Cox regression analysis: gender, age,
MGMTmethylation status, Karnofsky Performance Status (KPS)
score, IDH mutation status, and risk score. Finally, time-
dependent receiver operating characteristic (ROC) curves were
performed using the “timeROC” R package (v0.4) to display the
accuracy of this risk model in predicting the clinical outcomes of
GBM patients at different times.

Similar Network Fusion and Clustering
Based on all survival-related AS events, a modified clustering
method, SNF-CC, which combining Similar network fusion
(SNF) (27) with Consensus clustering (CC) (28), was applied
to perform classification of all GBM patients in the cohort. SNF-
CC algorithm was executed by “ExecuteSNF.CC” function
implanted in “CancerSubtypes” R package (v1.12.1) (29). To
guarantee a balance between high stability and low ambiguity,
the detailed parameters were set as follows: clusterNum = 2, K =
20, alpha = 0.5, t = 20, maxK = 5, pItem = 0.8 and reps = 500. The
consensus heatmap and cumulative distribution function (CDF)
were used to select a more appropriate number of clusters.
Furthermore, silhouette width, an index represents how similar
a sample is matched to its identified cluster compared to other
clusters, was validated in our study. The associations between AS
events-based subtypes, clinicopathological features (age, overall
survival status, KPS, IDH mutation, and MGMT methylation
status), GBM molecular subtypes (Verhaak classification and
EM/PM classification), and immune features (described below)
were evaluated.

Functional Enrichment Analyses
Gene set enrichment analysis (GSEA) analysis was conducted
using the R package “fgsea” (v1.12.0) (30). We ranked the GBM
samples according to their log2-fold change value (from high to
low) derived from differential expression analysis between two
distinct groups and checked if any signaling pathway or
molecular hallmark was associated with these differentially
Frontiers in Oncology | www.frontiersin.org 3
expressed genes. GSEA gene sets (curated gene sets (C2), Gene
Ontology (GO) gene sets (C5), and hallmark gene sets (H)) were
downloaded from the Molecular Signatures Database (v7.0)
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). To
obtain robust results, gene-set permutations were performed
10,000 times, and enrichment P-values were adjusted by false
discovery rates (FDR). FDR-adjusted P < 0.05 were considered as
statistically significant. GO term enrichment and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis for genes of interest were performed using metascape
(v3.5), which is an easy-to-use web portal that provides a
comprehensive analysis for the functional annotation of lists of
genes (31).

Single-Sample Gene Set Enrichment
Analysis (ssGSEA)
The fractions of diverse infiltrated immune cells in tumor
samples were est imated using the ssGSEA method
implemented in the “GSVA” R package (v1.34.0, https://
bioconductor.org/packages/release/bioc/html/GSVA.html). As
an extension of Gene Set Enrichment Analysis (GSEA),
ssGSEA evaluate the enrichment score of a certain gene set in
every single sample (32). Twenty-four kinds of immune cell
marker genes derived from a previously published research were
integrated into immune cells specific gene sets (33). Markers
associated with cells of the innate immune system, including
natural killer (NK) cells, NK CD56dim cells, NK CD56bright
cells, dendritic cells (DCs), immature DCs (iDCs), activated DCs
(aDCs), neutrophils, mast cells, eosinophils, and macrophages, as
well as those associated with cells of the adaptive immune
system, including B, T central memory (Tcm), CD8+ T, T
effector memory (Tem), T follicular helper (Tfh), Tgd, Th1,
Th2, Th17, and Treg cells, were included in the gene sets list.
Finally, ssGSEA captured a numeric matrix containing
enrichment scores of different immune cells across all
GBM samples.

Evaluation of Immune Features
Immune infiltration features in GBM samples can be inferred by
calculating tumor immunological indexes. According to a pan-
cancer study aiming at developing an effective biomarker for
predicting immunotherapy response (34), immune infiltration
score (IIS), T cell infiltration score (TIS), antigen presentation
machinery score (APS), and tumor immunogenicity score
(TIGS) were computed. Briefly, IIS indicated total immune
infiltration level in the tumor sample and was calculated as the
mean of standardized infiltration scores for all kinds of immune
cells obtained from the GSVA algorithm. Similarly, TIS was
calculated using T cell subsets, including CD8+ T, T helper, T,
Tcm, Tem, Th1, Th2, Th17, and Treg cells. APS was calculated
with GSVA using APM related genes (PSMB5, PSMB6, PSMB7,
PSMB8, PSMB9, PSMB10, TAP1, TAP2, ERAP1, ERAP2, CANX,
CALR, PDIA3, TAPBP, B2M, HLA-A, HLA-B, and HLA-C).
Tumor burden (TMB) was the number of non-synonymous
mutations per megabase (MB). Here, we used 38 MB as the
estimate of exome size and defined the TMB as the quotient of
January 2021 | Volume 10 | Article 555632
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non-synonymous mutations and 38MB. Then, TIGS was
calculated by multiply APS and TMB value. Predicted
abundance of neoantigens in GBM samples was obtained from
a previous study (35).

Prediction of Responses to Immune
Checkpoint Blockade (ICB) Therapy
The subclass mapping method (SubMap) (36) was used to
compare the gene expression matrices of different GBM
subtypes with the expression profiles of several cancer types
treated with ICB therapies, including transcriptomic data of 47
melanoma patients who received immunotherapy targeting
CTLA-4 and PD-1, and NanoString data of 49 patients with
four cancer types treated with anti-PD1 therapy (37, 38). This
step was performed using the SubMap module (v3) on the
GenePattern website (http://genepattern.broadinstitute.org/).
Parameters of SubMap analysis were set as default: num
marker genes = 100, num perm = 100, and num perm fisher =
1,000. P-values were adjusted by Bonferroni correction.

Splicing Correlation Network Construction
A list of splicing factors (SFs) was obtained from the SpliceAid2
database (http://www.introni.it/splicing.html). SpliceAid2
database embodies experimental curated splicing factors to
help researchers understand the tissue-specific alternative
splicing. The SF gene expression profile of GBM patients was
retrieved from TCGA RNA-seq data. Overall survival-related SFs
were determined using univariate Cox regression analysis. The
correlation of SFs and AS events was evaluated by Pearson
correlation analysis, and the regulatory network plot was
generated in Cytoscape software (v3.8.0).

Construction and Validation of
the Nomogram
Multivariable Cox proportional hazards regression analysis was
applied with the following clinical-relevant covariates: gender,
age, MGMT methylation status, Karnofsky Performance Status
(KPS) score, IDH mutation status, and risk score. A combined
nomogram was generated by the “regplot” R package (v1.0) as a
quantitative tool for predicting the likelihood to die of each
patient. The concordance index (C-index) was calculated to
assess the consistency between model prediction and actual
clinical outcomes of patients. The calibration plot was
generated to evaluate the accuracy of the prediction for 1- and
2- year overall survival using this nomogram by the “rms” R
package (v5.1-4). Additionally, decision curve analysis (DCA)
was applied to evaluate the performance of the nomogram by the
“rmda” R package (v1.6).

Statistical Analysis
The intersections of seven types of AS events in GBM were
plotted using the “UpSetR” R package (v1.4.0) (39). The
“glmnet” package (v3.0-2) was used to conduct the LASSO
Cox regression model analysis. Kaplan-Meier survival curves
were visualized to discover the difference of clinical outcomes
between groups using “survival” and “survminer” R package
Frontiers in Oncology | www.frontiersin.org 4
(v0.4.6). 3D-PCA plot was generated using “mixOmics” (6.10.9)
(40) and “rgl” (v0.100.5) (https://cran.r-project.org/web/
packages/rgl/index.html) R package.

Restricted mean survival (RMS) represents the loss in average
life expectancy for patients. We performed RMS time calculation
based on the univariable Cox proportional hazards regression of
overall survival (41). RMS and time ratio were estimated using
the “survRM2” R package (v1.0-2).

ESTIMATE is a widely used method that can infer the
fraction of immune and stromal cells in tumor samples using
the gene expression profile (42). Tumor purity was defined as the
percentage of malignant cells in a solid tumor sample. Here, the
purity of each GBM sample was assessed by package
“ESTIMATE” (v1.0.13, https://bioinformatics.mdanderson.org/
estimate/rpackage.html). Furthermore, the tumor purity was
further validated using the “TPES” R package (v1.0.0), which is
a computational method for estimating tumor purity from
single-nucleotide variants. Here, the tumor purity indexes of
the TCGA-GBM samples calculated using the “TPES” algorithm
were derived from the supplementary files of published
literature (43).

All statistical analyses were performed using R (version 3.6.1,
www.r-project.org), with chi-square or Fisher’s exact test for
patients’ characteristics in different clusters, a Mann-Whitney U
test for testing the differences in means of continuous data, and
log-rank test for survival analysis. For all hypothetical tests, a two-
sided P-value < 0.05 was considered to be statistically significant.
RESULTS

The Landscape of AS Events in GBM
Integrated mRNA AS events profile was analyzed for 152 GBM
patients from the TCGA cohort. Under the stringent filtering
criteria, a total of 15,907 AS events from 6,491 genes were
identified (Table S1). These AS events consisted of seven
different splicing patterns: Alternate Acceptor site (AA),
Alternate Donor site (AD), Alternate Promoter (AP), Alternate
Terminator (AT), Exon Skip (ES), Retained Intron (RI), and
Mutually Exclusive Exons (ME). Visualization of specific
numbers and intersections of all types of AS events in GBM
was generated in Figure 1A. Among all these types, ES and AP
splicing modes accounted for almost 60% of the total number
(9,478/15,907). Notably, a single gene may have more than one
type of splicing patterns. We detected 2,184 genes contain two or
more types of AS events in GBM samples. For instance,
PDE4DIP has six types of AS events, including AA, AD, AP,
AT, ES, and RI.

To explore the correlations between AS events and the overall
survival of GBM patients, we performed univariate Cox
regression analysis using PSI values of all AS events and
survival information of patients. Eventually, 775 AS events of
593 genes were confirmed to be prognostic in GBM (P-value <
0.05). Among them, we noticed that some genes have more than
one type of prognostic AS events. For example, AA and ES
splicing modes of ATG4D were all associated with overall
January 2021 | Volume 10 | Article 555632
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survival. The UpSet plot diagram was illustrated to visualize the
interactions among these AS events (Figure 1B). A more
intuitive landscape of AS events and their prognostic value in
GBM was shown using the circos plot (Figure 1C).
Construction of an AS Events-Based
Prognostic Model for GBM
Numerous survival-related AS events were identified after
performing univariate Cox regression analysis. In order to get
the AS events with the greatest potential prognostic value,
LASSO Cox regression analysis was carried out, and 18 AS
events were finally selected (Figures 2A, B). We also validated
whether the original genes of these 18 AS events are survival-
related factors when applying the univariate Cox regression
analysis to the corresponding gene expression profiles, and we
found that only two of them remain statistically significant,
including SERGEF and FAM86B1 (P-value < 0.05) (Figure
2C). Besides, only SERGEF and its splicing isoform, SERGEF-
14562-AD, shared similar prognostic value, while FAM86B1 and
FAM86B1-82719-AD had the reverse patterns in prognostic
Frontiers in Oncology | www.frontiersin.org 5
value. As revealed above, we identified and characterized that
isoform-based analysis can capture some meaningful transcripts
that were not available for gene-level analysis.

Then, we developed a formula to compute the risk score for
each GBM patient based on the PSI values and regression
coefficients of AS events. The risk score of each GBM sample
ranged from -13.782 to -7.970, and the median score of -10.569
was defined as the cut-off to separate the whole GBM cohort into
high- and low-risk groups. The efficacy of the risk model for
predicting overall survival of GBM patients was evaluated by
performing Kaplan–Meier survival analysis. The result indicated
that the risk score-based signature was significantly associated
with the prognosis of GBM patients. Patients in the high-risk
group had worse clinical outcomes than those in the low-risk
group (HR = 3.34, 95% CI: 2.23–5, P < 0.001) (Figure 2D). The
performance of the risk model was assessed in terms of the RMS
time ratio between different risk groups, and significant shorter
RMS time were observed in high-risk group compared with their
low-risk counterparts (RMSlow-risk/RMShigh-risk = 1.793, 95% CI:
1.514–2.123, P < 0.001) (Table S2). Time-dependent ROC curves
evaluated the performance of this risk model in predicting
A B

C

FIGURE 1 | Profiling of all and prognostic alternative splicing (AS) events in glioblastoma (GBM). (A) UpSet diagram of interactions between all alternative splicing
events in GBM. (B) UpSet diagram of interactions between overall survival-related AS events in GBM. (C) Circos plot of all AS events, prognostic AS events, and
their parent genes in chromosomes. The circle panels from the outer to inner were described as follows: chromosome ideogram, genes with AS events distribution,
number of survival-related AS events, and gene-gene interaction.
January 2021 | Volume 10 | Article 555632
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outcomes, and the area under the ROC curve was 0.81 at 1-year,
0.92 at 2-year, and 0.91 at 3-year, respectively (Figure 2E).

The risk score distribution, survival status, and AS events
profile of this signature were shown in Figure 3A. More patients
Frontiers in Oncology | www.frontiersin.org 6
were found dead in the high-risk group than the low-risk group,
and the overall survival time of high-risk patients was much
shorter than patients of low-risk. We further calculated the
different usage of the transcript isoforms in the alternative
A B

D E

C

FIGURE 2 | Construction and evaluation of an alternative splicing (AS) events-based risk model. (A) The partial likelihood deviance was plotted using vertical lines with
red dots, and the dotted vertical lines represent values based on minimum criteria and 1-SE criteria, respectively. A value l = 0.035 with log(l) = -3.349 was chosen via
minimum criteria. (B) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the candidate AS events by 10-fold cross-validation. (C) Prognostic
value of the candidate AS events and their corresponding genes in the glioblastoma (GBM) cohort. The hazard ratio (HR) and P-values were calculated using the
univariate Cox regression analysis. (D) Comparison of overall survival according to the AS events-based signature for patients. (E) Time-dependent receiver operating
characteristic (ROC) analysis was used to assess the performance of the risk model in predicting 1-, 2- and 3-year survival of GBM patients.
January 2021 | Volume 10 | Article 555632
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splicing signature in the different risk groups. The PSI value
represents the frequency of the specific transcript isoform that
occurred in the alternative splicing process. Therefore, we
compared the PSI values of these AS events in the risk model
signature to reflect the differential usage of the mRNA isoforms.
The abundance of the risky AS events with HR greater than one
in the high-risk group were more than the low-risk group, while
the opposite pattern occurred in the protective AS events (Figure
3B). These results indicated that the substantial differences in
survival between high- and low-risk groups might result from the
isoform switching.

Verhaak’s GBM molecular classification was developed based
on the gene expression profile of the TCGA GBM cohort and has
been widely used for GBM research (9). The Verhaak subtype
information of each sample in the present study was obtained
from UCSC Xena (https://xenabrowser.net/). Next, we
investigated the inter-tumor heterogeneity of risk score by
Frontiers in Oncology | www.frontiersin.org 7
examining the relationship of risk score with different
Verhaak’s subtypes. Higher scores were found in the
mesenchymal subtype compared to the classical and proneural
subtype (Figure 3C). IDH mutation and MGMT methylation
status are well-documented GBM molecular markers that can
predict the overall survival of patients (44). In general, IDH wild-
type and MGMT unmethylated status usually indicate a worse
prognosis. We separated GBM patients into different groups
based on these two biomarkers to explore the association
between risk score and IDH mutation/MGMT methylation
status (Figure 3D). We noticed that the risk score was
significantly higher in the IDH wild-type group than the IDH
mutation group (P < 0.001). A similar result was also found in
MGMT unmethylated group (P < 0.01). Furthermore, the HRs
for the AS events-based signature in the univariate and
multivariate Cox regression analyses were 2.718 (P < 0.001,
95% CI: 2.186–3.38) and 2.496 (P < 0.001, 95% CI: 1.802–
A

B

D

C

FIGURE 3 | Distribution of the risk score and differences in clinicopathological features in glioblastoma (GBM) patients. (A) Overview of risk score, clinical outcomes
of patients, and expression heatmap of 18 alternative splicing (AS) events in the signature. (B) Boxplots visualizing the different levels of Percent Spliced In (PSI)
values between the high- and low-risk groups. (C) Risk score in different molecular subtypes of The Cancer Genome Atlas Project (TCGA) classification scheme.
(D) Comparison of risk score according to IDH mutation status or MGMT methylation status. * indicates P < 0.05; ** indicates P < 0.01; *** indicates P < 0.001.
January 2021 | Volume 10 | Article 555632
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3.458), respectively (Table S3). Thus, the risk score model was
proved to be an independent prognostic factor for GBM patients.

SNF-CC Identified Two Distinct Subtypes
of GBM Patients
Patients without detailed survival information were excluded
before performing the SNF-CC algorithm, and then PSI values of
AS events in all samples were scaled via z-score standardization.
The built-in Cox model function of the “CancerSubtypes”
package enabled us to filter crucial survival-related splicing
patterns specific to GBM. The performance of this clustering
method was assessed by clustering heatmap, CDF curves, and
silhouette width. The results demonstrated that SNF-CC
achieved adequate robustness when all GBM patients were
categorized into two distinct clusters, with Cluster1 consists of
45 patients and Cluster2 of 106 patients (Figure 4A, Figure S1).
PCA analysis supported the effectiveness of this clustering
method in defining GBM sub-grouping based on survival-
related AS events (Figure 4B). Importantly, statistically
significant differences in outcomes of patients were observed in
these two clusters, and Cluster2 patients showed worse
prognoses than those of Cluster 1 (HR = 2.07, 95% CI: 1.44–
2.97, P < 0.001) (Figure 4C). A higher proportion of patients
with IDH wild-type (fractions, 99.03% vs 81.82%, P = 3.06e-4)
and MGMT unmethylation (fractions, 64.37% vs 44.44%, P =
0.047) was observed in Cluster2 compared with Cluster1 (Figure
4D). Also, we found a significant difference in Verhaak’s subtype
among two clusters (P = 4.97e-11), and Cluster2 had more
mesenchymal GBMs than Cluster1 (fractions, 55.24% vs.
15.91%) (Figure 4E). The EM/PM subtype is another glioma
molecular classification based on the coexpression modules of
EGFR and PDGFRA (45). The prognosis of EM glioma was much
worse than PM glioma. Here, we noticed a significant
relationship between EM/PM subtype and the novel
classification scheme we developed (P = 1.23e-5), and Cluster2
had more EMhigh samples than Cluster1 (fractions, 71.43%
vs 50%).

The remarkable differences in both clinicopathological and
molecular characteristics between these two clusters suggested
that different functional annotations and signaling pathways
might exist. GSEA manifested a remarkable activation in
cancer-associated signaling pathways was significantly enriched
in Cluster2 compared with Cluster1, including epithelial-
mesenchymal transition (NES = 2.27, FDR = 5.1e-4), P53 (NES
= 1.52, FDR = 4.3e-3), IL6 JAK STAT3 signaling (NES = 2.35,
FDR = 5.1e-4), and interferon-gamma response pathways (NES
= 2.5, FDR = 5.1e-4) (Figure 5A, Table S4). Besides the cancer
hallmark biological processes, Cluster2 was also involved in
various immune-related responses, such as inflammatory
response (NES = 2.55, FDR = 2e-3), adaptive innate immune
response (NES = 2.59, FDR = 2e-3), innate immune response
(NES = 2.49, FDR = 4.3e-3), and immune effector process
regulation (NES = 2.34, FDR = 2e-3). Overexpressed genes in
Cluster2 (log2-fold change > 1 and adjusted P-value < 0.05) were
calculated as input for functional annotation analyses using
Metascape. The GO and KEGG enrichment analysis indicated
Frontiers in Oncology | www.frontiersin.org 8
that Cluster2 had enriched genomic biological processes,
including human immune response, cytokine-cytokine receptor
interaction, T cell activation, cytokine production, IL-10
signaling, and regulation of leukocyte migration (Figure 5B).

Association of Identified Subtypes
With Immune Cell Infiltration in
the GBM Microenvironment
The intratumoral microenvironment is a complex that consists
of the tumor and non-tumor cells, such as stromal and immune
cells (46). These non-malignant cells can regulate the progression
of tumorigenesis via the cross-talk with malignant cells in GBM
(47). We found that both IIS and TIS were much higher in
Cluster2 than in Cluster1, which represented higher relative
fractions of total immune cells (P < 0.001), and T cell subsets
(P < 0.01) were infiltrated in tumors of Cluster2 (Figure 5C).
Recently, immunotherapies targeting immune checkpoints
blockade (ICB) had been proved to exhibit critical anti-tumor
functions by promoting anti-tumor immune responses and
inhibiting immunosuppressive effects. Clinical outcome of ICB
therapy has been reported to be closely related to neoantigen
abundance in some cancers (48, 49). Here, a significant depletion
of the neoantigen burden was found in Cluster2 (P < 0.05).
Besides, we also noticed a relatively higher level of APS in
Cluster2 compared with Cluster1 (P < 0.001). In glioma,
decreasing of neoantigens was tightly associated with intact
APM function, increased infiltration of immune cells, and
active immune processes (50). This may explain the
phenomenon that Cluster2 contained higher APS, IIS, and TIS
while harboring lower numbers of neoantigens.

To further validate the association between immune system
processes and these two subtypes, the ssGSEA method was
performed to estimate the differences in the detailed immune
infiltration of 24 types of immune cells between these clusters
(Figure 6A). We found that Cluster2 exhibited a higher
abundance of pro-tumor immune cell types, including mast
cells, immature dendritic cells (iDCs), CD56dim natural killer
cells, macrophages, neutrophils, and regulatory T cells (Tregs)
(Figure 6B). Meanwhile, anti-tumor immune cells, such as
CD8+ T cells and B cells, were significantly significantly
depleted in Cluster2 samples. These results indicated that
the enrichment of numerous immune-related pathways in
Cluster2 might result from the differences in recruitment or
differentiation of diverse immune cells in tumors.

Wang et al. pointed out that TIGS is an ideal index to predict
clinical response to ICB therapy (33). Therefore, a higher TIGS
level in Cluster2 suggested more patients may benefit from ICB
therapy than those of Cluster1. The expression levels of immune
checkpoints have been proposed to be useful references for
selecting patients receiving immunotherapy. Thus, we further
investigated the expression levels of several well-known immune
checkpoints (TIM-3, TIGIT, LAG-3, PD-1, CTLA-4, PD-L1, PD-
L2, and IDO1) between two distinct clusters. Most of them were
more highly expressed in Cluster2 than in Cluster1 (P < 0.05)
(Figure 6C). Finally, SubMap analysis manifested that samples
in Cluster2 shared a higher similarity with the expression profile
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of melanoma patients who were responsive to PD-1 inhibitor
treatment (P = 0.004, Bonferroni P = 0.032) (Figure 6D).
Moreover, the same procedure performed on another cancer
cohort containing 49 baseline tumors in four cancer types,
Frontiers in Oncology | www.frontiersin.org 9
GSE93157, also achieved similar results (P = 0.03, Bonferroni
P = 0.12) (Figure 6D). These findings confirmed that GBM
samples in Cluster2 may benefit from anti-PD-1 therapy
compared with those of Cluster1.
A
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C

FIGURE 4 | Identification of two distinct clusters using the similarity network fusion and consensus clustering (SNF-CC) method. (A) Heatmap of the sample
similarity matrix and silhouette width plots of the subtypes for k = 2 to 4. (B) 3D-PCA (Principal Components Analysis) plot of patients in different clusters. Comp 1,
Comp 2, and Comp 3 on axes represent three principal components respectively. (C) Comparison of overall survival for patients of different clusters. (D) Novel
glioblastoma (GBM) classification was associated with IDH mutation and MGMT methylation status. Cluster2 tumors had a significantly higher IDH wild-type and
MGMT unmethylation rate. (E) Significant associations between alternative splicing (AS) events-based classification and other GBM molecular subtypes. Cluster2
tumors had a significantly higher mesenchymal and EM subtype rate.
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Association of Risk Score and
Immunosuppressors
We investigated the association between AS events-based risk
score and tumor purity in GBM using both ESTIMATE and TPES
algorithms, and we found a stable significant negative correlation
among them (ESTIMATE: Pearson correlation coefficient (R) =
-0.2, P = 0.015; TPES: R = -0.24, P = 0.0098) (Figure 7A).
Meanwhile, higher stromal and immune score were observed in
high- than the low-risk group (P < 0.05) (Figure S2). We also
explored the relationship between risk score and glioma mediated
immunosuppression. The gene sets of glioma-related
immunosuppressive factors, including immunosuppressive
cytokines and checkpoints, tumor-supportive macrophage
chemotactic and skewing molecules, immunosuppressive
signaling pathways, and immunosuppressors were extracted
from previous reports (51, 52). The risk score was positively
correlated with the expression of most genes (Figure S3).
Pearson correlation analysis also found that risk score was
positively correlated with immunosuppressive genes including
TIMP1 (R = 0.450), BIRC3 (R = 0.435), ICAM1 (R = 0.361),
CCL2 (R = 0.359), and RAB27A (R = 0.352) (Figure 7B). After
that, ssGSEA analysis was carried out to assess the enrichment
score of each gene set for every single GBM sample. Positive
correlations between risk score and each gene set score were found
(Figure 7C), indicating that AS events-based signature played a
vital role in immunosuppression in GBM microenvironment.
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The Network of Survival-Related AS
Events and Splicing Factors
SFs play an important role in regulating the process of exons
inclusion and introns exclusion during alternatively splicing pre-
mRNA. Changes of SFs lead to the production of diverse splicing
patterns of genes, including some oncogenic isoforms, and thus
promote or inhibit tumorigenesis (53). In order to depict the
potential regulatory network between SFs and prognostic AS
events, univariate Cox regression analysis was carried out to
identify the survival-related SFs in GBM. 16 SFs were regarded as
core SFs (P < 0.05), including CELF6, HSPB1, HSPA5, TIA1,
PQBP1, TIAL1, EEF1A1, FAM50B, NUDT21, SMNDC1,
HNRNPC, PRMT5, JUP, MYEF2, LSM2, and HNRNPLL.
Significant correlations with |R| > 0.4 and P < 0.05 were shown
in the network map (Figure S4, Table S5). A total of 14
prognostic SFs were correlated with 116 AS events. Several
most significant correlations were presented in Figure 8A.

Posttranscriptional modification of SFs can also influence
alternative splicing, such as phosphorylation and methylation
(54, 55). In this study, the methylation levels of EEF1A1,
FAM50B, PRMT5, and SMNDC1 promoters were negatively
associated with their mRNA expression levels (Figure 8B).
Next, we investigated the relationships between copy number
alteration (CNA) and expression levels of prognostic SFs, and the
expression levels of 10/14 SFs were associated with CNA events
(Figure 8C).
A
B

C

FIGURE 5 | Functional annotation of the molecular differences and comparison of immunological features in different clusters. (A) Gene set enrichment analysis
showing significant enrichment of various signaling pathways and gene sets in Cluster2 compared with that in Cluster1. The label of “genes upregulated” and “genes
downregulated” represent genes upregulated/downregulated in Cluster2 compared with Cluster1. (B) Network of biological processes and signaling pathways
enriched in genes upregulated in Cluster2 compared with Cluster1. (C) The association between novel alternative splicing (AS)-based glioblastoma (GBM)
classification, clinicopathological factors, GBM subtypes, and immune features was annotated in the heatmap.
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Development of a Nomogram Based on
AS Events
To develop a quantitative tool for predicting the prognosis of
GBM patients, we established a nomogram by integrating
clinicopathological risk factors and AS events-based signature
based on the multivariable Cox proportional hazards model
(Figure 9A). The point scale in the nomogram was utilized to
generate point to these variables, and the risk of death of each
GBM patient was qualified by accumulating total points of all
variables. The risk score was found to have the most excellent
weight among all these variables, which was consistent with the
result of the previous multivariable Cox regression analysis. The
C-index of this nomogram reached 0.774 (95%CI: 0.743–0.805).
The result of the calibration plot further confirmed the
significant consistency between predicted and observed actual
clinical outcomes of GBM patients (Figure 9B). The decision
curve analysis showed a higher overall net benefit using the
nomogram than either the “treat all” or the “treat none”
approach within a range of threshold probabilities > 10%
(Figure 9C). Moreover, the same result was found when
compared with the base model, which contained age, gender,
KPS, IDH status, and MGMT methylation status of patients. All
these findings demonstrated that the AS events-based nomogram
is an optimal model for predicting the prognosis of GBM patients
in clinical management.
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DISCUSSION

Alternative processing of mRNA, a universal phenomenon that
happened in the process of transcriptional regulatory, can
increase the diversity of protein to a large scale. The advent of
next-generation sequencing and the development of
bioinformatics make it possible to deeply elucidate the
mechanisms of alternative splicing behind various biological
processes, such as cancer. Combining with comprehensive
multi-omics databases, such as TCGA, the novel role of
alternative splicing in human cancers can be further explored.
The previous studies had noticed that AS events of specific genes
can drive or suppress tumorigenesis of glioma. For instance,
GFAP-d and GFAP-a are two types of GFAP alternative splice
variants, and highGFAP-d/a ratio in glioma cells contributes to a
more invasive phenotype by activating the expression of DUSP4
(56). Li et al. demonstrated that b splicing of hTERT was tightly
linked to higher tumor grades and poor prognosis of glioma
patients (57). To our best knowledge, previous researches on AS
events of diffuse glioma and GBM mainly focused on limited
samples or cancer cell lines, and a large-scaled prognostic AS
events in GBM remain largely unstudied.

Compared with microarray assays, RNA-seq is superior in
sequencing depth and dynamic range, and more AS events can
be identified using RNA-seq data. In recent years, signatures
A B

DC

FIGURE 6 | The immune landscapes and predicted immunotherapeutic responses among different clusters. (A) The relative proportion of immune cell infiltration in
the two clusters obtained by ssGSEA analysis. (B) Boxplots visualizing significantly different abundance levels of infiltrated immune cells between the two clusters.
(C) Comparison of the mRNA expression levels of several different immune checkpoints between these two clusters. (D) SubMap analysis of the GBM subtypes and
two independent immunotherapeutic treatment datasets. SubMap analysis suggested that patients of Cluster2 may be more sensitive to anti-PD-1 immunotherapy.
The colors in the cells represent the nominal and Bonferroni corrected p values.
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based on gene expression, DNA methylation, and even multi-
omics profiles have been widely developed to clarify their clinical
relevance in GBM (58–60). Here, transcriptome data of GBM
samples in TCGA were obtained, and alternative splicing
patterns were calculated using SpliceSeq, which is an effective
tool to accurately identify potential AS events using RNA-seq
data (61). We established an AS events-based signature as a
potential prognostic model to categorize GBM patients into
different risk groups. The remarkable discrepancy of overall
survival in the two groups suggested the existence of significant
tumor heterogeneity. Given that molecular heterogeneity may
underlie differences in prognosis and responsivity to clinical
therapy, we linked risk score to some GBM molecular features,
such as TCGA Verhaak’s GBM classification, IDHmutation, and
MGMT promoter methylation, and we confirmed that these
samples are highly variable from patient to patient at a
molecular level.

Due to the molecular heterogeneity, the use of the anatomical
distribution, WHO grade, IDH mutation, and MGMT
methylation status to classify patients and determinate
therapeutic options have limited value. In this study, all
survival-related AS events were filtered as input file of SNF-CC
clustering, and two AS events-based clusters were identified.
Overall survival, IDH mutation, MGMT methylation, Verhaak’s
subtype, and EM/PM subtype were unevenly distributed among
these newly identified subtypes. Interestingly, both Verhaak’s
and EM/PM classification were based on patterns of gene
expression, and the close associations between AS- and gene
patterns-based subtype may indicate the resemblance in
Frontiers in Oncology | www.frontiersin.org 12
biological pathways. A series of functional annotation analyses
showed that besides classical oncogenic hallmarks, Cluster2
samples also presented a stronger immunophenotype than
samples in Cluster1. At first, the brain was regarded as an
immunologically privileged organ due to the existence of the
blood-brain barrier and the deficit of immune activities. The
discovery that the infiltration of multiple immune cell types in
CNS has made this view obsolete (62, 63). Thus, it could be
speculated that immune signaling pathways exclusively enriched
in the Cluster2 subtype might play an important role in driving
tumorigenesis. After describing the landscapes of immune cell
infiltration among samples of both subtypes, we preliminary
noticed that much immune cell types were highly abundant in
the Cluster2. However, contrary to what we expected, the
prominent immune phenotype contributed to a worse instead
of a favorable prognosis because of the large proportions of pro-
tumorigenic immune cells as well as less anti-tumorigenic
immune cells in these samples. Much more contents of
cytotoxic cells, NK cells, neutrophils, and DCs in Cluster2
suggested that these patients may show better responsivities to
immunotherapies. Also, as an effective index for ICB-response
prediction, TIGS was much higher in Cluster2 compared with
Cluster1, indicating more patients of Cluster2 might benefit from
ICB treatment. Furthermore, we investigated the expression
levels of several immune checkpoints aforementioned among
two subtypes, and we found most of them were higher expressed
in Cluster2, which indicated that patients of Cluster2 would
benefit more from immune checkpoint inhibitors than those of
Cluster1. Consistent with our hypotheses, patients in Cluster2
A
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FIGURE 7 | The immunosuppressive function of the alternative splicing (AS) events signature. (A) Correlation of risk score with glioblastoma (GBM) purity estimated
by the “ESTIMATE” and “TPES” algorithms, respectively. (B) Correlation of the risk score with the expression levels of several representative immunosuppressive
genes. (C) Correlation of risk score with ssGSEA scores of immunosuppressor metagenes.
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were demonstrated to be sensitive to anti-PD-1 therapy using
SubMap analysis. Monoclonal antibodies targeting PD-1 had
shown positive outcomes in several human cancer types,
including melanoma, renal cell carcinoma, and non-small cell
lung cancer (64). Newly published studies provided evidence that
PD-1 blockade augmented antitumor immune response,
chemokine transcripts expression, and T lymphocyte
infiltration in GBM (65, 66). Although many clinical trials
have demonstrated that the efficacy of ICB therapy for GBM
remains unsatisfactory to date, Cloughesy et al. reported that the
median overall survival for GBM patients received neoadjuvant
(presurgical) PD-1 blockade was much longer than the adjuvant
group (417 days vs. 228.5 days, HR = 0.39, P < 0.05) (66). This
discrepancy may result from the dampened immune responses
and the suppression of cellular immunity caused by surgery itself.
GBM patients of cluster2 in our study were proved to be more
sensitive to anti-PD-1 treatment, so we have the reason to
Frontiers in Oncology | www.frontiersin.org 13
speculate that these patients may benefit from the neoadjuvant
administration before surgery. In clinical practice, precision
identification of patients of this GBM subtype with biopsy and
then followed with anti-PD-1 treatment before tumor resection
may significantly prolong the survival time for patients.
Currently, several clinical trials are still undergoing to utilize
anti-PD-1 for the treatment of GBM (NCT02311920 and
NCT03726515) (67, 68).

Multiple factors were reported to affect the effectiveness of
ICB treatment, such as copy number alterations (CNAs), tumor
mutation burden, mutational signature, and T-cell signature
(34). The source article of the melanoma transcriptome mainly
discussed the role of the CNAs in modulating the response to
CTLA-4 and PD-1 blockade. However, to our best knowledge,
none developed tool or algorithm is available for comparing the
similarity of the mutational or CNA data. The gene expression
profile contains rich information on the biological processes,
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FIGURE 8 | Regulatory mechanisms of splicing factors (SFs) in glioblastoma (GBM). (A) Representative correlations between Percent Spliced In (PSI) values of
survival-related alternative splicing (AS) events and the expression of SFs. (B) Representative correlations between expression of SFs and the SFs promoter
methylation. (C) Representative boxplots of SFs expression among different copy number status.
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including immune response. The high similarity of the gene
expression patterns indicates the similarity of the genome to
some extent and then may reflect the similar responses to the
ICB therapy. Several studies have utilized the gene expression
data of various types of cancer receiving ICB therapy to
predict the possible responses to immunotherapy in the
interested cancer types. For example, Ock et al. developed a
transcriptional predictor of immunotherapy response for pan-
cancer using publicly available data for the ICB therapy with
gene expression profiles in several cancer types (69). Jiang et al.
developed a computational method based on gene profiling data
in several tumor types for anti-PD-1 and anti-CTLA4 therapies
to accurately predict the outcome of melanoma patients treated
Frontiers in Oncology | www.frontiersin.org 14
with ICB (70). Zeng et al. included several genomic and
transcriptomic datasets from patients with different cancer
types treated with immunotherapy in their study to evaluate
the efficiency of the tumor microenvironment score they
developed in predicting the immunotherapeutic benefits (71).
Among these studies, the gene expression data from patients
with different tumors treated with ICB therapies, including renal
cell carcinoma, melanoma, non-small cell lung carcinoma, head
and neck squamous cell carcinoma, were applied not limited to
the same cancer types. Thus, we have reasons to shift our gaze to
the transcriptomic data for comparing the similarity of the gene
profiles of the two clusters we identified with the data of other
cancer types received ICB therapies.
A
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FIGURE 9 | Developed nomogram to predict the risk of death in glioblastoma (GBM) patients. (A) Nomogram built with clinicopathological factors incorporated
estimating 1-, 2-, and 3-year overall survival for GBM patients. The asterisk beside each variable in the nomogram represents the statistical significance. ** indicates
P < 0.01; *** indicates P < 0.001. (B) The calibration curves describing the consistency between predicted and observed overall survival at 1- and 2-year. The
estimated survival was plotted on the x-axis, and the actual outcome was plotted on the y-axis. The gray 45-degree dotted line represents an ideal calibration mode.
(C) Decision curve analysis for the nomogram and base model. The red line measures the nomogram, and the green line represents the base model. The selected
probability threshold is plotted on the abscissa.
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We focused on the AS events-based risk model again and
intended to explore whether this AS events signature is closely
associated with the tumor microenvironment. Apart from
neoplastic and immune cells, subpopulations of stromal cells
also exist in the complex tumor niche, such as endothelial cells,
fibroblasts, reactive astrocytes, and microglial cells, and feedbacks
from these cell subsets can driver malignant progression (47, 72).
The negative correlation between risk score and tumor purity
indicated that AS events-based signature might influence the
constituents of non-tumor cells in GBM samples. Meanwhile,
the risk score was positively correlated to several gene sets of
glioma-related immunosuppressive factors, suggesting that the
worse prognosis of patients in the high-risk group may result
from the enhanced immunosuppressive environment. A mass of
genes known to be associated with the immunosuppressive
function was generated to investigate how AS events-based
signature functions as a regulator of immunosuppression. Large
numbers of immunosuppressive genes were positively correlated
with the increasing risk score: TIMP1 promoting recruitment of
neutrophils to the liver to trigger the formation of the
premetastatic microenvironment (73), BIRC3 producing
cytokines and chemokines by regulating nucleotide-binding and
oligomerization signaling pathways (74), ICAM1 boosting oral
cancer progression by inducing CD163-positive macrophages
adhesion (75), CCL2 highly expressed in pancreatic tumors
promoting anti-tumor immunity by increasing the infiltration of
immunosuppressive CCR2+ macrophages (76), LGALS1
inhibiting immunosuppressive cytokines by decreasing M2
macrophages and myeloid-derived suppressor cells in GBM
(77), FOXP3+ Treg cells resulting in poor prognosis in various
human cancers (78–80).

Splicing factors are known to function as oncogenes or tumor
suppressors by regulating specific splice variants in glioma (81–
83). Thus, we developed a correlation network between SFs and
AS events to clarify the splicing regulatory mechanisms in GBM.
Several factors have been reported essential to drive tumorigenesis
among these crucial SFs, such as TIA1 (84), PQBP1 (85), HSPB1
(86), and EEF1A1 (87). Considering the expression levels of
protein-coding genes were susceptible to the promoter loci
methylation and copy number variation status, we investigated
the influence of these kinds of factors on SFs expression.
Therefore, we constructed a comprehensive network to help
understand the potential regulatory pathways in cancer as well
as motivate the development of novel target drugs for
clinical treatment.

Although our research sheds new light on the novel molecular
classification and immune microenvironment, we still have to
acknowledge some limitations in the study. Firstly, our study was
designed retrospectively, and findings should be further validated
by prospective research. The prognostic value of AS events-based
signature should be evaluated in clinical management. Secondly,
the findings of the aberrant AS events and the construction of the
developed prognostic model were merely based on the expression
profiles of TCGA-GBM dataset, other independent GBM datasets
should be included to further validate and expand these findings.
We have searched large-scale gene expression profiles on GBM
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samples, but unfortunately only the TCGA project has the
curated alternative splicing patterns of the corresponding tumor
samples so that we can explore the potential value of the
alternative splicing in GBM by integrating mRNA level
information. Thirdly, limited by a scarcity of normal brain
samples as references in the SpliceSeq database, specific AS
events in GBM were not detected. We noticed that only five
normal brain samples with both AS and gene expression profiles
were included in the TCGA-GBM dataset. The huge difference in
the size of the normal and GBM samples make it inapplicable for
the identification of differentially expressed AS events.
Comparing the differences of the AS patterns directly will
inevitably introduce statistical bias, and the result may be
unstable and incredible. Furthermore, our study was based on
single-omics (AS events), so that the distinct molecular and
clinicopathologic features among patients of high- and low-risk
groups, as well as different subtypes, may result from intrinsic
discrepancies of other factors, such as somatic mutation and
DNA methylation. Also, we acknowledge that the RNA-seq data
of GBM in the TCGA database was based on the bulk tumor
sequencing, and the gene expression profiles cannot precisely
represent the expression patterns of the cancer cells inside due to
the inherent heterogeneity. The detailed characterization of the
expression patterns of specific cancer cells needs the support of
the single-cell sequencing method. Although several some
computational approaches have been developed to estimate
specific gene expression profiles for tumor cells inside the bulk
samples, such as ISOpure and DeMixT, the prediction accuracy of
these algorithms has not been validated in the TCGA-GBM
cohort (88, 89). Applying these estimation methods to the
unverified TCGA-GBM dataset directly may introduce
unexpected bias. In addition, it is insufficient to predict the
responses to immunotherapies for GBM merely based on AS
events. Other omics data should be aggregated to develop a robust
biomarker for immunotherapy response prediction.

In summary, our study identified significant prognosis related
value of AS events in GBM and built an effective risk model to
predict the survival outcomes for patients. Also, the aberrant
alternative spliced variants were closely associated with the
regulation of the immune microenvironment during the
development of malignant tumors. The potential mechanisms
that prognostic splicing factors affecting the overall survival of
patients by regulating AS events were further exploited. Moreover,
newly developed GBM classification based on AS events clustering
analysis uncovered the inherent relevance of molecular and
immune features. Therefore, this deep-mining analysis of AS
patterns may provide some new perspectives to develop novel
therapeutic strategies against GBM.
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