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ABSTRACT: The S protein of SARS-CoV-2 is a type I membrane protein that mediates membrane fusion and viral entry. A vast
amount of structural information is available for the ectodomain of S, a primary target by the host immune system, but much less is
known regarding its transmembrane domain (TMD) and its membrane-proximal regions. Here, we determined the NMR structure
of the S protein TMD in bicelles that closely mimic a lipid bilayer. The TMD structure is a transmembrane a-helix (TMH) trimer
that assembles spontaneously in a membrane. The trimer structure shows an extensive hydrophobic core along the 3-fold axis that
resembles that of a trimeric leucine/isoleucine zipper, but with tetrad, not heptad, repeats. The trimeric core is strong in bicelles,
resisting hydrogen—deuterium exchange for weeks. Although highly stable, structural guided mutagenesis identified single mutations
that can completely dissociate the TMD trimer. Multiple studies have shown that the membrane anchors of viral fusion proteins can
form highly specific oligomers, but the exact function of these oligomers remains unclear. Our findings should guide future

experiments to address the above question for SARS coronaviruses.

he SARS-CoV-2 virion is decorated with a large number

of membrane-anchored spike proteins (S) responsible for
target recognition, membrane fusion, and virus entry;l’2 it is
also the dominant antigen on the virion surface used for
vaccine development.’ The full-length S is a type I membrane
protein that is first expressed as a precursor that trimerizes (S;)
and then cleaved into two fragments ((S1/5S2)5): the receptor-
binding fragment S1 and the fusion fragment S2.*

The processed (S1/S2); comprises the crown-shaped
ectodomain that contains the receptor-binding domain
(RBD), a transmembrane domain (TMD), and a cytoplasmic
tail (CT) (Figure 1a). Since the availability of the SARS-CoV-
2 genetic code in January of 2020, structural biology of the
SARS-CoV-2 spike has progressed at lightning speed owing to
cryo-electron microscopy (cryo-EM); that is, over 26
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Figure 1. Sequence arrangement of the membrane-interacting regions
of SARS-CoV-2 S. (a) Overall domain organization of S2. (b)
Sequence alignment of the TMDs of S2 of SARS-CoV-2
(QI157161.1), SARS-CoV (AAS75868.1), and MERS (QDI173610.1).
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structures of the S1/S2 ectodomain have been published,
most of them covering residues 14—1162 (Table S1).
However, as has been the case for the spike proteins of
many enveloped viruses, the membrane region of the
coronavirus spike remains unknown. In a cryo-EM study that
thus far provided the most complete view of the S protein,
structural details could be seen up to the HR2 region of the S2
fragment (Figure la), but the membrane-proximal and
transmembrane regions were not resolved.’

Previous studies on SARS-CoV, however, suggest that the S
TMD has important functional roles other than membrane
anchoring. One study showed that swapping the TMD of
SARS-CoV S with that of vesicular stomatitis virus (VSV) G
protein resulted in 3—25% activity compared to the wild type.®
Another study reported that insertion of a residue in the TMD
resulted in a complete block of viral entry.7 Further, a recent
study on SARS-CoV-2 showed that directly fusing the RBD to
the TMD could induce trimerization, suggesting the ability of
the TMD to trimerize.®

In this study, we used NMR to investigate the structural
properties of the TMD of SARS-CoV-2 § in bicelles to fill the
knowledge gap. We find that the TMD of the S protein forms a
strong trimer in bicelles by a previously unknown mode of
transmembrane helix (TMH) assembly.

To determine the TMD structure using NMR, we used an
S2 fragment (residues 1209—1237; Figure 1b), derived from a
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SARS-CoV-2 isolate QIIS7161.1. This construct, designated
§2129971237  contains a short stretch of the membrane-proximal
region (residues 1209—1217) and the TM segment (residues
1218—1234). S2'2%971237 wyas reconstituted in DMPC-DHPC
bicelles with g = 0.55 (Figure Slab), where g = [DMPC]/
[DH(PC]. At g = 0.55, the diameter of the planar bilayer
region of the bicelles is ~46 A.” The bicelle-reconstituted
§21209-1237 1an on SDS-PAGE as trimers, whereas unrecon-
stituted peptide migrated as monomers (Figure Slc). Further,
OG-label and SEC-MALS analyses independently showed that
$2129971237 forms trimers in bicelles (Figure S1d) and detergent
micelles (Figure S2), respectively.

The trimeric $2"2%7'>” in bicelles generated good NMR
spectra (Figure S3), and its NMR structure was determined
using a published protocol,'” involving (1) construction of a
preliminary monomer structure with local nuclear Overhauser
effect (NOE) restraints and backbone dihedral angles derived
from chemical shift values (using TALOS+'"), (2) obtaining a
unique structural solution (using ExSSO'”) that satisfies
interchain NOE restraints derived from mixed isotopically
labeled sample (Figure S4), and (3) refinement of the trimer
structure by further assignment of self-consistent NOE
restraints (overall procedure in Figure SS; refinement summary
in Table S2; PDB ID: 7LC8).

In bicelles, the TMD of the SARS-CoV-2 S protein folds
into a regular a-helix (residues 1218—1234) that assembles
into a parallel homotrimer (Figure 2a). Residues 1209—1217
are unstructured in our sample, likely due to N-terminal
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Figure 2. NMR structure of the TMH trimer of SARS-CoV-2 S in the
DMPC-DH(PC bicelle with g = 0.5S. (a) Ribbon representation (left)
of the TMH trimer structure with the side chain heavy atoms of the
core residues shown as spheres; the Car atoms of G1219 and G1223
are also shown as spheres. The side chain packing at four different
levels along the 3-fold axis is illustrated with sectional top views of the
trimer (right). (b) Helical wheel representation of an a-helix (3.6
residues per turn) showing that the core hydrophobic residues occupy
the position “a” of the “abcd” tetrad repeat. (c) Theoretical analysis of
the trimeric hydrophobic zipper with a tetrad repeat. The line formed
by the Ca atoms of the residues at position “a” is tilted by ~17°
relative to the helical axis. Rotating the helix by 17° places the
position-a residues in line with the 3-fold axis for optimal
hydrophobic core formation.
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truncation. The trimeric complex is held together by an
extensive hydrophobic core along the 3-fold axis, and the core
comprises four layers of hydrophobic interactions involving
11221, 11225, L1229, and L1233, respectively (Figure 2a).
Despite the presence of signature sequences for driving TMH
oligomerization such as Gly-xxx-Gly and Ala-xxx-Ala,"'* our
TMD structure does not show direct involvement of the
glycine or alanine in forming close van der Waals (VDW)
contacts. In this regard, the new TMH trimerization mode is
different from the known TMH structures that require one or
two small amino acids in establishing intimate helix—helix
contact, e.g, the G690 for HIV-1 p41,15 the G221 for
TNFR1,'® a central proline for Fas,'” a central alanine for
DRS,'® and the A794 for HSV gB.19

The hydrophobic core of the TMD trimer shows an unusual
pattern of tetrad repeat, ie, 11221, 11225, L1229, and L1233,
each occupying position “a” of the abcd repeat (Figure 2b),
and this is very different from the coiled coil mode of assembly
of TMH with a heptad repeat.”” Since each turn of an a-helix
consists of 3.6 residues, a four-residue repeat overshoots the i +
4 hydrophobic residues past a helical turn by 40°, diverting the
hydrophobic ridge from the 3-fold axis by ~17° (Figure 2c).
Thus, tilting the TMH by 17° would align the hydrophobic
ridges of the three TMHs with the 3-fold axis to allow intimate
hydrophobic packing (Figure 2c). Indeed, the tilt angle in our
experimentally determined structure is ~18.6 + 2° in close
agreement with the theoretical analysis.

To examine the S TMD independently by mutagenesis, we
generated seven single mutations—G1219Y, G1223Y, 11221Y,
11225Y, A1226Y, L1229Y, and L1233Y—and evaluated their
effect on TMH trimerization (Figure 3a). Mutating the
characteristic glycine/alanine in the Gly"*"”-xxx-Gly'*** or
Ala"*xxx-Ala'?¢ signature sequence to tyrosine has no effect
on TMH trimerization, further supporting the structural
conclusion that the relatively conserved glycine and alanine
are not directly involved in helix—helix packing. As shown in
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Figure 3. Stability and localization of the TMH trimer of SARS-CoV-
2 S in bicelles. (a) SDS-PAGE of bicelle-reconstituted $2'272%7 and
its mutants for showing the effect of single mutations on trimerization.
Samples were run under nondenaturing conditions. “—” and ‘+
indicate unreconstituted and bicelle reconstituted, respectively. (b)
Residue-specific amide k., at pH 6.8 determined by H—D exchange
measurements. (c) PRE,,,, Vs r best fitted to the symmetric sigmoidal
equation (eq S2), where r, = 0 corresponds to the bilayer center. (d)
Position of the TMH trimer (electrostatic surface representation)

relative to the center and boundaries of the planar region of the
bicelle.

»

https://doi.org/10.1021/jacs.1c02394
J. Am. Chem. Soc. 2021, 143, 8543—-8546


https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02394?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02394?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02394?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02394?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02394?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02394?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02394?fig=fig3&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02394/suppl_file/ja1c02394_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02394?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c02394?rel=cite-as&ref=PDF&jav=VoR

Journal of the American Chemical Society

Communication

pubs.acs.org/JACS

Figure 2a, G1219 and G1223 are entirely lipid facing and are
not expected to participate in interhelical VDW contacts.
A1226 is closer to the packing interface but is still not interior
enough to be in VDW contact with 11225 or L1229 of the
neighboring chain. In contrast, mutating each of the four
hydrophobic residues (11221, 11225, L1229, L1233) that
constitute the hydrophobic core to tyrosine all led to severe
disruption of the trimer, further consolidating the conclusion
that the tetrad repeat of bulky hydrophobic residues is
important for the TMH trimerization. Further, the I1225Y or
L1229Y mutation almost completely abolished trimerization,
while the 11221Y and L1233Y near the N- and C-terminal ends
of the TMH, respectively, are less disruptive, probably due to
increased dynamics of the helix-ends (Figure S6). This is also
consistent with the hydrogen—deuterium (H—D) exchange in
which the core residues 1225—1229 exhibited the lowest k,, of
all residues (Figure 3b; Figure S7). Overall, the oligomeric
properties of the seven mutants agree well with the NMR
structure.

To determine the membrane partition of the TMD
structure, we performed the paramagnetic probe titration
(PPT) analysism’21 using $2"2%71%7 reconstituted in bicelles
with g = 0.6. Soluble (Gd-DOTA) and lipophilic (16-DSA)
probes were used to provide reciprocal paramagnetic relaxation
enhancement (PRE) information (Figure S8). The analysis of
residue-specific PRE amplitude (PREamP) in the context of the
TMD structure shows that the lipid bilayer center is between
A1226 and 11227 (Figure 3c,d; Figure S9; Table S3). Further,
PRE,,,, reaches the maximal values at about 15 A away from
the center on either side, indicating that the bilayer thickness
around the TMD trimer is ~30 A. Thus, the S protein TMD
caused substantial thinning of the membrane around it.

We have shown that the TMD of the SARS-CoV-2 fusion
protein spontaneously trimerizes in the lipid bilayer, and the
trimeric assembly is achieved with a previously unknown
hydrophobic zipper motif with a tetrad repeat, not with the
usual suspects of TMH oligomerization motifs containing
glycine or alanine. The role of small amino acids in mediating
TMH oligomerization has been observed in several type I/1I
membrane proteins including glycophorin A growth factor
receptors,”>*® and receptors in the tumor necrosis factor
receptor (TNFR) superfamily.'®™"® The Gly-xxx-Gly is a well-
known motif that drives TMH dimerization.'”'#**** There
have been no reports, however, of the Gly-xxx-Gly involvement
in TMH trimerization. In the trimer structure of the HIV-1
Env TMD, which contains a highly conserved Gly-xxx-Gly,
only the first glycine is involved in helix—helix packing; the
second glycine is lipid facing.">** The SARS-CoV-2 S TMD
also contains highly conserved small amino acids (G1219,
A1222, G1223, A1226), which we thought initially to be
important for TMD oligomerization. But, neither the glycines
nor alanines in the trimer structure appear to be important for
the hydrophobic core formation. The purpose of the Gly-xxx-
Gly motif remains unknown. If the trimer structure presented
here represents the prefusion state, a possible role of the
glycine motif is in later steps of the fusion mechanism.

Although the TMH is relatively short (~16 residues), it can
have an extensive hydrophobic core with four layers of
hydrophobic interaction. This is attributed to the tetrad repeat
of hydrophobic residues, as opposed to the heptad repeat in a
classic coiled coil structure. On the basis of the extensive
hydrophobic packing, we believe the TMD trimer is stable in
the membrane. A potential implication is that the TMD trimer
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is unlikely to dissociate in the membrane unless significant
force is applied during the unfolding and refolding steps of the
fusion component.

Although functional mutagenesis of the SARS-CoV-2 S
TMD has not been reported, a previous study on the SARS-
CoV reported that inserting an amino acid between G1201 and
F1202 of the S TMD completely blocked viral entry.” G1201
and F1202 in SARS-CoV correspond to G1219 and F1220 in
SARS-CoV-2, respectively (Figure 1b). In the context of our
TMH trimer structure, such insertion might not disrupt
trimerization but could place the tetrad repeat out of register
relative to the still unknown membrane-proximal structure and
thus prevent proper TMH trimerization.

In conclusion, the TM anchor of the SARS-CoV-2 fusion
protein spontaneously trimerizes in the membrane. The
trimeric complex is stabilized by an extensive hydrophobic
core along the 3-fold axis, formed by the bulky hydrophobic
amino acids repeated every four residues. This mode of TMH
trimerization is significantly different from the known TMH
trimer structures of fusion proteins from other viruses. Strong
intramembrane oligomerization appears to be a recurring
theme for viral fusion proteins, but its functional roles remain
unclear. The reported structure of the TMD of SARS-CoV-2
fusion protein allowed us to identify single mutations that can
completely dissociate the trimeric assembly. We believe these
mutations are valuable information for guiding future func-
tional experiments for addressing the above question.
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