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Neuromorphology is crucial to identifying neuronal subtypes and understanding learning.

It is also implicated in neurological disease. However, standard morphological analysis

focuses onmacroscopic features such as branching frequency and connectivity between

regions, and often neglects the internal geometry of neurons. In this work, we treat

neuron trace points as a sampling of differentiable curves and fit them with a set of

branching B-splines. We designed our representation with the Frenet-Serret formulas

from differential geometry in mind. The Frenet-Serret formulas completely characterize

smooth curves, and involve two parameters, curvature and torsion. Our representation

makes it possible to compute these parameters from neuron traces in closed form. These

parameters are defined continuously along the curve, in contrast to other parameters like

tortuosity which depend on start and end points. We applied our method to a dataset of

cortical projection neurons traced in two mouse brains, and found that the parameters

are distributed differently between primary, collateral, and terminal axon branches, thus

quantifying geometric differences between different components of an axonal arbor. The

results agreed in both brains, further validating our representation. The code used in

this work can be readily applied to neuron traces in SWC format and is available in our

open-source Python package brainlit: http://brainlit.neurodata.io/.
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1. INTRODUCTION

Not long after scientists like Ramon y Cajal started studying the nervous system with staining and
microscopy, neuronmorphology became a central topic in neuroscience (Parekh and Ascoli, 2013).
Morphology became the obvious way to organize neurons into categories such as pyramidal cells,
Purkinje cells, and stellate cells. However, morphology is important not only for neuron subtyping,
but in understanding learning and disease. For example, a now classic neuroscience experiment
found altered morphology in geniculocortical axonal arbors in kittens whose eyes had been stitched
shut upon birth (Antonini and Stryker, 1993). Also, morphological changes have been associated
with the gene underlying an inherited form of Parkinson’s disease (MacLeod et al., 2006). Neuron
morphology has been an important part of neuroscience for over a century, and remains so – one of
the BRAIN Initiative Cell Census Network’s primary goals is to systematically characterize neuron
morphology in the mammalian brain.
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Currently, studying neuron morphology typically involves
imaging one or more neurons, then tracing the cells and
storing the traces in a digital format. Several recent initiatives
have accumulated large datasets of neuron traces to facilitate
morphology research. NeuroMorpho.Org, for example, hosts a
total of over 140,000 neuron traces from a variety of animal
species (Ascoli et al., 2007). These traces are typically stored as
a list of vertices, each with some associated attributes including
connections to other vertices.

Many scientists analyze neuron morphology by computing
various summary features such as number of branch points,
total length, and total encompassed volume. Neurolucida, a
popular neuromorphology software, employs this technique.
Another approach focuses on neuron topology, and uses metrics
such as tree edit distance (Heumann and Wittum, 2009).
However, both of these approaches neglect kinematic geometry,
or how the neuron travels through space. Tortuosity index
is a summary feature that captures internal axon geometry,
but this feature depends on the definition of start and
end points, and cannot capture an axon’s curvature at a
single point.

In this work, we look at neuron traces through the lens of
differential geometry. In particular, we establish a system of fitting
interpolating splines to the neuron traces, and computing their
curvature and torsion properties. To our knowledge, curvature
and torsion have never been measured in neuron traces. We
applied this method to cortical projection neuron traces from
two mouse brains in the MouseLight dataset from HHMI Janelia
(Winnubst et al., 2019). In both brains, we found different
distributions of these properties between primary, collateral, and
terminal axon segments. The code used in this work is available
in our open-source Python package brainlit: http://brainlit.
neurodata.io/.

2. METHODS

2.1. Spline Fitting
First, the neuron traces were split into segments by recursively
identifying the longest root to leaf path (Figure 1A). The
first axon segment to be isolated in this way was defined
to be the “primary” segment. Subsequent segments that
branched were defined as “collateral” segments, and those
that did not branch were defined to be “terminal” segments
(Figure 1B). This classification approximates the standard
morphological definitions of primary, collateral and terminal
axon branches.

Next, a B-spline was fit to each point sequence using
scipy’s function splprep (Virtanen et al., 2020). Kunoth
et al. (2018) provide an in depth description of B-splines and
their applications. Briefly, B-splines are linear combinations of
piecewise polynomials, sometimes called basis functions. The
basis functions are defined by a set of knots, which determine
where the polynomial pieces meet, and degree, which determines
the degree of the polynomial pieces. The j’th basis function for
a set of knots ξ and degree p is recursively defined by Equation

(1.1) in Kunoth et al. (2018):

Bj,p,ξ : =
x− ξj

ξj+p − ξj
Bj,p−1,ξ (x)+

ξj+p+1 − x

ξj+p+1 − ξj+1
Bj+1,p−1,ξ (x)

with

Bi,0,ξ : =

{

1, if x ∈ [ξi, ξi+1),

0, otherwise.

Splines are fit to data by solving a constrained optimization
problem, where a smoothing term is minimized while keeping
the residual error under a specified value (Dierckx, 1982). Here,
we constrain the splines to pass exactly through all points in the
original trace, which corresponds to a smoothing condition of
s = 0 in splprep. For a sequence of n > 5 points, we fit a
spline of degree 5, which is the minimal degree that ensures that
the splines are thrice continuously differentiable. Differentiability
is important because it allows for estimation of curvature and
torsion, explained in the next section.

Sequences of fewer than 5 points, however, required lower
degree splines to fully constrain the fitting procedure. For a
sequence of 3 < n ≤ 5 points we used degree 3, for a sequence of
n = 3 points we used degree 2, and for a sequence of n = 2
points we used degree 1. By selecting the degree in this way,
we avoided splines of large even degree, such as fourth order
splines, which are not recommended in our interpolation setting
(Virtanen et al., 2020). Also, these degree choices are low enough
to allow for a fully constrained fitting procedure, but high enough
to make curvature/torsion nonvanishing when possible.

We recall that B-splines are not required to be parameterized
by the arclength of the curve. Here, we set ξ = {0, . . . , L}, where
L is the cumulative length of the segments connecting the vertices
of the trace, in µm. All other spline fitting options were set
to the defaults in splprep. This spline fitting method can be
applied to any set of points organized in a tree structure, such as
a SWC file. Figure 1C shows examples of splines that were fit to
neuron traces.

2.2. Frenet-Serret Parameters
An important advantage of B-splines is that their derivatives can
be computed in closed form. In fact, their derivatives are defined
in terms of B-splines as shown below in Theorem 3 from Kunoth
et al. (2018):

Theorem For a continuously differentiable b-spline Bj,p,ξ (·)
defined by index j, degree p ≥ 1, and knot sequence ξ , we have:

d

ds
Bj,p,ξ (s) = p

(

Bj,p−1,ξ (s)

ξj+p − ξj
−

Bj+1,p−1,ξ (s)

ξj+p+1 − ξj+1

)

where we assume by convention that fractions with zero
denominator have value zero.

Curvature and torsion can be easily computed because of
this property. For a thrice differentiable curve x(s) ∈ R

3 that
is parameterized by arclength (i.e., ||ẋ(s)|| = 1 ∀s), one can
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FIGURE 1 | (A,B) Cartoon example of how we partition an axonal arbor trace into different segment classes, with numbers indicating distances between points (with

arbitrary units). (A) A neuron trace is split into different segments by identifying the longest root to leaf path (“Main branch”), and separating sub-trees from it. The

sub-trees which still have branch points are processed in the same way until the neuron has been split into segments. By using path length to identify the Main

branch, this splitting process is invariant to rigid transformations of the trace. (B) Illustration of how axon segments are classified as primary, collateral, or terminal. The

first segment is defined as primary, and segments that have no sub-trees are defined as terminal. All other segments are defined as collateral. (C) Examples of our

spline fitting method applied to neuron traces from the MouseLight project (Winnubst et al., 2019). The splines pass through all trace points, and are thrice

continuously differentiable for segments that contain at least five trace points. The blue points indicate the somas, and the spline colors indicate segment class (blue =

primary, red = collateral, green = terminal). The neuron on the left is from brain 1, the one on the right is from brain 2. The scale bar only applies to (C).

compute the curvature (κ) and torsion (τ ) with the following
formulas:

κ(s) = ||ẋ(s)× ẍ(s)||

τ (s) =
〈(ẋ(s)× ẍ(s)),

...
x (s)〉

||ẋ(s)× ẍ(s)||2

defined with the standard Euclidean norm || · ||, inner product
〈·, ·〉, and cross product ×. When curvature vanishes, we define
torsion to be zero as well, since the torsion equation becomes
undefined. The units of curvature and torsion are both inverse
length. In this work, neuron traces have units of microns, so
curvature and torsion both have units of (µm)−1.

Curvature measures how much a curve deviates from being
straight, and torsion measures how much a curve deviates
from being planar. Together, these quantities parametrize
the Frenet-Serret formulas of differential geometry. These
formulas completely characterize continuously differentiable
curves in three-dimensional Euclidean space, up to rigid motion
(Grenander et al., 2007). Curvature takes non-negative values,

but torsion can be positive or negative where the sign denotes the
direction of the torsion in the right-handed coordinate system. In
this work, we are not interested in the direction of the torsion, so
we focused on the torsion magnitude (absolute value).

2.3. Data
We applied our methods to a collection of cortical projection
neuron axon traces from two mouse brains in the HHMI Janelia
MouseLight dataset. The precision of the reconstructions is
limited by the resolution of the original two-photon block-face
images, which was 0.3µm × 0.3µm × 1µm (Winnubst et al.,
2019). Each reconstruction is the consensus of traces by two
independent annotators. Winnubst et al. (2019) showed that
using two annotators per neuron produced reconstructions that
are about 93.7% accurate (in terms of total axonal length). There
were 180 traces from brain 1 and 50 traces from brain 2.

After fitting splines to these traces, curvature and torsion
magnitude were sampled every 1µm along the axon segments.
Sampling every 1µm is the highest sampling frequency that
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does not exceed the image resolution, so it is an appropriate
balance of precision and computational efficiency. We studied
curvature and torsion magnitude in two ways, described below
in sections 2.4, 2.5.

2.4. Computing Autocorrelation of
Curvature and Torsion
Our first goal was to identify the length scale at which straight
axon segments remain straight and curved axon segments remain
curved, so we studied the autocorrelation of curvature and
torsion magnitude along the axon segments. For each axon
segment, the autocorrelation functions of curvature and torsion
were computed along the length of the segment, yielding a
collection of autocorrelation functions for each brain. Then,
we evaluated whether autocorrelation at a particular lag was
significantly higher than 0.3 using a one-sided t-test with a
significance threshold of α = 0.05. We identified 0.3 as our effect
size because correlations higher than 0.3 are generally regarded
as “moderate” correlations.

It is worth noting that, by the nature of the spline fitting
procedure in Virtanen et al. (2020), “lag” in our autocorrelation
functions refers to straight line distances between the trace
points, not by the arclength of the resulting curves.

2.5. Comparing Axon Segment Classes
Our second goal in the analysis was to compare curvature/torsion
between segment classes. First, we estimated each segment’s
average curvature/torsion magnitude by taking the mean from
all points that were sampled on that segment.

In order to compare different segment classes, we developed
a paired sample method for testing for differences in average
curvature/torsion. Different neurons represented different
samples, and the average curvature/torsion of two segment
classes (primary vs. collateral, collateral vs. terminal, primary vs.
terminal) represented the paired measurements.

Define the random variable X as the average curvature/torsion
of one segment class and Y as the average curvature/torsion of
another segment class. Further, say X and Y are both real valued.
Our null and alternative hypotheses are as follows:

H0 :Pr[X > Y] = 0.5

H1 :Pr[X > Y] 6= 0.5

We tested these hypotheses using the sign test (Neuhauser,
2011). The test statistic is the number of times that the data
point from one sample is greater than its pair from the other
sample. A key advantage of the sign test is that it does not
require parametric distribution assumptions, such as normality
of the data. Also, its null distribution can be computed exactly
via the binomial distribution. The two different parameters
(curvature and torsion), and the three different segment class
pairs constitute six total tests, so we applied the Bonferroni
correction to α = 0.05 to obtain the significance threshold
0.0083, which controls the family-wise error rate to 0.05. We
conducted one-sided sign tests in all cases.

We also wanted to study whether these results would hold
if the traces were perturbed. In particular, since the annotators

vary the distance between points in their trace, we decided to
randomly remove trace points and repeat the curvature/torsion
measurements. Since the traces are tree structures, a trace point
can be removed after connecting its child node(s) to its parent
node. We produced 20 copies of the original dataset and, in each
case, removed every trace point with 10% probability.

3. RESULTS

3.1. Autocorrelation of Curvature and
Torsion
The autocorrelation functions for all segments of a brain were
averaged, and they are shown in Figure 2. Also shown is a
shaded region that represents one standard deviation of these
autocorrelation functions. The t-tests described in section 2.4
were significant at lags of 1, 2, 3, 4µm for curvature in brain 1,
1, 2, 3µm for curvature in brain 2, 1, 2µm for torsion in brain 1,
and 1, 2µm for torsion in brain 2.

3.2. Axon Segment Class Differences
The distributions of mean curvature and torsion are shown
in Figure 3. Our statistical testing procedure, described in
section 2.5, rejected the null hypothesis in all cases, with all p
< 5 × 10−7. The directions of the one-sided tests were identical
in both brains with:

Curvature: Collateral > Terminal > Primary

Torsion: Collateral > Primary > Terminal

When we applied the same testing procedure to the 20 datasets
with trace points randomly removed, the null hypotheses were
also all rejected, in the same directions, in all cases.

Neuron counts for all 36 possible curvature/torsion orderings
across classes are shown in Figure 4. The most common ordering
of curvature/torsion is exactly the same as the results of the sign
test (106/180 neurons followed this ordering in brain 1, 38/50 in
brain 2).

In the Supplementary Figure 1, we plot the curvature/torsion
vs. segment length. There appear to be modest correlations
between segment length and curvature/torsion values in
log-log plots.

4. DISCUSSION

Our work proposes a model of neuron morphology using
continuously differentiable B-splines. From these curves, it is
possible to measure kinematic properties of neuronal processes,
including curvature and torsion. These techniques are freely
available in our open source Python package brainlit: http://
brainlit.neurodata.io/, and more information about how to
reproduce the specific results here can be found in the data
availability statement.

In most contemporary neuromorphological analysis, neuron
traces are regarded as piecewise linear structures, which
precludes any analysis of higher order derivatives. Our
spline representation makes it possible to estimate higher
order derivatives and study parameters like curvature and

Frontiers in Neuroinformatics | www.frontiersin.org 4 August 2021 | Volume 15 | Article 704627

http://brainlit.neurodata.io/
http://brainlit.neurodata.io/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Athey et al. Fitting Splines to Axonal Arbors

FIGURE 2 | Autocorrelation of curvature and torsion magnitude averaged across all axon segments with ±1σ confidence intervals. Curvature and torsion were

sampled at every 1µm along the axon segments. One sided t-tests indicated that curvature had statistically significant autocorrelation values above 0.3 at lags of 1, 2,

3, and 4 µm in brain 1 and 1, 2, and 3 µm in brain 2. Torsion had statistically significant autocorrelation values above 0.3 at lags of 1 and 2µm in both brain 1 and 2.

FIGURE 3 | The distributions of average curvature and average torsion differed between the different segment classes as shown in these kernel density estimates

(which integrate to one, and therefore density has the units of µm), using a Gaussian kernel. The bandwidth of the kernel was 1.2σ where σ was computed using

Scott’s method (Scott, 2015). Segment averages were computed by sampling the curves at a uniform spacing of 1µm. One-sided sign tests, testing for differences in

average curvature and torsion, were conducted while controlling the family-wise error rate to 0.05. The tests were significant in all cases and the directionality of the

tests agreed in both brains.

torsion of neuron branches. In the popular piecewise linear
representation, curvature and torsion would be zero along
the line segments, and undefined where the line segments
meet. We simulated a piecewise linear representation by
modifying our spline fitting procedure to only produce splines
of degree one. Indeed, with this less sophisticated representation,

curvature and torsion vanished everywhere, making them
not meaningful.

Tortuosity index captures similar information to
our curvature/torsion measurements and is popular in
neuromorphological analysis (Stepanyants et al., 2004).
However, tortuosity requires the user to define start and end
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FIGURE 4 | For each neuron, average curvature and torsion was computed for all three segment classes (P, primary; C, collateral; T, terminal) and compared between

classes. These heatmaps show the neuron counts for all 36 possible orderings of curvature/torsion. The most common ordering was collateral > terminal > primary

for curvature and collateral > primary > terminal for torsion.

points whereas our method does not. Further, the piecewise
linear representation of neuron traces limits the sampling
frequency of tortuosity. Since tortuosity of a straight line is
identically 1, placing the start and endpoints on the same linear
segment will always produce a tortuosity value of 1. Our method,
on the other hand, can produce more meaningful instantaneous
curvature/torsion values.

Our methods for fitting splines and measuring curvature
and torsion can be applied in neuromorphological analysis in
a variety of ways, but we highlight two applications here, on a
dataset of 230 projection neuron traces from two different mouse
brains. We found that the autocorrelation functions of both
curvature and torsion showed statistically significant correlations
above 0.3 within lags of approximately 2 microns (specific lag
values given in section 3.1). Next, we defined segments as
either “primary,” “collateral,” or “terminal,” and found significant
differences in the distributions of curvature and torsion between
these classes.

The statistical analysis approach described in section 2.5
satisfies two desirable properties. First, by averaging
measurements across segment classes, and pairing the data,
we did not have to assume independence between segments of
the same neuron. Assuming independence seemed inappropriate
because, for example, segments that are connected to each
other may have correlated geometry. Second, it avoided any
parametric assumptions of the data, such as assuming normality
of curvature/torsion measurements. A normality assumption
seemed inappropriate for several reasons, including the fact
that curvature is nonnegative, and that curvature/torsion was
identically 0 for short segments with only 2 trace points.

Figure 4 shows that most individual neurons agree with
the overall trend that collateral segments have the highest
curvature and torsion. This suggests that the finding here is a
consistent phenomenon among projection neurons in mice. In

order to explore curvature/torsion distributions one level deeper,
we looked into the relationship between curvature/torsion and
segment length (see Supplementary Figure 1). In all segment
classes, longer segments tend to have less curvature. The
relationship between segment length and torsion is weaker, but
there does appear to be a positive correlation.

Together, these findings suggest that the geometry of primary
axon branches is different than that of higher order branches,
such as the segments in terminal arborizations. In particular,
higher order branches (collaterals and terminals) had higher
curvature than primary branches. Collateral branches also had
the highest torsion, but primary branches had higher torsion than
terminal segments.

The primary limitation of our work is that our process of
splitting a neuron trace into segments may not partition an
axonal arbor into the most meaningful segment classes. This is
because we needed an unambiguous classification system, while
most definitions used in neuroscience literature are subjective
and qualitative. For example, collaterals are broadly defined as
branches that split off their parent branch at sharp angles, and
arborize in a different location from other branches (Rockland,
2013). However, there is no strict cutoff for how far away a branch
has to travel for it to be considered a collateral. Further, a branch
may be simultaneously considered a collateral and a terminal.We
designed a set of segment classes which are mutually exclusive,
collectively exhaustive, and agree with common usage of the
terms ‘primary,’ ‘collateral,’ and ‘terminal’ by neuroscientists.
Future work could include changing our definitions of these
classes to incorporate other morphological properties such as
branch angle, or axon radius. Also, extending these experiments
to neuron trace repositories such as NeuroMorpho.Org would
help verify if the results using our classification system generalize.

Previous research has already indicated differences in
axon geometry across neuronal cell types. For example,
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Stepanyants et al. (2004) found higher tortuosity in the axons of
GABAergic interneurons vs. those of pyramidal cells. Similarly,
Portera-Cailliau et al. (2005) found Cajal-Retzius cells to be
significantly more tortuous than Thalamocortical (TC) cells,
which is a type of projection neuron. Portera-Cailliau et al.
(2005) also offers evidence that, while the primary axon in
TC cells travel via a growth cone, most branching occurs
via an interstitial, growth cone independent process. Our
work elaborates on this distinction, suggesting that higher
order axon branches have different geometry as well. While
earlier research studied the differences of axonal geometry
between neurons, we studied the variation of axonal geometry
within neurons.

It is also worth noting that this is not the first work
to model neuron traces as continuous curves in R

3. For
example, Duncan et al. (2018) construct a sophisticated and
elegant representation of neurons that offers several useful
properties. First, their representation is invariant to rigid motion
and reparameterization. Second, their representation offers a
vector space with a shape metric amenable to clustering and
classification. However, their representation is limited to neuron
topologies consisting of a main branch and only first order
collaterals. Our B-splines approach does not immediately yield
vector space properties, but can be applied to neurons with higher
order branching, and allows for closed form computation of
curvature and torsion. In short, the representation in Duncan
et al. (2018) is designed for analysis between neurons, and our
representation is designed for analysis within neurons. In the
future, we are interested in bringing the advantages of their work
to the open source software community, and combining it with
the advantages of ours.

This method could also be applied to measure curvature and
torsion of dendrites, since dendrites also have a tree structure
and are commonly stored in SWC format. However, the segment
classes that we define (primary, collateral and terminal) would be
inappropriate for dendrites. A segmentation classification system
for dendrites would likely depend on the neuron type being
studied. For example, a natural classification system of dendrites
in pyramidal cells may separate apical dendrites from basal ones
while dendrites in Purkinje cells would not have such a division.
The researcher would have to define the dendrite segment classes
according to the dataset, and the goals of the research.

It is well known that axons are pruned and modified over
time (Portera-Cailliau et al., 2005). It is possible that this process
contributes to the different geometry of proximal vs. distal
axonal segments. Indeed, Portera-Cailliau et al. (2005) mentions
the growth of short twisted branches toward the end of axon

development. Future animal experiments could follow-up on this
idea, and similar experiments to this one could be applied to
other neuron types and other species to see if this is a widespread
phenomenon in neuron morphology.
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Supplementary Figure 1 | The above plots show the relationship between

segment length, and mean curvature or torsion in each segment class and brain.

Each data point represents a single axon segment, and average curvature and

torsion was computed by sampling the segments at a uniform spacing of 1 µm.

We removed segments with zero average curvature/torsion in order to plot the

data on a log scale. In this data, there appear to be weak negative correlations

between segment length and curvature, and a weak positive correlations between

segment length torsion.
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