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Many organisms are subject to selective pressure that gives rise to
unequal usage of synonymous codons, known as codon bias. To
experimentally dissect the mechanisms of selection on synony-
mous sites, we expressed several hundred synonymous variants of
the GFP gene in Escherichia coli, and used quantitative growth and
viability assays to estimate bacterial fitness. Unexpectedly, we
found many synonymous variants whose expression was toxic
to E. coli. Unlike previously studied effects of synonymous muta-
tions, the effect that we discovered is independent of translation,
but it depends on the production of toxic mRNA molecules. We
identified RNA sequence determinants of toxicity and evolved sup-
pressor strains that can tolerate the expression of toxic GFP vari-
ants. Genome sequencing of these suppressor strains revealed a
cluster of promoter mutations that prevented toxicity by reducing
mRNA levels. We conclude that translation-independent RNA tox-
icity is a previously unrecognized obstacle in bacterial gene
expression.
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Although synonymous mutations do not change the encoded
protein sequence, they cause a broad range of molecular

phenotypes, including changes of transcription (1), translation
initiation (2, 3), translation elongation (4), translation accuracy
(5, 6), RNA stability (7), and splicing (8). As a result, synony-
mous mutations are under subtle but nonnegligible selective
pressure, which manifests itself in the unequal usage of synony-
mous codons across genes and genomes (9–11). Several recent
experiments directly measured the effects of synonymous muta-
tions on fitness in bacteria (2, 12–17). It has been commonly
assumed that fitness depends primarily on the efficiency, accu-
racy, and yield of translation. Here we show that in the context of
heterologous gene expression in Escherichia coli, large effects of
synonymous mutations on fitness are translation-independent
and are mediated by RNA toxicity.
To study the effects of synonymous mutations on bacterial

fitness, we used an isopropyl-β-D-thiogalactopyranoside (IPTG)-
inducible, bacteriophage T7 polymerase-driven plasmid to ex-
press a collection of synonymous variants of the GFP gene (2) in
E. coli BL21-Gold(DE3) (henceforth referred to as BL21) cells
(Materials and Methods). Without IPTG induction, there were no
discernible differences in growth between strains (Fig. 1A).
When induced with IPTG, the growth rate of GFP-producing
strains was reduced, consistent with the metabolic burden con-
ferred by heterologous gene expression. The growth phenotype
varied remarkably between strains expressing different synony-
mous variants of GFP (Fig. 1B and SI Appendix, Fig. S1). “Slow”
variants caused a long lag phase postinduction, indicating that at
this stage the cells either stopped growing or died, while “fast”
variants showed growth rates closer to noninduced cells.
Several hours after induction, the slow variants appeared to re-
sume growth (Fig. 1B): we found that this was related to the
emergence of suppressor strains that could tolerate the expres-
sion of these variants (SI Appendix, Fig. S1) (see below).
We quantified cell viability postinduction by assessing the

colony-forming ability of cells (Fig. 1C). Fast variants showed the
expected increase in cell numbers postinduction, but slow vari-
ants caused a 1,000-fold decrease in viable cell numbers.

Similarly, spotting of noninduced cells onto LB plates with IPTG
showed that the slow variants formed markedly fewer colonies
than fast variants (Fig. 1D). Microscopic analysis of slow variants
showed decrease in cell number, growth arrest, and in some cases
massive cell death following IPTG induction. In the case of fast
variants we observed normal increase in cell numbers and neg-
ligible cell death after induction (SI Appendix, Fig. S2). These
results indicate that certain synonymous variants of GFP cause
significant growth defects when overexpressed in E. coli cells,
and we will henceforth refer to these variants as “toxic.”
To test if toxicity was specific to T7 promoter-driven over-

expression, we analyzed growth phenotypes following the ex-
pression of a subset of GFP variants using a bacterial polymerase
(trp/lac) promoter system (SI Appendix). Although the growth
phenotypes measured with bacterial promoter constructs were
not as dramatic as with T7-based constructs, presumably because
of lower GFP expression levels, growth rates with both types of
promoters were correlated with each other (Fig. 1E). In-
terestingly, toxicity increased at high temperature, and decreased
at low temperature (SI Appendix, Fig. S1). Taken together, these
results indicate that the toxic GFP variants cause growth defects
in two different E. coli strains, with two types of promoters,
possibly through a common mechanism.
To understand whether toxicity depends on the process of

translation, we selected several toxic and nontoxic variants of
GFP and mutated their Shine–Dalgarno sequences from
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GAAGGA to TTCTCT to prevent ribosome binding and block
translation initiation. As expected, mutation of Shine–Dalgarno
sequences completely inhibited the production of functional
GFP protein from all tested constructs (Fig. 2A). To our surprise,
GFP variants without Shine–Dalgarno sequences remained toxic,
and their effects on growth were indistinguishable from variants
with a functional Shine–Dalgarno sequence (Fig. 2B). Western
blot analysis confirmed that mutation of the Shine–Dalgarno se-
quences ablates GFP expression (SI Appendix, Fig. S3). We con-
sidered the possibility that a cryptic Shine–Dalgarno element
within the coding region allowed translation of a truncated frag-
ment of GFP, which would be consistent with loss of GFP fluo-
rescence and translation-dependent toxicity. However, analysis of
the coding regions with the RBS Calculator (18) revealed no
strong Shine–Dalgarno consensus sequences. These results raise
the possibility that toxicity might arise at the RNA level, rather
than at translation or protein level.
To identify sequence elements required for toxicity, we se-

lected one of the toxic variants (GFP_170) and a nontoxic vari-
ant (GFP_012), and performed DNA shuffling (19) to generate
constructs that consisted of random fragments of GFP_170 and
GFP_012. All of the shuffled and nonshuffled constructs we
generated encoded the same GFP protein sequence. Analysis of
growth rate phenotypes of these shuffled constructs revealed a
fragment near the 3′ end of the GFP_170 coding sequence
(nucleotides 514–645) that was sufficient to elicit the toxic phe-
notype (Fig. 2C and SI Appendix, Fig. S4). Some mutations
outside of the toxic region partially improved fitness, which

might be explained by interactions of the RNA secondary
structure between the toxic region and the mutated regions. The
GFP_170 mRNA is predicted to have a very low translation
initiation rate due to strong RNA secondary structure near the
mRNA 5′ end (2). Nevertheless, replacement of the strongly
structured 5′ region with an unstructured fragment did not affect
toxicity (SI Appendix, Fig. S4).
The above results led us to hypothesize that the toxicity as-

sociated with GFP expression was independent of translation,
but depended on the presence of a specific fragment of RNA. To
test this hypothesis, we performed growth rate measurements
with a series of constructs. First, we isolated the 132-nt toxic
region identified in the DNA shuffling experiment and expressed
it on its own, with or without start and stop codons. The ex-
pression of the 132-nt fragment of GFP_170 was sufficient for
toxicity, whereas the corresponding fragment of GFP_012 did
not cause toxicity. The effect of the 132-nt fragments on growth
did not depend on the presence of translation start and stop
codons (Fig. 2 C and D), the fragments contained no cryptic
translation initiation signals, and FLAG-tag fusions showed no
detectable protein expression from the GFP_170 fragment in any
of the three reading frames (SI Appendix, Fig. S3). Second, we
introduced stop codons upstream of the toxic fragment in the
GFP_170 coding sequence and in the corresponding positions of
GFP_012. This placement of stop codons ensures that ribosomes
terminate translation before reaching the putative toxic region of
the RNA, while still allowing a full-length transcript to be pro-
duced. As expected, internal stop codons abrogated GFP protein
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Fig. 1. GFP variants are toxic in E. coli. (A and B) Growth curves of BL21 E. coli cells, noninduced (A) or induced with 1 mM IPTG at t = 0 h (B). Cells carrying
GFP_012 (nontoxic variant, blue), GFP_170 (toxic variant, magenta), pGK8 (empty vector control, black), and 29 other variants (gray) are shown. Each curve
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(E) Estimated growth rates of cells expressing GFP variants in DH5α and BL21 strains (averages of at least six replicates).
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production (Fig. 2C), but despite the presence of premature stop
codons, GFP_170_Stop still caused toxicity to bacterial cells
while GFP_012_Stop remained nontoxic (Fig. 2D). To remove
possible out-of-frame translation, we inserted stop codons into
GFP_170 in all three frames, before and after the toxic region,
and toxicity remained the same in all cases (SI Appendix, Fig.
S4). Third, we introduced an efficient synthetic T7 transcription
terminator (20) upstream of the toxic region in GFP_170 and
in the corresponding location in GFP_012. Notably, we found
that both variants with internal transcription terminators be-
came nontoxic, and GFP_170_TT grew slightly faster than
GFP_012_TT (Fig. 2D). The GFP_170 fragment also caused
toxicity when fused to FLAG-tags (in any of the three reading
frames), and when fused to fluorescent protein mKate2 it caused
toxicity and reduced expression of mKate2 by 50-fold (SI Ap-
pendix, Fig. S4). Overall, these data suggest that toxicity is caused
by the RNA itself, rather than the process of translation or by the
protein produced.
To investigate the sequence determinants of RNA-mediated

toxicity, we measured the growth phenotypes of single synony-
mous mutations within the 132-nt region of GFP_170. Close to
half of these mutations reduced or abolished the toxic pheno-
type, whereas the remaining mutations had no effect (Fig. 3A).
There was no clear relationship between the position of muta-
tions within the region and their effect on growth, nor was there
any relationship between the type of nucleotide introduced and
growth. RNA toxicity associated with triplet repeats has been
described in Eukaryotes (21), but we found no triplet repeats in

the toxic GFP mRNAs. Consistent with our observation that the
toxic effect does not require translation, codon adaptation index
(CAI) was not associated with toxicity (Fig. 3B). RNA folding
energy, measured either in the immediate vicinity of each mutation
or for the entire 132-nt mutagenized region, was not correlated
with toxicity, and we were unable to identify any RNA structural
elements associated with the toxic phenotype. We further probed
the effects of sets of several mutations within the 132-nt toxic re-
gion. Of 98 sets of mutations we introduced within the region, 75
reduced or abolished toxicity, whereas 23 of 98 sets had no effect
(SI Appendix, Fig. S5). In almost all cases, the phenotypes of sets
could be deduced from the effects of individual mutations in a
simple way: if any mutation in a set abolished toxicity, then the
set also did. Four sets did not conform to this rule, indicating po-
tential epistatic interactions between mutations. Mutations near the
3′ end of the 132-nt fragment had no effect on toxicity, identifying a
minimal toxicity-determining region of about 100 nucleotides that
either consists of a single functional element or contains multiple
elements whose cooperative action causes toxicity.
Several recent studies examined the effects of synonymous

mutations on fitness in bacteria, either in endogenous genes or in
overexpressed heterologous genes (2, 12–16). Fitness had been
found to correlate with the CAI, GC content, RNA folding,
protein expression level, a codon ramp near the start codon, and
measured or predicted translation initiation rates. We quantified
these variables in a set of 190 synonymous variants of GFP and
analyzed their impact on fitness. We also considered two can-
didate toxic RNA fragments (GFP_170, nucleotides 514–645,
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and GFP_155, nucleotides 490–720), both of which were com-
mon to several constructs and appeared to negatively influence
fitness (Fig. 3 C and D). High protein expression was previously
shown to correlate with slow growth (14), whereas we found
positive correlations of fitness with total protein yield or protein
yield per cell. These correlations presumably reflect reduced
protein yields and cell growth after the induction of toxic RNAs.
As seen previously, growth rate and optical density were posi-
tively correlated with CAI, and GC content was correlated with
optical density (2, 16). However, in a multiple regression
analysis aimed to disentangle the effects of these covariates, we
found that the presence of candidate toxic RNA fragments
predicted slow growth in both BL21 and DH5α cells, whereas
CAI and GC3 did not (SI Appendix). This suggests that the
apparent correlation of CAI or GC content with fitness, ob-
served in this and previous studies (2, 16), might result from the
confounding effect of toxic RNA fragments. Consistently, an
experiment with 22 new, unrelated synonymous GFP constructs
spanning a wider range of GC content showed no correlation

between GC content and bacterial growth (SI Appendix, Fig.
S6). To further test whether toxicity could be explained by
unusually high expression of certain GFP variants, we mea-
sured the mRNA abundance of 79 toxic and nontoxic RNAs by
Northern blots, and correlated GFP mRNA abundance per cell
with optical density (OD). Although we observed differences in
mRNA abundance, mostly related to mRNA folding (2), we
find no significant correlation between RNA abundance and
toxicity (Spearman’s ρ = 0.12, P = 0.29). Furthermore, we de-
tected no consistent differences in plasmid abundance between
toxic and nontoxic variants.
To study the molecular mechanisms of toxicity caused by

mRNA overexpression, we aimed to evolve genetic suppressors
of this phenotype. We selected several GFP constructs that
showed both strong toxicity and moderate or high GFP fluo-
rescence, and plated bacteria containing these constructs on LB
agar plates with IPTG and ampicillin. We observed a number of
large white colonies that apparently expressed no GFP, and
smaller bright green colonies producing high amounts of the

A

C D

B

Fig. 3. Multiple sequence elements determine RNA-mediated toxicity. (A) Growth rates of single synonymous mutants of GFP_170, measured in BL21 strain
(averages of nine replicates). Mutations located throughout the toxic region reduce or abolish toxicity. (B) Relationship between the CAI and the growth rate
of GFP mutants. Asterisk-marked codons represent the original codon in GFP_170. (C) Growth estimate (OD) of BL21 cells expressing GFP variants containing
fragments: GFP_155 nucleotides 490–720 (n = 16, red), GFP_170 nucleotides 514–645 (n = 6, green), and other variants (n = 163, blue). (D) Spearman cor-
relation analysis of phenotypes measured in BL21 cells and sequence covariates in a set of 190 GFP variants. The size and color of circles represents the
correlation coefficient; crosses indicate nonsignificant correlations.
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GFP protein (Fig. 4A). We hypothesized that the green colonies
have acquired a genomic mutation that allowed cells to survive
while expressing toxic RNAs. To support this, we cured the
evolved strains of their respective plasmids and retransformed
the cured strains with the same plasmid. The retransformed
strains readily formed bright green colonies on IPTG+ampicillin
plates, and exhibited faster growth rates in IPTG medium
compared with the parental strain. This supported our hypoth-
esis that the mutations were located on the chromosome and not
the plasmid. We therefore selected 22 evolved strains and the
parental strain for genome sequencing, and used the GATK
pipeline for calling variants (SI Appendix).
In all green suppressor strains, we found a single cluster of

mutations in the Plac promoter of the T7 polymerase gene that
explains the suppressor phenotype (Fig. 4 B and C and SI Ap-
pendix, Table S1). The parental BL21 strain contains two alleles
of the Plac promoter: the wild-type allele PlacWT controls the lac
operon, and a stronger derivative allele PlacUV5 controls T7 RNA
polymerase. In the suppressor strains, recombination between
these two loci associates PlacWT promoter with T7 polymerase,
leading to reduced levels of polymerase and presumably to

reduced transcription of GFP. The same Plac promoter muta-
tions were recently observed in the C41(DE3) and C43(DE3)
strains of E. coli (the “Walker strains”), and were responsible for
the reduced T7 RNA polymerase expression, high-level recombi-
nant protein production, and improved growth characteristics of
those strains (22–24). Similar to our suppressor strains, C41(DE3)
and C43(DE3) allowed high protein expression of toxic GFP vari-
ants, and little toxicity was observed in these strains (Fig. 4D).
Taken together, these results support our conclusion that high levels
of RNA, rather than RNA translation or protein, are responsible
for toxicity.
To test whether translation-independent RNA toxicity might

affect genes other than GFP, we turned to the ogcp gene, which
encodes a membrane protein oxoglutarate-malate transport
protein (OGCP) believed to be toxic for E. coli. OGCP over-
expression was originally used to derive the C41(DE3) strain,
now commonly used for recombinant protein expression (22). As
expected, we found that expression of OGCP was toxic to BL21
but not to C41(DE3) cells. In agreement with our observations
for GFP, a translation-incompetent variant of OGCP lacking the
Shine–Dalgarno sequence was just as toxic to BL21 cells as a
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translation-competent variant (SI Appendix, Fig. S7). A translation-
competent, codon-optimized variant of OGCP retained toxicity in
BL21 cells. These experiments suggest that translation-independent
RNA toxicity might be a widespread phenomenon associated with
heterologous gene expression in E. coli.
Heterologous protein expression is known to inhibit growth of

E. coli. Toxicity is typically attributed to the foreign protein itself,
and it is often remedied by lowering expression, reducing growth
temperature, or using special strains of E. coli, such as C41(DE3).
Here we demonstrate that the same strategies and strains also
prevent toxicity when RNA, rather than protein, is the toxic
molecule. We speculate that other cases of toxicity, previously
attributed to proteins, may in fact be caused by RNA. Although
the molecular mechanisms of RNA toxicity are presently unclear,
we identified several GFP and OGCP variants with similar phe-
notypes, suggesting that the phenomenon may be common. In-
terestingly, induction of wild-type APE_0230.1 in E. coli inhibits
growth, but a codon-optimized variant does not inhibit growth
despite increased protein yield (25). In addition, several recent
high-throughput studies found unexplained cases of slow growth
or toxicity upon the expression of various random sequences in
E. coli (14, 26, 27). Our results point to RNA toxicity as a possible
cause of these observations.
Our results are relevant to the phenomenon of synonymous

site selection in microorganisms. Synonymous mutations can
influence fitness directly (in cis), by changing the expression of
the gene in which the mutation occurs (12, 13, 15), or indirectly
(in trans), by influencing the global metabolic cost of expression
(2, 14, 16, 28). Experiments with essential bacterial genes pre-
dominately uncover cis-effects, most of them mediated by
changes of RNA structure or other properties that influence
translation yield. For example, mutations in Salmonella enterica

rpsT down-regulated the gene, and could be compensated by
additional mutations in or around rpsT or by increase of the gene
copy number (13). Similarly, mutations that disrupted mRNA
structure of the E. coli infA gene, through local or long-range
effects, explained much variation in fitness across a large col-
lection of mutants (12). Protein abundance and RNA structure
contribute to the observed trans-effect of mutations (14). Al-
though our results are broadly consistent with a role of RNA
structure, the specific structure is unknown, and the effects we
uncovered are translation-independent, suggesting that a novel
mechanism is involved. Toxic RNAs might interact with an es-
sential cellular component, either nucleic acid or protein, and
interfere with its normal function. Such interactions might be
uncovered by pulldowns of toxic RNAs combined with sequencing
or mass spectrometry. Alternatively, RNA phase transitions
may be involved; such transitions have been shown to contrib-
ute to the pathogenicity of CAG-expansion disorders in Eukary-
otes, providing a mechanistic explanation for this phenomenon
(29). Further studies should address the mechanisms, bio-
technology applications, and evolutionary consequences of RNA
toxicity in bacteria.

Materials and Methods
We expressed a library of 347 synonymous variants of GFP in BL21-Gold(DE3)
and DH5α strains of E. coli using IPTG-inducible multicopy plasmids. We
monitored cell growth following IPTG induction using automated plate
readers, fluorescence microscopy, and spot assays. Genetic suppressors of
toxicity were isolated by plating BL21-Gold(DE3) cells carrying GFP variants
onto LB plates containing 1 mM IPTG. Whole-genome sequencing of 22
suppressor strains was carried out on the Illumina HiSEq. 2500 platform
(Edinburgh Genomics), and was analyzed using the GATK pipeline. A more
detailed description of methods is available in SI Appendix.
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