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Abstract: Detection of limb motor functions utilizing brain signals is a significant technique in the
brain signal gain model (BSM) that can be effectively employed in various biomedical applications.
Our research presents a novel technique for prediction of feet motor functions by applying a deep
learning model with cascading transfer learning technique to use the electroencephalogram (EEG) in
the training stage. Our research deduces the electroencephalogram data (EEG) of stroke incidence
to propose functioning high-tech interfaces for predicting left and right foot motor functions. This
paper presents a transfer learning with several source input domains to serve a target domain with
small input size. Transfer learning can reduce the learning curve effectively. The correctness of
the presented model is evaluated by the abilities of motor functions in the detection of left and
right feet. Extensive experiments were performed and proved that a higher accuracy was reached
by the introduced BSM-EEG neural network with transfer learning. The prediction of the model
accomplished 97.5% with less CPU time. These accurate results confirm that the BSM-EEG neural
model has the ability to predict motor functions for brain-injured stroke therapy.

Keywords: machine learning; transfer learning; motor function therapy

1. Introduction

Most patients with stroke incidence have motor function deficiency in both left and
right feet [1], causing a substantial loss of motor occupation and daily activities [1–3]. Stroke
therapy tends to stimulate UE motor recovery and restore motor function of both feet. A
main rehabilitation process is the understanding of the EEG signals to supply a non-invasive
solution for the brain signal gain model (BSM), employed in all EEG signal models. BSM
systems include the following steps: EEG reading, image processing, and controller [1–4].
Motor function of left and right feet target the objects in the surroundings [4,5].

The brain signal gain model (BSM) is a learning model that can capture EEG signals
and convert them into motion function. BSMs are extensively found in brain-injured
therapy cases. The brain signals lead to a non-intrusive answer for the BSM. BSM models
the steady state of the EEG signals for motor functions feedback systems [5,6]. the images
contain disparities of muscles motivated by the brain signals [7–11]. In our research, EEGs
are captured from stroke patient cases with motor function disabilities for stroke patients.
BSM systems can stimulate the motor function-lacking body part to regain the nerves of
the injured parts (left and right feet in our case). Deep learning models are usually applied
for BSM schemes, spatial feature selection, classification, and recognition models [10–14].
The researchers in [15] presented a support vector machine to classify motor signals from
images. The researchers in [16] introduced the score prediction technique, and conquered
accurate classification [17]. EEG signals are investigated and used in a deep learning
prediction model. This model outperformed previous models especially on large datasets.
Deep learning models can label properties without geometrical engineering. This defines
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the neural structure systems as feature selection for EEG brain signals using BSM. Current
models operated deep learning systems to capture deep features. The researchers in [15]
introduced a neural network with an auto-encoder with higher classification precision
than prior models on the BSM-2b sets. Researchers in [16] presented a belief deep learning
prediction model using the Boltzmann model. Researchers in [17] presented the envelope
map of EEG signals by employing the Hilbert technique and constructed a motor imagery-
based BSM prediction deep model. They employed the model to the BSM EEG-2 dataset
and exhausted the most progressive prediction accuracy stated. Researchers in [16] utilized
a deep learning model depiction of multiple channel EEG signal to enhance the accuracy.
The researchers in [17] built 3D feature vectors of the EEG data with a parallel CNN model.
The model in [18] attained high accuracy. Deep learning techniques use EEG feature mining
and achieve higher precision [18–21]. However, feature mining becomes difficult due to the
medical state of stroke incident cases especially for the EEG, since capturing is hard with
an effect on large-size databases. The usage of these systems for motor function spatial
studies in stroke cases is limited. Our model incorporates transfer learning methodologies
to efficiently reduce the size of the required training set [22–25]. Features used by transfer
learning utilize incident similarities and by sub-parameter inheritance [25–28]. These
parameters can be reused in a reduced dataset and can increase the effectiveness of the
EEGs feature learning models [28–33]. Our research contributions are summarized as
depicted below:

# Designing a deep learning neural system with a number of additional modules and
cascading transfer learning stages.

# Improving the precision of the BSM system for the prediction of motor functions for
stroke patients from their EEG signals.

# Proposing an extension to the Dense-Net using parameter tuning and transfer learning
(BSM-EEG).

# Confirming the accuracy of the proposed model by performing a comparison to
similar published models.

The remainder of this paper is organized as follows. The dataset description is pre-
sented in Section 2. The proposed model with transfer learning is presented in Section 3.
The experiments and performance comparison are depicted in Section 4. Section 5 con-
cludes the work.

2. Materials and Methods
2.1. Data Description

The dataset contains the EEG data of 100 cases (an average of 20 different motor
function for each case). The EEG signal per case continues for 3.5 s as depicted in Figure 1.
The public dataset has records of the EEG signals of the patient while he is doing different
motor functions of his left and right feet. Then, we let him relax for two seconds. The
public dataset can be accessed by registration from https://www.bbci.de/competition/iv/
#dataset2a accessed on 12 May 2022 and https://www.bbci.de/competition/iii/#data_set_
iiia accessed on 15 May 2022.
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These data items are recorded and labeled in a public dataset that we utilized for
our experiments [15]. The motor functions of the foot are depicted in Figure 2. Figure 2a
displays the flexion and extension of the foot in the ranges of 0–30 and 0–50 respectively.
Figure 2b displays the flexion and extension of the foot in vertical position. Figure 2c
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displays the pronation and supination of the foot in the ranges of 0–30 and 0–60 respectively
The statistics of the motor function of left and right feet data are shown in Table 1. These
data are extracted from the public dataset in [15]. The recorded data include the foot with
all the reflexes. The dataset statistics are depicted in Tables 1 and 2.
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Figure 2. The motor functions of the foot (a–c).

Table 1. The statistics of the motor function of left and right feet data.

Motor Function Mean Standard Deviation Minimum Maximum

Right foot flexion 18.9◦ 3.4◦ 0 30◦

Left foot flexion 20.5◦ 2.68◦ 0 30◦

Right foot extension 40.7◦ 5.67◦ 0 50◦

Left foot extension 42.7◦ 6.3◦ 0 50◦

Right foot pronation 25.96 2.87 0 30◦

Left foot pronation 26.71 3.63 0 30◦

Right foot supination 51.71 5.73 0 60◦

Left foot supination 48.96 4.87 0 60◦

Table 2. Dataset statistics (total samples of EEG signals: 2000 from 271 cases).

Foot Movement Associated with the EEG Count

Right foot flexion 222
Left foot flexion 200

Right foot extension 208
Left foot extension 300

Right foot pronation 250
Left foot pronation 200

Right foot supination 300
Left foot supination 320

2.2. Preprocessing Task

EEG data were processed through Matlab with the toolboxes BraSig 2.3.0 and EEGProc
13.1.0, Matlab Inc. (Asheboro, NC, USA).

The four preprocessing steps were as follows:

1. Removal of noisy channels, we erased the channel AFz as it is impacted by eye blinks.
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2. Removal of static outliers using ICA using EEG signal with frequency 0.5–60 Hz to
capture the outliers. We erased static outliers by applying the zero-phase band-pass
filter using independent component analysis. We concentrated the EEG channels
with principal component analysis and kept only components that capture 98% of the
variations of the data.

3. Detection of attempts with transitory artefacts (EEG signal from 0.5–60 Hz). We
distinguished transitory artefacts using EEGProc and signaled attempts for denial
with values more than −90µV or less than 90µV.

4. Removal of static and transitory artefacts (computed from step 2 and 3) from the EEG
signal in the range of 0.5 Hz to 5 Hz [34–37].

A total of 120 attempts were recorded for each patient as depicted from the data. We
used K-fold validation dividing the data into 70%, 15%, and 15% for training, testing, and
validation respectively.

3. Deep Learning Phase: The Proposed BSM-EEG Model

BSM-EEG is a deep learning model with cascading transfer learning model for han-
dling EEG signals through training on EEG signals of healthy cases and the motor functions
associated with them. The prediction phase is to predict the motor function from the EEG
of the brain-injured cases.

3.1. Methodology

Our methodology aims to achieve a learning transfer model from other deep learning
models that are trained on other motor functions for brain-injured cases, namely as upper
limb movements (source domain 1) [7] and knee movements (source domain 2) [5]. Each
source domain contains an average of 30,000 different labeled motor function EEG. To do
so, we employed several input domains Ds to get the suitable learning transfer models.
Figure 3 displays the phases to accomplish this objective. We can have several input
domains. For each domain Dsi, an optimal deep neural network was attained via Bayesian
procedure. The optimization module output the parts of Dsi which was utilized to train the
final deep learning model. The training data of the transfer learning model were chosen
due to its prediction accuracy over the labeled target domain. The flow diagram of the
proposed model is depicted in Figure 3.

The presented model comprises four stages:

(1) Transfer training in input domain Ds1 utilizing upper limb labeled, motor function
labeled EEG signals. A deep neural network was trained to learn the EEG signals
for upper limb motor functions. The structure of this deep learning network was
optimized to realize higher accuracy.

(2) Unsupervised training phase on the same dataset Ds1 utilizing non-labeled data items
from Ds1 and from other data items not included in Ds1. We adjusted the pre-trained
deep learning model from first phase by utilizing the same neural weights.

(3) Fine-tuning in the target input domain DT using 271 labeled EEGs with their desired
lower limb motor functions.

3.2. Architecture

To choose the suitable deep learning model with the correct weights is the Bayesian
selection process [21]. Random Bayesian selection of the convolutional weight space leads
to higher accuracy. In a Bayesian optimization model, the parameters of the deep learning
model are computed as the optimization of an objective function. The objective function’s goal
is to optimize the loss function of the deep learning model by adjusting the selection space.
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In this paper, we present several Bayesian procedures to obtain the deep learning
model that achieves better performance on the source input domains. The training process
phases is depicted as follows.

The first phase was to train an initial model DLi with arbitrary preliminary parameters
and optimize a loss function Li for the source input domains Dsi in each source domain.

For each source Ds, an optimized deep learning (DL) neural network was achieved
via Bayesian optimizer. During this process, the source input domain was divided into a
training subset and validation subset. The DL model was verified based on the transfer
learning performance using the target input domains. This Bayesian optimizer was applied
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on all source domain data. The model with the highest performance was chosen by
computing the performance metrics on transfer learning functions using a function.

The last step was to validate the usefulness of prior models for transfer learning
optimization by utilizing all target datasets by optimizing the loss function (LBays) of the
Bayesian optimizer.

Min LBays

[
DLi ⇒ DLj

]
∀ i 6= j (1)

where ⇒ is a transfer learning operator. DLi is a deep learning model and is trained
with only a single source input domain and its weights are transferred to the other source
domains by fine-tuning the fully connected layers in DLj . The loss function Loss is
calculated as a weighted (w) accuracy (acc) average and the average loss in both the
learning and validation process and is computed as follows:

Loss = w
[(

1− acclearning

)
+ Losslearning]+(1− w) [(1− accvalidation) + Lossvalidation

]
(2)

The final step of this stage was a set of DL models equal to the count of source domains.
The architecture of transfer learning training and prediction from actual labeled clinical
data is depicted in Figure 4.
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4. Results and the Prediction Performance
4.1. Training

The proposed model training was done on a Sun station CPU X6-3320 V2@ 3.60 GHz*
16 with 64 bits Linux operating system as depicted in Table 3. The deep learning model was
implemented in Python 3.6.0. The method of the training was to modify the filter weights
to ensure that the classified result is near to the labeled class. The utilized dataset was
partitioned into three partitions. The first partition was the training subset and it included
70% of the dataset. The second partition was the validation subset and it included 15% of
the dataset. The third partition was the validation subset and it included 15% of the dataset
for testing the efficiency of the model. Adam optimizer was employed for fine-tuning
the neural weights to minimize the loss. Table 4 depicts the hyperparameters utilized
for training.

Table 3. Environment.

Hardware

Processor RAM

Sun station CPU X6-3320 V2@ 3.60 GHz* 16 64 GB

Software

Operating system Simulation environment

Linux Python 3.4 and Mat lab

Table 4. Hyperparameters utilized for training.

Stage Layer Hyperparameter Value

First Convolution

Filters 128
Kernel size 5

Strides 3
Average pooling 8

Second Convolution
Filters 256

Kernel size 4
Average pooling 4

Third Convolution
Filters 512

Kernel size 2
Max pooling 2

Training Parameters

Learning rate 0.2
Epochs 80

Batch size 26
Optimizer Adam

4.2. Experiment Setting

The experimental setting included determining the number of hidden layers of the
DL model and the number of neurons in each layer, number of epochs, and learning rate.
To define the construction of the neural structure, hidden layers and the neurons in the
different layers had to be defined. The results of various hidden layer numbers and neuron
counts are depicted in Table 5 and displayed in Figure 5. The count of iterations was 1900.
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Table 5. Prediction accuracy of various counts of neurons in convolutional layers.

Neuron
Counts 8 9 10 11 12 13 14 15

Layer 1 0.9256 0.9359 0.9363 0.9282 0.9461 0.9709 0.9726 0.9655

Layer 2 0.9665 0.9704 0.9729 0.9389 0.9509 0.9449 0.9366 0.9336

Layer 3 0.9449 0.9727 0.9652 0.9466 0.9529 0.9506 0.9437 0.9363

Layer 4 0.9406 0.9383 0.9372 0.9449 0.9277 0.9364 0.9333 0.9309

Layer 6 0.9304 0.9429 0.9361 0.9309 0.9309 0.9329 0.9309 0.9271
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Figure 5. Prediction accuracy of various counts of neurons in convolutional layers.

The various learning rate also impacts the accuracy of the neural network. We tested
learning rate between 0.05 and 0.15, with step of 0.02. The results of several learning rates
are depicted in Table 6 and displayed in Figure 6. The results prove that the proposed
model had the highest performance with learning rate equals to 0.07.

Table 6. The impact of learning rate on performance.

Learning
Rate 0.05 0.07 0.09 0.11 0.13 0.15

Accuracy 0.954 0.972 0.958 0.931 0.932 0.930
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5. The Proposed Models with Transfer Learning from Different Domain Sources
5.1. Performance Metrics

To analyze the performance of the proposed model, several performance metrics were
utilized, which proved the efficiency of the model in predicting foot movement from the
EEG. The evaluation metrics were recall, f1-score, precision, and accuracy (they are defined
in the following equations).

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

F2− Score =
2× Recall × Precision

Recall + precision
(6)

where TP is the number of true positive predictions, TN is the number of true negative
predictions, FP is the number of false positive predictions, and V is th FN number of false
negative predictions.

The classification accuracy, recall, and F1-score of our model are depicted in Table 7.
The mentioned table compares between the performance metrics of our model and transfer
learning with one and two source domain.

5.2. Confusion Matrix

The confusion matrices of predicting foot movement from the EEG is depicted in
Tables 8–10, which display the true label (ground truth) at the y-axis and the predicted
foot movement at the x-axis. The confusion matrices are for the proposed model without
transfer learning (Table 8), the proposed model with transfer learning from one source
domain (Table 9), and the proposed model with transfer learning from two source domains
(Table 10).
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Table 7. Classification report of our model with transfer learning with one and two source domain model.

Our Model with Transfer Learning
with One Source Domain

Our Model with Transfer Learning
with Two Source Domain

Predicted
movement Precision Recall F2-score Precision Recall F2-score

Right foot
flexion 0.9 0.95 0.9 0.97 0.99 0.96

Left foot
flexion 0.8 0.85 0.8 0.96 0.96 0.96

Right foot
extension 0.94 0.85 0.91 0.92 0.96 0.97

Left foot
extension 0.94 0.85 0.9 0.97 0.92 0.96

Right foot
pronation 0.89 0.93 0.91 0.96 0.94 0.97

Left foot
pronation 0.9 0.9 0.91 0.96 0.9 0.96

Right foot
supination 0.84 0.9 0.8 0.94 0.9 0.96

Left foot
supination 0.94 0.9 0.9 0.97 0.9 0.99

Table 8. Confusion matrix for the proposed DL model without transfer learning.

Motor
Function

Right Foot
Flexion

Left Foot
Flexion

Right Foot
Extension

Left Foot
Extension

Right Foot
Pronation

Left Foot
Pronation

Right Foot
Supination

Left Foot
Supination

Total
Cases

Right foot
flexion 94 2 50 3 52 1 20 0 222

Left foot
flexion 3 100 4 33 2 22 1 35 200

Right foot
extension 20 5 107 5 30 2 18 21 208

Left foot
extension 10 40 0 150 10 40 11 39 300

Right foot
pronation 22 8 30 10 130 10 30 10 250

Left foot
pronation 6 19 11 31 4 110 9 30 200

Right foot
supination 21 0 29 10 60 5 170 5 300

Left foot
supination 4 51 0 49 11 30 5 170 320
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Table 9. Confusion matrix for the proposed DL model with transfer learning with one source domain.

Motor
Function

Right Foot
Flexion

Left Foot
Flexion

Right Foot
Extension

Left Foot
Extension

Right Foot
Pronation

Left Foot
Pronation

Right Foot
Supination

Left Foot
Supination

Total
Cases

Right foot
flexion 184 2 10 3 12 1 10 0 222

Left foot
flexion 1 170 2 10 2 9 1 5 200

Right foot
extension 8 2 180 7 1 2 8 0 208

Left foot
extension 2 8 0 270 1 9 3 7 300

Right foot
pronation 10 1 7 10 220 1 9 2 250

Left foot
pronation 1 7 2 5 1 175 2 7 200

Right foot
supination 8 0 9 2 11 3 265 2 300

Left foot
supination 3 10 1 11 3 9 4 280 320

Table 10. Confusion matrix for the proposed DL model with transfer learning with two source domains.

Motor
Function

Right Foot
Flexion

Left Foot
Flexion

Right Foot
Extension

Left Foot
Extension

Right Foot
Pronation

Left Foot
Pronation

Right Foot
Supination

Left Foot
Supination

Total
Cases

Right foot
flexion 211 0 4 0 5 0 2 0 222

Left foot
flexion 0 195 0 1 1 2 0 1 200

Right foot
extension 2 0 200 0 3 1 2 0 208

Left foot
extension 0 1 0 295 0 2 0 2 300

Right foot
pronation 1 0 2 0 244 1 2 0 250

Left foot
pronation 0 1 0 2 0 196 0 1 200

Right foot
supination 2 0 1 1 2 0 292 2 300

Left foot
supination 0 1 1 2 0 1 0 315 320

5.3. Time Complexity Versus Accuracy

In this research, it was essential to compute the time complexity for the deep learning
model and how transfer learning could affect the training time complexity. Moreover, it
was important to see the tradeoff between the deep learning model alone and the trade off
when we incorporated the transfer learning for one or more sourced domains. The results
are presented in Tables 11 and 12.

Table 11. Time complexity of the proposed model with and without transfer learning.

Our Model with Transfer
Learning with One Source

Domain

Our Model with Transfer
Learning with Two Source

Domain

Training CPU time (h) 12:32 18:57

Classification time (s) 119.9 s 90.3 s
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Table 12. Performance comparison of the proposed model with and without transfer learning.

Model Average Accuracy for All
Motor Functions (%) Average Training Time (h) Average Classification Time

(s)

Our model without transfer
learning 57.10% 8.1 113.1

Our model with
transfer learning with one

source domain
90.90% 12.9 119.9

Our model with transfer
learning with two source

domain
97.30% 17.3 90.3

5.4. Performance Comparison of Different Models

The experiments have a big role in determining the hidden layers and the optimized
count of neuron with learning rate in accordance. The selected parameters were applied to
our proposed deep learning model. We comparatively evaluated our models with other
DL models with transfer learning with the same parameter settings. The compared models
were BP neural [13], TransferN [19], DLN [21], CNN [27], and STL [31]. The parameter
settings were the same for all the compared models. Since transfer learning models need
relatively lengthy training times, the training time and prediction time of different models
are shown in Table 13.

Table 13. Performance comparison.

Model BP Neural TransferN DLN STL

Our Model
without
Transfer
Learning

Our Model with
Transfer Learning
with One Source

Domain

Our Model with
Transfer Learning
with Two Source

Domain

Acc 0.6136 0.6443 0.6666 0.6611 0.5668 0.91 0.97

Time(s) 64 106 113 132 120 119 90.3

6. Conclusions

The goal of this research was to decode the left and right foot motor functions from
EEG signals. The proposed deep learning model realized high prediction precision which
can lead to a better a brain signal gain model (BSM) which can be employed in several
limb assistive devices. The proposed research attained high accuracy by applying transfer
learning from other source domains such as from elbow and knees source input domains.
Our method realized higher accuracy of 97.4% by training through EEG signals of healthy
cases performing motor feet functions. The presented classifier can be deployed in several
classes of BSM as control signals for operative foot neuro pros. The research also concluded
that the proposed BSM-EEG model with cascading transfer learning with deep learning
can be competently employed on a small size input.

This research indicates that the presented model can transfer learning for the same
pattern. The experimental results depict that transfer learning should be incorporated
in the paradigm of EEG processing. The BSM-EEG outperformed other state-of-the-art
neural deep learning models in motor imagery detection. The experiments showed that we
can utilize a small-sized dataset for training by incorporating feature extraction through
other source domains. The mechanism of this study can be generalized by using n source
domains instead of only two source domains.
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