
ORIGINAL RESEARCH ARTICLE
published: 29 August 2014

doi: 10.3389/fninf.2014.00073

PyNCS: a microkernel for high-level definition and
configuration of neuromorphic electronic systems
Fabio Stefanini1*†, Emre O. Neftci2 †, Sadique Sheik1 † and Giacomo Indiveri1

1 Department of Information Technology and Electrical Engineering, Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
2 Department of Bioengineering, Institute for Neural Computation, University of California at San Diego, La Jolla, CA, USA

Edited by:

Markus Diesmann, Jülich Research
Centre and JARA, Germany

Reviewed by:

Mihai Alexandru Petrovici,
Heidelberg University, Germany
Andrew P. Davison, Centre National
de la Recherche Scientifique, France

*Correspondence:

Fabio Stefanini, Institute for
Neuroinformatics,
Winterthurerstrasse 190, 8057
Zurich, Switzerland
e-mail: fabio.stefanini@
ini.phys.ethz.ch

†These authors have contributed
equally to this work.

Neuromorphic hardware offers an electronic substrate for the realization of asynchronous
event-based sensory-motor systems and large-scale spiking neural network architectures.
In order to characterize these systems, configure them, and carry out modeling
experiments, it is often necessary to interface them to workstations. The software used
for this purpose typically consists of a large monolithic block of code which is highly
specific to the hardware setup used. While this approach can lead to highly integrated
hardware/software systems, it hampers the development of modular and reconfigurable
infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem,
we propose PyNCS, an open-source front-end for the definition of neural network models
that is interfaced to the hardware through a set of Python Application Programming
Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability
and separates implementation from hardware description. The high-level front-end that
comes with PyNCS includes tools to define neural network models as well as to create,
monitor and analyze spiking data. Here we report the design philosophy behind the
PyNCS framework and describe its implementation. We demonstrate its functionality
with two representative case studies, one using an event-based neuromorphic vision
sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-
making task involving state-dependent computation. PyNCS, already applicable to a wide
range of existing spike-based neuromorphic setups, will accelerate the development of
hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code
is open-source and available online at https://github.com/inincs/pyNCS.

Keywords: neuromorphic systems, spiking neural network, AER, NHML, VLSI, Python

1. INTRODUCTION
For over two decades, the Neuromorphic Engineering commu-
nity has been developing the technology and methods for con-
structing micro-electronic circuits and devices that directly emu-
late the principles of computation used by the nervous system.
These circuits and devices are aimed at building brain-inspired
sensory-motor hardware systems that can implement neural
computational models and interact with the environment in real-
time (Mead, 1989; Chicca et al., 2014). Several examples have
been demonstrated, ranging from autonomous reactive sensory-
motor systems (Serrano-Gotarredona et al., 2009), to associative
networks and learning systems (Mitra et al., 2009; Giulioni et al.,
2012), to hybrid analog/digital systems for feature extraction
and sensor fusion (Liu and Delbruck, 2010; O’Connor et al.,
2013). More recently, several Neuromorphic Computing examples
have been demonstrated, with hardware neural processing sys-
tems comprising large-scale re-configurable networks of spiking
neurons, for both basic research goals (e.g., for understand-
ing the principles of neural computation), and applied research
goals (e.g., for applying alternative non-von Neumann comput-
ing paradigms to data mining or pattern recognition tasks) (Silver

et al., 2007; Schemmel et al., 2010; Yu et al., 2012; Brain-Corp-
Technology, 2013; IBM-Cognitive-Computing, 2013; Samsung-
GRO, 2013). A recent Proc. of the IEEE Special Issue1 highlights
the evolution of the field in the last 20 years (see for exam-
ple Benjamin et al., 2014; Furber et al., 2014).

A common approach in building such large-scale spiking
neuron hardware systems is to integrate multi-core or multi-
chip re-configurable architectures. These architectures are typ-
ically characterized by mixed analog/digital processing within
the neural cores and asynchronous digital communication across
core/chip boundaries. While the details of the synapse and neuron
circuits in the neural cores can vary significantly across the differ-
ent types of neuromorphic devices being proposed (Indiveri et al.,
2011), most of them share a common communication protocol,
based on the Address Event Representation (AER) (Mahowald,
1992; Lazzaro et al., 1993; Boahen, 1998; Deiss et al., 1998). In
this representation each computational element or node (e.g.,
a neuron or a synapse) is assigned an address. When a spik-
ing element generates an event, its address is instantaneously

1Proceedings of the IEEE, Vol. 102, No. 5, May 2014

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00073/abstract
http://community.frontiersin.org/people/u/26845
http://community.frontiersin.org/people/u/3753
http://community.frontiersin.org/people/u/26862
http://community.frontiersin.org/people/u/1395
mailto:fabio.stefanini@ini.phys.ethz.ch
mailto:fabio.stefanini@ini.phys.ethz.ch
https://github.com/inincs/pyNCS
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

put on a digital bus using asynchronous logic. Input and output
signals are therefore represented as Address Events (AEs), and
are typically produced and transmitted in real-time (i.e., time
represents itself). Address-events can be tagged with additional
“payload” information (e.g., a time-stamp for data logging, a list
of destination addresses, a synaptic weight value, etc.). The digital
nature of these events makes them ideal for routing and control
using digital programmable hardware. With a large number of
neuromorphic engineers adopting the AER, this representation
has become the de facto standard for implementing communica-
tion protocols in neuromorphic systems. In turn, the adoption
of this standard has contributed to rapid development of a large
variety of re-configurable, modular and expandable multi-chip
systems (Chicca et al., 2007; Imam et al., 2012; Patterson et al.,
2012; Yu et al., 2012). Unfortunately, the definition of a common
standard for signal transmission in neuromorphic systems has
not translated to a common software infrastructure for accessing
these systems. Every new hardware development effort typically
leads to the development of new ad-hoc software to support
custom interfaces, drivers, and high-level software modules for
carrying out experiments with that specific hardware. This situ-
ation is not ideal since it hampers the possibility of integrating
components from different neuromorphic approaches to create
sophisticated multi-chip systems.

In this paper we present a Python software framework that
exploits the common features and attributes of neuromorphic
electronic systems to control and carry out experiments with
them. It provides a front-end that facilitates the replication
of neural network models onto a heterogeneous set of neuro-
morphic hardware platforms communicating with each other
through AER. In PyNCS, the low-level functionalities are sep-
arated into different independent and reconfigurable blocks
imported into the core module. PyNCS manages the intercom-
munication within these blocks and facilitates the functionalities
needed for the neural network definition, the configuration of
the neuromorphic hardware and the experimentation with it.
Thus, this approach offers a flexible way to combine devices
into a unified software ecosystem and facilitates hardware and
software development. As this software aims to design and con-
struct neuromorphic agents endowed with high-level “cogni-
tive” computational abilities (Neftci et al., 2013), we named
it “PyNCS” (Python framework for Neuromorphic Cognitive
Systems). The use of the Python programming language for
PyNCS encourages code reuse, e.g., through class inheritance,
a key property for the modularity of our software. Modules
and wrappers permit a convenient extension to programs writ-
ten in other languages such as C and C++, which enables
third-party drivers and libraries to be easily integrated in the
system. As Python is an interpreted language, PyNCS permits
easy scripting and debugging with benefits for software devel-
opment and experimentation with the models. Furthermore, the
large repertoire of libraries available in Python can be read-
ily included in the PyNCS modules for optimizing the code
that defines and runs the experiments, the data analysis and its
visualization.

In the next sections we present the general structure of PyNCS
and compare it to related approaches described in the literature.

In particular, in Section 2 we present the classes of PyNCS that are
used to control the setup, handle address events and define the
neural populations and their connectivity profiles, in Section 3
we describe the APIs that are integrated in PyNCS to interact
with the low-level drivers and in Section 4 we show two represen-
tative application examples that demonstrate the flexibility and
usefulness of our software.

1.1. SOFTWARE ECOSYSTEMS FOR NEUROMORPHIC ELECTRONIC
COMPUTING PLATFORMS

Several software platforms for controlling neuromorphic sys-
tems have already been developed. For example, the jAER soft-
ware (jAER, 2006) is an open-source project, written in Java,
that allows soft real-time processing of event-based data from
spiking neuromorphic chips. Initially developed to process sig-
nals produced by the Dynamic Vision Sensor (DVS) (Lichtsteiner
and Delbruck, 2005), it contains a large library of modules (or
“filters”) for applying algorithms to streams of spikes, e.g., for
the computation of the optical flow. Expanding the software to
support new hardware devices often requires direct program-
ming of Java classes with the low-level instructions needed for
parameter controls and AER communication. To date, jAER
doesn’t include modules for generating and sending AER events
to neuromorphic chips, or for defining and configuring neural
networks.

A widely adopted software package for experimenting with
neural networks is PyNN (Davison et al., 2009). PyNN, ini-
tially designed as a Python simulator-independent neural net-
work definition framework, has also been used to map neural
network architectures onto different neuromorphic hardware
platforms. The PyNN front-end permits the definition of the
neural network in terms of neuronal populations, connections
and parameters. To translate these definitions into hardware
configuration and to allow data communication with differ-
ent hardware architectures and systems, a dedicated hardware
abstraction layer needs to be written for each system con-
sidered. Typical approaches for the design of the hardware
abstraction layer consist in writing the required code in the
desired programming language (e.g., C or C++), or in integrat-
ing it into more high-level programming frameworks, such as
Python or MATLAB (Brüderle et al., 2007; Giulioni et al., 2012;
Wijekoon and Dudek, 2012; Brink et al., 2013; Painkras et al.,
2013).

The novel/unconventional nature of neuromorphic systems
(e.g., compared to conventional von Neumann computational
systems), requires a novel approach to system design. At the
same time, the assortment of hardware platforms being devel-
oped in both academic and industrial research areas is growing
fast. The ad-hoc solutions described above are only a part of
the large spectrum of dedicated software which is used to con-
figure and interface the electronic hardware systems. Ultimately,
these low-level software infrastructures should facilitate the appli-
cability of new programming paradigms through high-level
front-ends. One recent attempt for the construction of such
exhaustive ecosystem has been recently announced by IBM
researchers (Amir et al., 2013). It relies on an abstraction layer
composed of Corelets to represent networks of “neurosynaptic

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

cores” and a novel programming language for composing
them and obtain the desired functionalities. The Corelet lan-
guage can be seen as an exhaustive neural network front-end,
spanning from the specification of neuron-to-neuron connec-
tions to high-level descriptions of computational modules, such
as recurrent networks or Winner–Take–Alls (WTAs), and is
embedded in a complete development platform called “Corelet
Laboratory.” However, as opposed to simulator or hardware
independent solutions such as PyNN, the Corelet software is
tied exclusively to the specifc hardware architecture of IBM’s
chips and so its applicability is restricted to those particular
platforms.

In general, all the available solutions, including IBM’s Corelet
Laboratory, rely on a low-level abstraction layer for interfac-
ing the custom hardware to the user front-end, a middle-layer
for translating the model parameters into hardware param-
eters, and a high-level front-end with APIs for the defi-
nition of the neural network and data analysis. The solu-
tion we propose complies with these general principles and
integrates all different modules into a unified reconfigurable
framework.

An overview of PyNCS and the relationships between its
components and the hardware is illustrated in Figure 1. The
“Setup Description” and “Chip Description” files encapsu-
late all the information that characterizes the hardware setup
such as the number of chips, the number of neurons in
each chip, their parameters, but also identifies which libraries
(drivers) to load in order to access the hardware (implementa-
tion details in the Supplementary Material). These files, along
with a description of the neural network and the experiment,
are specified in a user-written Python script that uses the
PyNCS front-end to send data to and gather data from the

neuromorphic system. A typical script consists of the following
steps:

1. A setup definition part where the system initializes inter-
nal elements needed to communicate with the hardware
for monitoring or configuration, e.g., enabling or probing
communication with the drivers;

2. A population definition part where neuronal populations are
declared and hardware resources are automatically assigned
according to the script commands, i.e., corresponding to the
neuron elements chosen for the experiment;

3. A network definition part where look-up tables corresponding
to the desired network topology are generated;

4. A configuration part where circuit parameters are set, e.g.,
neuronal or synaptic time constants

5. A “run” part where the network is applied on the hardware and
activity is continuously monitored by dedicated objects;

6. A final part with the desired storage, analysis, and plotting of
the data.

When such script is run, PyNCS automatically generates
the necessary elements to access the hardware resources.
The interface between the high-level neural network defini-
tions and the neuromorphic hardware is mediated via spe-
cial API modules (described in detail in Section 3) which
integrate the hardware drivers into the PyNCS framework.
With the use of modules as common blocks of a stereotype
neuromorphic systems, PyNCS can be used as a com-
mon ground for integrating various kinds of neuromor-
phic devices and for running experiments with spike-based
hardware both in continuous/interactive and batch/off-line
mode.

FIGURE 1 | Overview of PyNCS. Left: The “Setup description” and “Chip
description” blocks represent XML files that provide the specifications of the
hardware. A user-written Python script describes the neural network model
and interacts with PyNCS to send data to and gather data from the system.
Communication with the low-level drivers and the neuromorphic hardware is
mediated by the communication and configuration API modules. These
modules implement the interaction with the custom drivers, which can take
the form of executables or code libraries. The arrows represent the data flow
in the system. Right: The main components of the Setup class. The setup

object serves as the gateway for performing all the operations involving the
hardware. It contains the objects necessary for accessing the chips’ biases
and parameters (in this example, two chips ifslwta0 and retina), the
objects that translate raw AER addresses into human readable ones (mon, for
monitoring events and seq for sequencing them) and the API modules for
configuring the network topology (pyNCS.ConfAPI.Mapper) and for
mediating the spike-event communication (pyNCS.ComAPI.
Communicator). Examples of hardware specification XML files are provided
in the supplementary material.

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

2. THE NEUROMORPHIC SETUP AS A SPIKE-EVENT
TRANSCEIVER

The main objective of PyNCS is to provide a common framework
for the integration of different types of neuromorphic devices.
This objective is realized with the choice of describing the neuro-
morphic chips as re-configurable address-event transceivers, i.e.,
they produce and/or consume AER events and have some degree
of reconfigurability. We argue that this assumption is general since
it covers the major AER-based hardware platforms developed in
the community. In the development of PyNCS we thus aimed at
finding the most general definition of a hardware setup in terms of
address specifications, address mappings for realizing the neural
network connectivity and parameters for permitting the correct
functioning of the hardware. In other words, the structure of
PyNCS is defined based on the minimum common denominator
of spike-based neuromorphic setups but also provides access to
all the specific functionalities provided by the particular devices
adopted. Because of its nature, we identified several common-
alities with the concept of a “kernel” in traditional computer
architectures, which serves as a manager for input/output requests
between applications and processing units. This mindset has been
kept throughout the development of every part of the software
and constitutes the philosophical ground on which it is built.
More details on the above aspects and on the differences with
existing solutions is provided in the Discussion.

The modularity of PyNCS is realized by separating the driver
implementation from their configuration. The configuration
specifies the parameters that drivers need in order to access hard-
ware data, so that the same implementation can be used on
different platforms. We decided to adopt a general descriptive
model for the hardware systems that is (1) human readable to pro-
mote sharing, (2) flexible enough to cover the peculiarities of the
hardware systems while allowing the existence of templates and
(3) easily parsed by the software. These requirements are com-
mon in many other fields of computer science thus we opted for
eXtensible Mark-up Language (XML) description files parsed by
dedicated API modules. In this Section we describe in details the
main classes of PyNCS and their use of the XML files.

2.1. THE NEUROMORPHIC HARDWARE MARK-UP LANGUAGE
In PyNCS, a dedicated Python class, the pyNCS.Chip class, is
an abstraction layer used to control and communicate with the
transceiver chips. The single chip specifications, such as the AER
encoding and decoding parameters, are listed in dedicated Chip
Description XML files, or simply chip files. Because of the gener-
ality of the structure on which these files are based, we defined a
new dedicated mark-up named Neuromorphic Hardware Mark-
up Language (NHML). In this description the chip is abstracted
as one or multiple arrays of “neuron” elements, each having a
“soma” block and, if present, “synapse” blocks. The soma block
specifies the possible address events that can be generated by
the spiking activity of the chip (source addresses), while synapse
blocks specify the addresses that can be targeted from exter-
nal sources or other neuromorphic chips (destination addresses).
In order for the system to correctly encode and decode these
addresses, an “address specification” block is provided in the
NHML description with the codes that PyNCS uses for address

translation. Finally, the NHML file contains a list of block and
circuit parameters, with extra information fields for their typi-
cal values and with the information needed to access them, (e.g.,
chip pin numbers, addresses, etc.). Examples of NHML files are
reported in the Supplementary Material.

2.2. THE DEFINITION OF A NEUROMORPHIC ECOSYSTEM: THE
MULTI-CHIP SETUP

In order to correctly encode and decode the address-events,
PyNCS makes use of address specification codes. The code, which
depends on the particular implementation of the neuromorphic
chip, is parsed from the respective chip file. These addresses are
essential not only to visualize the spiking activity and deliver syn-
thetically generated spikes to the chips but also to construct the
topology of the neural network. To automate these tasks at run
time, a set of encoding/decoding functions are dynamically gen-
erated when the setup is initialized. These functions convert the
addresses of any neuron or synapse (or any other addressable ele-
ment) in the setup to a more convenient representation. Namely,
they convert physical addresses encoded as integers into tuples
of “Human Readable (HR)” coordinates which are the coordi-
nates of the corresponding neuron (or the synapse) on the chip.
Since the conversion between physical and HR addresses can be
onerous at runtime, PyNCS makes extensive use of hash-tables.
Hash-tables significantly speed-up the encoding/decoding of the
events by implementing a dictionary of addresses easily created
and accessed using Python built-ins. When rapid event transla-
tion is not needed, such as in batch-processing mode, the raw
AER data is not translated and the communication throughput
is limited only by the driver and the hardware. More information
on the latency can be found in the Discussion, while implemen-
tation details regarding the address specification files and their
use in address translations are provided in the Supplementary
Material.

The information contained in the setup and chip descrip-
tion files is used by PyNCS to create an object of the
pyNCS.NeuroSetup class. This object allows complete control
of the hardware interfaces through the imported APIs. Figure 1
(right) shows an example of a NeuroSetup object and its
main components for a system that consists of two neuromor-
phic chips. A typical setup object contains a Python dictio-
nary of pyNCS.Chip objects, which can be used to configure
the chip parameters through the ConfAPI.Configurator
API. The setup object can send (sequence) and receive (moni-
tor) spike events from/to the system using the methods imple-
mented in the ComAPI.Communicator API. These events
are translated into the different forms, physical or HR, using
the address specifications and the functions contained in two
pyST.ChannelAddressing objects.

While the NeuroSetup class has been conceived with the
primary intent of providing full online interaction with the
neuromorphic system, a dedicated run function has been also
included in its implementation for batch-processing. This func-
tion executes in one shot all the operations that are needed
to configure the hardware resources to match the desired neu-
ral network model, activate the communication to sequence
and monitor the spiking data and store the results. Figure 2

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

FIGURE 2 | Left: Dataflow of an experiment run. The setup.run

function configures the routers according to the network topology,
defined as a map between source addresses and destination
addresses, and sends the stimulus to the chips calling methods of the
configurator and communicator APIs. These APIs implement calls to the
custom drivers for communicate with the hardware. The communicator
API monitors the spiking activity which is then collected by the run

function. The arrows represent the data flow. Right: Constructing a
connection between two populations, the p_ret and the p_wta, which

have been previously defined. Upon creation, the connection class
creates a look-up table between the address group of the pre-synaptic
neurons’ soma addresses and the excitatory synapses of the
post-synaptic neuron. In this example, the connections are random with
a 50% probability that a neuron in p_ret connects with a neuron in
p_wta. The list of connections is stored in a look-up table, mapping,
which is transfered to the hardware when the “run” function is called.
The arrows in the figure show the data flow between the different
PyNCS classes.through setup.run.

(left) shows the data flow during the execution of this func-
tion and the interaction between the APIs that realizes the batch
processing.

2.3. FROM ABSTRACT ADDRESSES TO NEURONAL POPULATIONS
The PyNCS front-end provides the user with a set of tools to
map a given neural network model onto the specific hardware.
To this end, we implemented a set of user-friendly Python classes
which resembles the ones found in most neural simulators and
usually consist of populations of neurons, connections between
them, and monitors (Brette et al., 2007). In addition, the APIs
in PyNCS provide easy access to low-level drivers through the
dedicated pyNCS.NeuroSetup class.

The class pyNCS.Population mirrors similar classes
found in typical neural network simulators, such as the
NeuronGroups class of the Brian neural-network simula-
tor (Brette et al., 2007). It represents a group of neurons and
their associated synapse circuits, i.e., the ones that are physi-
cally wired to them. In fact, the neurons in a population and
their synapses are treated as two groups of addresses with a
class pyNCS.AddrGroup, which inherits Numpy’s structured
arrays (http://www.numpy.org). Typical array operations have
been remapped to operate on the Population object for
easily pointing at subgroups within the population, to evalu-
ate simple population properties, such as its size, or to create
sub-populations.

The instantiation of a neural population in a simulator run-
ning on a traditional machine typically uses the number of desired
neurons and their dynamic model as the only arguments to allo-
cate enough memory for their operations. Parameters are then
“attached” to this population and used by the simulator to modify
the neurons’ internal state at runtime.

Instead, in neuromorphic systems, neural parameters and even
network behavior can depend on the exact location of the circuits.
This variability can be caused by circuits mismatch, communica-
tion delays that affect the asynchronous communication, or the
presence of faulty elements in the system. Thus, it is important
to have control on the placement of neurons onto the hardware,
which often involves dedicated algorithms or neural network com-
pilers (see for example Brüderle et al., 2011; Cruz-Albrecht et al.,
2013; Navaridas et al., 2013). In PyNCS, the modeler has direct
control on the desired placement by being able to directly select
the addresses of the neurons composing the desired population,
if needed. For convenience, the Population class implements
several simple placement methods, for example a linear method,
i.e., a given number of addresses are selected as they are listed
within the population array. The populate methods have
access to the Setup object through the Population object,
making it possible to include any arbitrary placing method. For
example, the Setup object could store calibration parameters
of each neuron element and the Population could be selected
using this information for precise control on neuron parameters.

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 5

http://www.numpy.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

2.4. DEFINITION AND CONFIGURATION OF THE NETWORK TOPOLOGY
In an AER communication system, the network topology is
implemented by dedicated digital devices that route the address
events generated by neurons or sensors to the corresponding
destination synapses. The simplest router uses a Look-Up Table
(LUT) stored in a memory to generate synapse events for every
neuron event. We shall refer to such device as a mapper, since
it assigns an exact correspondence between source addresses and
destination addresses. While there exist more efficient represen-
tations for the network connectivity, for example in terms of
memory occupation, the LUT is probably the most intuitive way
of describing a connectivity profile to which any other description
can always be converted. This choice resulted to be very conve-
nient, e.g., for debugging or direct visualization and separates the
problem of the definition of the network connectivity from the
problem of configuration of the hardware to reproduce that con-
nectivity, a function which is operated by the Configurator
API (see 3.2).

In PyNCS, the connectivity between populations is gener-
ated by pyNCS.Connection classes through the connect
methods. Several common methods for generating connectivity
patterns are available in the current release of the software, such as
one-to-one or all-to-all profiles. The LUT that correspond to the
desired connectivity profiles are generated internally by appro-
priately selecting the addresses from the ones that are present in
the Population objects. The address arrays consist of Python’s
structured arrays to facilitate appropriate filtering on soma and
synapse addresses. Though generator functions for commonly
used connectivity profiles are used, the user has also direct access
to the arrays of addresses within a population. Hence, the user
has the possibility to generate arbitrary connectivity profiles by
explicit selection of the corresponding addresses. This possi-
bility goes along the lines of the implementation philosophy
of PyNCS, which aims at facilitating common operations with
dedicated functionalities but also at allowing arbitrary config-
urability from the front-end. Figure 2 (right) shows an example
of the creation of a connectivity profile between two excita-
tory populations with a 50% probability of each connection to
exist.

2.5. MONITORING SPIKING ACTIVITY
In order to conveniently display the spiking activity of the devices
involved in the system PyNCS includes a dedicated “monitor”
module. The main role of the monitors is to automatically elab-
orate meaningful representations of the spiking activity in the
network, e.g., for plotting purposes. The pyNCS.Monitor class
implements methods that are used to collect raw AER data
and distribute it according to given populations or subpopula-
tions. For this purpose, the monitors access all the informations
needed for address translation that are provided by the setup
class. In batch mode, the AER events are interpreted and even-
tually visualized only at the end of the batch process. The use
of monitors helps in selecting only the populations of inter-
est and obtain intuitive visualizations. We discuss performance
issues, for example for real-time visualization, in Section 5.2. A
usage examples of the monitors is provided in the Supplementary
Material.

2.6. SEQUENCING RECORDED OR SYNTHETIC SPIKE TRAINS
Spiking data are handled as lists of pairs of physical addresses
and spike-times (see also Supplementary Material). The data
can be recorded from an experiment using the monitoring
functions of PyNCS, generated using routines that come as
methods within the Population objects, or generated using
numerical functions and then associated to the corresponding
physical addresses before sequencing. Any population defined
in the network can be used as a source of spike events, i.e.,
a spike time can be associated to any physical address avail-
able in the network. Importantly, while the user can also gen-
erate sophisticated spike train objects by careful selection of
the desired physical addresses, the Population object can
also handle address translations that are required to generate
the spike trains from the HR addresses. In this way, PyNCS
allows for sophisticated interactions between the elements in
the network, which is needed for example for the introduc-
tion of precisely timed spike events. Notice that also physical
destinations, such as synapses, can be used to generate spike-
trains, e.g., for testing purposes. For example, spike-trains with
synapse addresses could be directly sent from a host com-
puter into the neuromorphic system without the need for map-
ping these events to target the corresponding physical synapses.
Once the spike trains are generated or collected, they can be
injected into the system at runtime or using the run function
for batch processing, as we explain in more detail in the next
section.

3. MODULAR ARCHITECTURE OF PyNCS
The low-level drivers for communication and configuration are
specific to each type of neuromorphic hardware. PyNCS makes
use of Python’s object oriented paradigm to efficiently han-
dle this variety, by making use of API modules. These APIs
consist of custom classes that manage the interaction with the
hardware-specific drivers. Developers can use a base class, for
example pyNCS.ConfAPI.Configurator, to implement
the custom class and so take advantage of class inheritance. The
base classes contain the necessary modules that PyNCS expects
from the module, i.e., the least common denominator of each
module. At the same time, the module can contain dedicated
functions that permit access to particular functionalities of the
system in use. Examples of such functions for a “configurator”
API module are get_parameters and set_parameters.
One way to implement the API is to use plain Python code
and make calls to specific executables accessing the driver
resources and so the device. A more direct way is to use wrap-
pers or code binding to integrate the drivers into the Python
code, using for example SWIG (http://www.swig.org/). The APIs
cover the main modules needed to operate the neuromorphic
system:

• a configuration module, to configure the analog and digital
devices for proper functioning, e.g., for setting the parameters
of the neural circuits;

• a communication module, for handling the AER communi-
cation with and between devices, e.g., to monitor the spiking
activity.

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 6

http://www.swig.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

For testing purposes, PyNCS is distributed with an
API that interfaces with the Brian Neural simulator
(pyNCS.api.BrianAPI) (Goodman and Brette, 2008).

3.1. COMMUNICATION API
The communicator API, ComAPI.Communicator, mediates
the communication of events between the PyNCS environment
and the neuromorphic hardware. The primary function of the
communicator API is to send (i.e., sequence) and receive (i.e.,
monitor) AER events to and from the AER bus. In addition to
the send/receive functions, the base class of this API also defines
a run method that enables batch event communication with the
hardware.

The communicator API is used to separate the complexity
of the communication of the events from the encoding and
decoding of the addresses which take place internally in PyNCS.
Consequently, the run function expects and returns physical
addresses, in the form of Numpy arrays of integers. This makes
it possible to easily integrate remote communication protocols
(e.g., TCP/IP) into the API since the address events can be sent
as packets of integers.

An additional useful functionality integrated in the commu-
nicator API is to enable the execution of arbitrary processes at
the time of the ability activation of the communication with
the setup. For example, for some experiments, it is necessary
to precisely synchronize the sequencing and monitoring with an
external event, such as the initiation of a visual stimulus. PyNCS
makes use of Python’s “context managers” to define such run-
time contexts. These can be conveniently implemented using the
decorator function contextmanager available from Python’s
built-in contextlib module, and passed as an argument to
run. The module establishes the context by placing the call to
the low-level driver functions under a with statement. For an
example see Section 4.1.

3.2. CONFIGURATION API
The configurator API handles the control of low-level hard-
ware parameters, e.g., programming digital/analog converters or
on-chip bias generators used to set the parameters of the neu-
ral circuits. Parameters such as firing thresholds, neural leakage
currents, synaptic integration time constants and so forth are
controlled through the configurator API, which translates calls
to functions such as set_parameter into driver calls. Several
methods exist for configuring neuromorphic chip parameters to
achieve a target functionality or to match those of a theoretical
model (Russell et al., 2010; Brüderle et al., 2011; Neftci et al.,
2011; Gao et al., 2012). While PyNCS does not address the issue
of parameter translation directly, the configuration API offers a
convenient interface to include these methods into the software
ecosystem as separate routines. Additionally, the configurator API
is intended to also handle any other aspect related to the proper
functioning of the neuromorphic setup, e.g., the activation of
some powering schemes or the proper setting of specific digital
controls.

The configurator API also handles the configuration of the
routers for implementing the neural network connectivity. This
functionality is encapsulated in the mapper API sub-module.

This module takes care of “compiling” the neural network def-
inition into a configuration table for the routing of the AER
events in the setup according to the available hardware resources.
For example, the API can apply methods for converting the
LUT representation of the connectivity into dedicated routing
schemes, such as hierarchical, multi-cast, broadcasting or tag-
based schemes (Northmore and Elias, 1998; Furber et al., 2006;
Merolla et al., 2007; Joshi et al., 2010; Moradi and Indiveri,
2014) or for appending additional parameters such as delays or
probabilistic spiking in the configuration of the routers.

4. USAGE EXAMPLES
In this Section we describe in detail the use of PyNCS
with the neuromorphic system developed at the Institute of
Neuroinformatics (INI) in Zurich. We report here two exam-
ples that demonstrate the basic capabilities of PyNCS for carrying
out experiments requiring continuous interaction with the neu-
ral network emulation and local computations. However, since
most of the experiments carried-out at INI during the last 5 years
have used PyNCS, we refer the reader to the literature to gather
more examples of the use of PyNCS for models involving rate-
based computation but also precise spike-timing (Sheik et al.,
2012; Chicca et al., 2014).

4.1. INTERFACING A SPIKING NEUROMORPHIC CHIP WITH A SILICON
RETINA

Neuromorphic sensors emulate the functionality of biological
sensors in analog/digital Very Large Scale Integration (VLSI) (Liu
and Delbruck, 2010) and emulate some characteristics of the sen-
sory pre-processing of the nervous system. These devices provide
address-events in an asynchronous, event-based fashion and are
thus ideal for interfacing neuromorphic spiking neural networks
with the real-world. Here, we demonstrate the use of PyNCS in
configuring and monitoring a setup with neuromorphic vision
sensor connected to a multi-neuron chip. The multi-neuron chip
implements a Soft Winner–Take–All (sWTA) by means of hard-
wired connections. Neural networks implementing sWTAs have
key features for information processing, such as signal restora-
tion and amplification (Douglas et al., 1994), and thus are useful
building blocks for synthesizing large scale models of cortical
computation (Rutishauser and Douglas, 2009; Neftci et al., 2013;
Chicca et al., 2014). In this toy experiment we will demonstrate
the selective amplification property which permits the network to
track the strongest of two visual stimuli.

The multi-neuron chip consists of a network of I&F neu-
rons (Indiveri et al., 2006), with dynamic synapses (Bartolozzi
et al., 2006). The chip contains a total of 124 excitatory neurons
with hard-wired first, second and third nearest-neighbor exci-
tatory connections and 4 inhibitory neurons. These inhibitory
neurons receive excitatory connections from all the other neu-
rons and inhibit them through inhibitory synapse circuits. The
multi-neuron chip receives spikes from a DVS, often referred to as
“silicon retina,” with 64 × 64 pixels (Lichtsteiner and Delbruck,
2005). Each pixel is sensitive to temporal contrast changes and
emits AER events independently. Each column of the vision sen-
sor sends its activity to one neuron in the sWTA, through an
external digital mapper (Fasnacht and Indiveri, 2011). Notice that

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

the connectivity is realized by means of both hard-wired and
AER-routed connections, once again expressing the flexibility of
PyNCS in managing the configurability of both conventional and
specific parameters of spike-based neuromorphic systems.

The silicon retina is placed in front of a standard LCD screen
displaying a visual stimulus. The stimulus consists of two sliding
bars of different size (see Figure 3) and has been produced using
PyGame2. The sWTA selects the strongest input from the retina,
which corresponds to the horizontal position of the largest bar in
the moving scene, and tracks it throughout the movement in the
scene.

We set up two neuromorphic systems, one controlling the
silicon retina located at the Institute of Neuroinformatics in
Zurich and one controlling the multi-neuron chip and the
neural-network connectivity located at the Institute for Neural
Computation in La Jolla. The spikes were transmitted using the
TCP/IP protocol and a Python “socket,” a low-level network-
ing interface widely adopted in computer science. The TCP/IP
protocol was integrated in a dedicated API which was spec-
ified in the configuration files of the neuromorphic system.
While the TCP/IP protocol does not guarantee real-time com-
munication, the communication of the address-events over the
network takes place in only one direction. As a result, the com-
putation in the sWTA is slightly delayed with respect to the
retinal output, but remains unaffected otherwise. The use of
the TCP/IP protocol shows how existing protocols can be used

2PyGame is available at http://www.pygame.org. The script to generate the
sliding bars is available at https://github.com/inincs/stefanini_etal_pyncs

in the ecosystem for specific functionalities, such as remote
communication.

4.2. SYNTHESIS OF “SOFT STATE MACHINES” FOR PERFORMING
COGNITIVE TASKS

A hallmark of cognitive behavior is the ability of an agent to
select an action based not only on specific external stimuli but
also on their context (Dayan, 2008). To perform cognitive tasks,
an agent must construct context-dependent sensori-motor map-
pings, requiring mechanisms for working memory, decision mak-
ing and action selection. One possibility to solve such cognitive
tasks in spiking neural networks is to synthesize SSMs (Neftci
et al., 2013), which are state-machines implemented using net-
works of sWTA circuits.

Neftci et al. have proposed a systematic procedure to map a
given Finite State Machines (FSMs) diagram into its analogous
SSM implementation composed of silicon neurons, as follows.
A recurrently connected sWTA network contains populations
of neurons that are able to reliably maintain persistent activ-
ity and are in competition with each other by means of long
range inhibitory connections. Because of the competition, only
one population can be persistently active and so this network
can maintain the state of the FSM. An additional “transition”
sWTA network responds selectively to combinations of external
stimuli and internal states and triggers state transitions through
excitatory connections. An FSM is mapped on the spiking neural
network by introducing sparse connections from the transition
sWTA to the appropriate state population as specified by the state
diagram (Rutishauser and Douglas, 2009).

FIGURE 3 | A multi-neuron chip implementing the soft WTA function,

interfaced with a silicon retina. Top left: Raster plots of the retina’s
column–wise output activity. The pixel columns of the retina project on to the
multi-neuron chip, such that each neuron received inputs from 2 columns.
Bottom Left: Raster plot of the sWTA chip, where blue indicates the
excitatory neuron events and red indicates inhibitory neuron events. The

retina activity causes the winner-take-all to activate around the stronger
stimulus most of the time, corresponding to the X-position of the longer bar.
Occasionally, the sWTA activity jumps to the location of the shorter bar (e.g.,
around 3 s). Right: First 2 s of the retina output. The axes represent the X-Y
coordinates of the events and the color encodes time. The stimulus consists
of horizontal bars of different size moving in two opposite directions.

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 8

http://www.pygame.org
https://github.com/inincs/stefanini_etal_pyncs
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

Figure 4 shows an example state-machine capable of detect-
ing sequences of two symbols (L, R) or (R, L). The particular
sequence to detect is specified by the symbols CA and CB. The
transitions are defined by the FSM and are triggered by the arrival
of each symbol. In the presented FSM, the internal states A0, A1,
and B0, B1 not only represent the current symbol but also a task-
relevant trace of the preceding symbols. The SSM starts from
“Idle” and progresses through the states as a randomly generated
sequence of symbols is presented. An additional symbol × reflects
an “invalid” cue and resets the state to “Idle.”

The presented state machine was previously employed to
detect the direction of motion of targets across a display with the
use of spiking vision sensors (Neftci et al., 2013), and to solve a
context-dependent delayed 2-back task (Dayan, 2008). The details
and the code listing for configuring the SSM are provided in the
Supplementary Material.

5. DISCUSSION
With the increase of complexity of neuromorphic systems com-
posed of spiking multi-neuron chips and sensors, the identifica-
tion of a tool-chain (ecosystem) for the configuration of setups
is a fundamental step for their rapid development. Python is an
ideal programming language for this task for several reasons: (1)
There are many possibilities for interfacing with existing code
written in other programming languages such as C/C++, greatly
reducing the effort in reusing existing hardware drivers; (2) It is
object-oriented, with advantages for the definition of APIs and
modularity of the software; (3) Its scripting capabilities com-
bined with the scientific computing software, such as NumPy
and SciPy, greatly facilitate experimentation and analysis for both
continuous interaction and batch-processing; and (4) It is easy
to learn for scientists and engineers who do not have extensive
training in computer programming. The design of the PyNCS

front-end resembles those of common neural simulators3, thus
guaranteeing researchers an intuitive transition from scripting
for software simulations to experimenting with hardware emu-
lations. Here we discuss in detail some of the most important
aspects of PyNCS.

5.1. COMPARISON WITH EXISTING SOLUTIONS
Perhaps the closest software framework to PyNCS in terms of
functionality is PyNN (Davison et al., 2009) (see also Section 1.1).
The key purpose of PyNN is to provide researchers with a unified
front-end for neural network simulations, thus favoring repro-
ducibility of results in computational neuroscience and allowing
systematic comparisons between software simulators. The PyNN
interface has been widely adopted due to its similarities with
common neural network simulators and the possibility to easily
port scripts to different simulators without coding efforts. More
recently, PyNN has been used for neural network definition in
experiments involving neuromorphic hardware. This has been
achieved by implementing dedicated software modules, imported
in PyNN, for configuring the parameters of neuromorphic hard-
ware and for implementing the necessary translations of data and
parameters between the high-level PyNN interface and the low-
level drivers. For example, in Brink et al. (2013) the authors used
MATLAB-based tools for defining the network topologies and
parameters following the syntax of PyNN and then used PyNN
as the front-end for the neural network definition. The low-
level configuration functions were operated by custom MATLAB
scripts that were already designed to provide access to the spe-
cific features of the neuromorphic system. Similarly, Manchester’s
SpiNNaker system, a digital, general purpose hardware plat-
form for large-scale simulations of spiking neural networks

3The syntax is inspired by the Brian Simulator (Goodman and Brette, 2008).

FIGURE 4 | Soft State Machine implemented in neuromorphic

hardware. (Left): State machine description of a cognitive task (Neftci
et al., 2013). Each state is represented by a circle and each arrow is a
possible transition given the annotated symbol. The symbol × reflects an
“invalid” cue and resets the state to “Idle.” The spiking neural network
architecture underlying the SSM is composed of three sWTA circuits: a
state sWTA that maintains the state in persistent activity (32 neurons per
state), a transition sWTA that mediates the transitions between states

given the input symbols (16 neurons per symbol). The colored arrows in
the state diagram indicate the path followed when the sequence CB, R, L
is presented. (Right): State population activities recorded from a multi-chip
neuromorphic setup. From top to bottom, raster and population firing rates
of the state populations, raster and populations firing rates of the output
populations. The labels situated above the top raster plot indicate the
presented symbols. One valid sequence (CB followed by R,L) is detected
at t = 12 s, as highlighted by the red box.

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

(Painkras et al., 2013), is supported using this approach4 .
However, the increasing modularity of the hardware setups, their
diversity, the complexity of the devices, their heterogeneity as
well as the intensifying use of commercially available interfaces
as building blocks of large hardware setups (e.g., USB interfaces,
TCP/IP remote communication, FPGA-based routers) call for a
similar modularity and flexibility in the software ecosystem. As
PyNN was designed to provide a common front-end for neural
network definitions across software simulators, it does not nat-
urally address the issues related to the neuromorphic hardware
implementations, such as AER translations, or model neuron
placement on the VLSI array of silicon neurons. In PyNN these
tasks are relegated to custom external software modules that are
then imported into PyNN.

An attempt to provide developers with a unified hardware
abstraction layer for integrating neuromorphic platforms in
PyNN was the one of PyHAL project (Brüderle et al., 2007,
2009). The PyHAL software was intended to manage all the
operations needed to execute the neural network simulations
on the hardware, such as parameter translations, and perform
the necessary checks to account for the hardware restrictions
(e.g., in terms of number of neurons available or precision of
model parameters such as time constants). This project was ini-
tially developed for the Heidelberg’s accelerated neural network
hardware but has not been pursued further5. Indeed, because
of its “monolithic” structure, PyHAL is functionally equiva-
lent to the dedicated software interfaces, e.g., developed for
the SpiNNaker hardware. Rather than following this monolithic
approach, PyNCS offers a more dynamic platform in which hard-
ware devices with their corresponding low level driver modules
are separated and can be loaded at runtime. The aim of this design
philosophy is to encourage code portability, since modules can
be shared within the community. At the cost of a small over-
head due to the construction of the API layer, PyNCS leads to
a simpler, more efficient and shareable code since single driver
modules can be independently optimized and easily included
in the ecosystem.

Regarding its front-end, PyNCS shares many similarities with
existing solutions, offering a minimal, though complete, set
of functionalities for neural network definition. Even more
advanced languages such as IBM’s Corelet language, which imple-
ments a Neuron class, a Core class and a Connector class,
and uses these classes to define high-level Corelets, can be
essentially mapped into the PyNCS front-end. The Neuron
class contains all the properties of the neuron model, while in
PyNCS the equivalent information is contained in the NHML
files. The Core class represents a neurosynaptic core of 256
neurons with 256 × 256 synapses, and can be represented in
PyNCS using Population and Connection objects. The
Connector class defines the communication between cores and

4See also the pyNN.SpiNNaker website at http://spinnaker.cs.man.ac.uk/
docs/spinnaker_package/index.html
5The Heidelberg team substituted the PyHAL hardware abstraction layer
by a dedicated and private PyNN module which only supports the
team’s hardware so far. See http://neuralensemble.org/trac/PyNN/wiki/
NeuromorphicHardwareFAQ.

neurons, similarly to the Mapping class in PyNCS. Nonetheless,
the Corelet language is a very powerful tool for approaching a
novel programming paradigm but it is directly tied to IBM’s
specific hardware platform and cannot be used in conjunction
with different neuromorphic platforms. In this sense, its nature
profoundly differs from the one of PyNCS, which instead has
been conceived as a sophisticated software infrastructure grant-
ing access to the widest possible range of spiking neuromorphic
hardware.

We thus conclude that PyNCS is the first software ecosys-
tem of its kind. As we have shown, a layer of APIs wrappers
is used for the inclusion of existing communication or config-
uration software. In addition, we introduced a new mark-up
language for providing a formal, unified description of neuro-
morphic devices, the NHML, and made extensive use of text
description files for multi-chip setups written in XML as well.
While text files and code wrappers cannot entirely eliminate ded-
icated coding efforts, the unique design philosophy of PyNCS
reduces and streamlines these efforts. To achieve this, the software
takes full advantage of Python built-ins and a novel hardware
description language. It aims at promoting modularity of the
hardware through modularity of the code, code re-use and cod-
ing simplicity by using common programming techniques which
should be familiar to any moderately skilled Python developer,
such as class-inheritance for the implementation of the APIs and
context-managers for flexible interaction with the hardware at
runtime.

A key functionality that is essential to harness the advantages
of real-time hardware is continuous, online interaction with the
system at runtime. Taking this into consideration, the design
of PyNCS is not restricted to simulation-oriented hardware sys-
tems running in batch mode, instead it provides access to all the
resources independently in a continuous manner. This is possi-
ble because the communication and configuration APIs are in
fact independent thanks to the modularity of PyNCS and so, for
example, hardware parameters can be changed while the system
is running. On the other hand, real-time monitoring of spik-
ing activity can be computationally intensive and could pose
serious scalability issues that we address in the next section.
Because of its continuous interaction capabilities, PyNCS allows
one to close the loop between the neural network emulation on
hardware and the world, while also including batch-processing
capabilities, similar to PyNN, for compatibility with existing
platforms.

5.2. PERFORMANCE ISSUES
The memory available to PyNCS can become a limiting factor
for large-scale experiments. Memory is used for storing address-
events and connection tables. In practice, we find that PyNCS can
reasonably deal with about 108 connections, and 105 neurons. In
terms of performance, for a virtual device comprising 32768 neu-
rons, a laptop PC (Intel Core i7-2620M, 2.7 GHz, 4GB of RAM,
Python 2.7.6) is able to generate, stimulate and monitor events
at a rate of about 350,000 events per second. The processing
time mostly consists in the filtering and sorting of the events and
the transformation of physical addresses into logical addresses. A
large portion of these operations are carried out using standard

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 10

http://spinnaker.cs.man.ac.uk/docs/spinnaker_package/index.html
http://spinnaker.cs.man.ac.uk/docs/spinnaker_package/index.html
http://neuralensemble.org/trac/PyNN/wiki/NeuromorphicHardwareFAQ
http://neuralensemble.org/trac/PyNN/wiki/NeuromorphicHardwareFAQ
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

numerical libraries made available through the numpy module.
As a result, the performance of PyNCS is in most cases not lim-
ited by the interpreted nature of Python. One way to overcome
memory limitation in the future is to parallelize PyNCS using a
message passing interface (Gropp et al., 1999).

5.3. A NEUROMORPHIC MICROKERNEL IN PYTHON
The PyNCS software shares similarities with the kernel of a
traditional operating system architecture.

In computers, a kernel is a bridge between applications using
abstract resources and the actual data processing done at the hard-
ware level through the management of the system’s resources.
Its function is to implement a collection of facilities of “univer-
sal applicability” and “absolute reliability” by which an arbitrary
set of operating system facilities and policies can be conveniently,
flexibly, efficiently, and reliably constructed (Wulf et al., 1974). In
the framework of neuromorphic systems, the “operating system
facilities” take the form of functional networks, e.g., FSM, that
are constructed in the user-defined scripts and use the PyNCS
front-end or “facilities” for configuring and access the hardware
resources. As in the case of kernels, where different processors,
interfaces, I/O devices, are typically supported through the spe-
cific drivers (or servers as in microlithic kernels, e.g., the Windows
NT kernel), the neuromorphic kernel should manage the con-
figuration of the different neuromorphic devices and mediate
the communication between them. We proposed the definition
of a communication and configuration infrastructure and the
introduction of a set of specifications for the description of the
low-level functionality as one possible strategy to fulfill this pur-
pose. The setup files and NHML chip files represent the basis on
which the PyNCS ecosystem operates. Based on a widely adopted
digital communication framework, the AER (Boahen, 1998), and
on a small set of basic assumptions they implement the hard-
ware abstraction layer which enables the communication between
the different hardware resources and the management from the
front-end.

While existing solutions also offer similar functionalities, i.e.,
they implement a collection of facilities to properly configure
the hardware, they are no longer appropriate in light of the
recent developments in the growing community of neuromorphic
engineering. An increasing number of reprogrammable, digital
platforms are commercially available and can be used to interface
spiking multi-neuron chips and sensors in a reliable manner. We
witness the emergence of a trade of neuromorphic devices which
requires the software ecosystem to be rapidly re-configurable with
minimal coding effort and with the possibility for specific parts
of it to be finely tuned without unintended side effects at the
system level. Interestingly, this phenomenon is analogous to the
introduction of microkernels in the computer industry, developed
around the 80’s as a response to the changes in the computer
world6.

PyNCS is currently being tested on different electronic plat-
forms and collaboratively improved by several research groups
around the world. Further development of a complete kernel-
like framework for neuromorphic devices should facilitate the

6From Wikipedia: http://en.wikipedia.org/wiki/Microkernel

development of cognitive systems and the assessment of their
capabilities.

5.4. IMPROVEMENTS, LIMITATIONS AND OUTLOOK
The PyNCS software aims at creating a novel framework for
developing software interfaces for neuromorphic platforms. To
create such framework, we started with some assumptions that
could already cover a broad range of neuromorphic platforms
proposed in the literature. Certain aspects of this software call
for further development but they will not affect the main design
philosophy on which PyNCS has been conceived. The aim of
PyNCS is not to propose one particular solution to neural net-
work definition, mapping, placement or calibration but rather
to offer a flexible and unified framework in which such routines
can be included. Here we provide a list of modules that could be
integrated in future releases.

One useful feature that PyNCS can easily support is real-time
visualization of spiking data and real-time control of the neu-
romorphic chips through dedicated Graphical User Interfaces
(GUIs). We developed and used preliminary versions of such
modules, constructed as clients continuously gathering spiking
data from servers, which in turn received data from the drivers.
Importantly, these GUIs can be used not only for data visual-
ization but also for real-time interaction with the system. For
example, in an experimental version of the software, the user can
send teacher signals to chips equipped with plastic synapses, thus
realizing supervised online learning. However, since the clients
heavily depend on the communication API used, these mod-
ules are not yet included in the mainstream version of PyNCS.
An implementation of an API-independent module for real-time
visualization and control is one of the most urgent targets of
future versions of PyNCS.

In the examples that we show in this paper, neurons are
composed of a spike-emitting block (the soma) and a spike-
receiving block (the synapse array), each with their parameters
shared within the block. Thus, these elements are dimension-less,
i.e., PyNCS works under the point-neuron assumption. Instead,
architectures involving multi-compartmental neurons can have
more complicated parameter dependencies as well as addressing
schemes. One possibility to include multi-compartmental neu-
rons as well as dendritic computation and any other model that
deviates from the simple soma-synapse representation could be to
include in the NHML chip description more sophisticated block
representations as required by the specific models. If verified, this
possibility would be the ideal demonstration of the flexibility of
the NHML code and we are actively seeking ways to explore this
issue.

In the development of PyNCS, we deliberately omitted two
very important elements for the construction of a neuro-
morphic setup: placement routines and calibration routines.
Though these routines are in some cases fundamental for
the realization of the system, their implementation would not
have added more value in the demonstration of the princi-
ples behind our software. As mentioned already in Section 3,
these routines can be included under the configuration API.
For example, when the run command is executed, PyNCS
would compile the neural network definition using the methods

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 11

http://en.wikipedia.org/wiki/Microkernel
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

implemented in a ConfAPI.Placement module and a
ConfAPI.Calibration module. These routines could also
integrate automated checks to raise warnings or exceptions in
case resources are unavailable. For example, an exception could
be raised when one tries to define a neuronal population con-
sisting of more neurons than the ones actually available in the
devices. Though these modules are not yet part of PyNCS, we
already used its core elements (i.e., the high-level neural net-
work interface, the address translation methods and the access to
hardware parameters) to run calibration routines for parameter
optimization, demonstrating the possibility to effectively realize
such improvements (Neftci et al., 2010, 2011, 2012; Sheik et al.,
2011). In particular, calibration of analog circuits needs means
to access analog variables. PyNCS does not yet support the direct
control of measurement instruments, which could be included as
a module under the communication API, however a more con-
venient possibility is to employ circuits for converting internal
analog variables, e.g., synaptic currents or membrane potentials,
into AER signals and use these to infer their real value, a technique
which is commonly used for rapid calibration of analog circuits
(Serrano-Gotarredona et al., 2007; Yang et al., 2012).

6. CONCLUSIONS
We presented a modular and expandable platform-independent
Python-based framework to control spike-based neuromorphic
systems based on the AER communication. We showed how
these Python software tools can be used to configure neuro-
morphic hardware setups for emulating spiking neural networks.
By taking advantage of the flexibility of Python, we designed
PyNCS as a collection of open source APIs that grant access
to all the low-level functionalities of the neuromorphic hard-
ware while also allowing the integration to high-level front-ends
for neural-network definition. We proposed to adopt a general
scheme based on specification files for the electronic hardware,
in the form of XML code, to facilitate the integration of cus-
tom hardware into existing systems. We demonstrated the use of
our software with experiments which included a spiking neuro-
morphic vision sensor, the remote transmission of spiking data
in real-time via TCP protocol and recurrent neural networks
implementing finite-state machines for general purpose compu-
tation. Moreover, we reported previous work that made use of
PyNCS for neural network models operating on precisely timed
spiking input. We believe that the software tools we presented
will encourage the integration of the diverse range of neuromor-
phic systems available today with the consequence of a tighter
exchange of expertise among the groups in the community, a
wider adoption of neuromorphic platforms for both simula-
tion and beyond-simulation purposes, and a more application-
aware development of new hardware resources as future emerging
technologies.

ACKNOWLEDGMENTS
We thank Adrian Whatley and Elisabetta Chicca, Christian Mayr,
Alan Stokes, David Lester, and Steve Furber for several helpful
discussions, Daniel Fasnacht for designing the AER infrastruc-
ture, Tobi Delbruck and Patrick Lichtsteiner for the DVS cam-
era and Federico Corradi for helping with documentation and

testing. We also thank Dylan Muir for sharing some ideas from
the “Spike Toolbox for MATLAB” which inspired the design of
the address specification modules in PyNCS. The NHML file
specifications are inspired by several discussion meetings that
took place in the yearly Capo Caccia Cognitive Neuromorphic
Engineering Workshop https://capocaccia.ethz.ch/. This work
was partially funded by the Swiss National Science Foundation,
(PA00P2_142058), the EU ERC Grant “neuroP” (257219), the EU
FET Grant “SI-CODE” (284553), the EU ICT Grant “SCANDLE”
(231168) and by the Samsung Advanced Institute of Technology
(SAIT)’s Global Research Outreach (GRO) Program.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/Journal/10.3389/fninf.
2014.00073/abstract

REFERENCES
Amir, A., Datta, P., Risk, W. P., Cassidy, A. S., Kusnitz, J. A., Esser, S. K., et al. (2013).

“Cognitive computing programming paradigm: a corelet language for compos-
ing networks of neurosynaptic cores,” in Neural Networks (IJCNN), The 2013
International Joint Conference on (Dallas, TX), 1–10. doi: 10.1109/IJCNN.2013.
6707078

Bartolozzi, C., Mitra, S., and Indiveri, G. (2006). “An ultra low power current–
mode filter for neuromorphic systems and biomedical signal processing,” in
Biomedical Circuits and Systems Conference, (BioCAS), 2006 (London), 130–133.
doi: 10.1109/BIOCAS.2006.4600325

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R.,
Bussat, J., et al. (2014). Neurogrid: a mixed-analog-digital multichip system for
large-scale neural simulations. Proc. IEEE 102, 699–716. doi: 10.1109/JPROC.
2014.2313565

Boahen, K. (1998). “Communicating neuronal ensembles between neuromorphic
chips,” in Neuromorphic Systems Engineering, ed T. Lande (Norwell, MA: Kluwer
Academic), 229–259.

Brain-Corp-Technology. (2013). Building Artificial Nervous
Systems: technology. Available online at: http://www.
braincorporation.com/

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., et al.
(2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Brink, S., Nease, S., and Hasler, P. (2013). Computing with networks of spiking neu-
rons on a biophysically motivated floating-gate based neuromorphic integrated
circuit. Neural Netw. 45, 39. doi: 10.1016/j.neunet.2013.02.011

Brüderle, D., Grübl, A., Meier, K., Mueller, E., and Schemmel, J. (2007). “A soft-
ware framework for tuning the dynamics of neuromorphic silicon towards
biology,” in Computational and Ambient Intelligence, (Springer), 479–486. doi:
10.1007/978-3-540-73007-1-59

Brüderle, D., Müller, E., Davison, A., Muller, E., Schemmel, J., and Meier,
K. (2009). Establishing a novel modeling tool: a python-based inter-
face for a neuromorphic hardware system. Front. Neuroinform. 3:17. doi:
10.3389/neuro.11.017.2009

Brüderle, D., Petrovici, M., Vogginger, B., Ehrilich, M., Pfeil, T., Millner, S., et al.
(2011). A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems. Biol. Cybern. 104, 263–
296. doi: 10.1007/s00422-011-0435-9

Chicca, E., Stefanini, F., and Indiveri, G. (2014). Neuromorphic electronic cir-
cuits for building autonomous cognitive systems. Proc. IEEE 99, 1–22. doi:
10.1109/JPROC.2014.2313954

Chicca, E., Whatley, A., Lichtsteiner, P., Dante, V., Delbruck, T., Del Giudice, P., et al.
(2007). A multi-chip pulse-based neuromorphic infrastructure and its applica-
tion to a model of orientation selectivity. IEEE Trans. Circ. Syst. I 5, 981–993.
doi: 10.1109/TCSI.2007.893509

Cruz-Albrecht, J. M., Derosier, T., and Srinivasa, N. (2013). A scalable neural chip
with synaptic electronics using cmos integrated memristors. Nanotechnology
24:384011. doi: 10.1088/0957-4484/24/38/384011

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 12

https://capocaccia.ethz.ch/
http://www.frontiersin.org/Journal/10.3389/fninf.2014.00073/abstract
http://www.frontiersin.org/Journal/10.3389/fninf.2014.00073/abstract
http://www.braincorporation.com/
http://www.braincorporation.com/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,
et al. (2009). Pynn: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Dayan, P. (2008). Simple substrates for complex cognition. Front. Neurosci. 2:255.
doi: 10.3389/neuro.01.031.2008

Deiss, S., Douglas, R., and Whatley, A. (1998). “A pulse-coded communications
infrastructure for neuromorphic systems,” in Pulsed Neural Networks, Chapter 6,
eds W. Maass and C. Bishop (Cambridge, MA: MIT Press), 157–178.

Douglas, R., Mahowald, M., and Martin, K. (1994). “Hybrid analog-digital
architectures for neuromorphic systems,” in Proc. IEEE World Congress on
Computational Intelligence, Vol. 3 (Orlando, FL: IEEE), 1848–1853.

Fasnacht, D., and Indiveri, G. (2011). “A PCI based high-fanout AER mapper with
2 GiB RAM look-up table, 0.8 µs latency and 66 MHz output event-rate,” in
Conference on Information Sciences and Systems, CISS 2011 (Baltimore, MD:
Johns Hopkins University), 1–6.

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The spinnaker project.
Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Furber, S., Temple, S., and Brown, A. (2006). “On-chip and inter-chip networks for
modeling large-scale neural systems,” in Circuits and Systems, 2006. ISCAS 2006.
Proceedings. 2006 IEEE International Symposium on (Island of Kos), 4.

Gao, P., Benjamin, B. V., and Boahen, K. (2012). Dynamical system guided mapping
of quantitative neuronal models onto neuromorphic hardware. Circ. Syst. 59,
2383–2394. doi: 10.1109/TCSI.2012.2188956

Giulioni, M., Camilleri, P., Mattia, M., Dante, V., Braun, J., and Giudice,
P. D. (2012). Robust working memory in an asynchronously spiking neu-
ral network realized in neuromorphic VLSI. Front. Neurosci. 5:149. doi:
10.3389/fnins.2011.00149

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks
in Python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Gropp, W., Lusk, E., and Skjellum, A. (1999). Using MPI: Portable Parallel
Programming with the Message-Passing Interface, Vol. 1. Cambridge, MA: MIT
press.

IBM-Cognitive-Computing. (2013). Cognitive Computing - Artifical Intelligence
Meets Business Intelligence. IBM Research website. Available online at:
http://www.research.ibm.com/

Imam, N., Akopyan, F., Arthur, J., Merolla, P., Manohar, R., and Modha, D.
(2012). “A digital neurosynaptic core using event-driven qdi circuits,” in
Asynchronous Circuits and Systems (ASYNC), 2012 18th IEEE International
Symposium on (Lyngby: Technical University of Denmark, Kgs.), 25–32. doi:
10.1109/ASYNC.2012.12

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spik-
ing neurons and bistable synapses with spike–timing dependent plasticity. IEEE
Trans. Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.860850

Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

jAER. (2006). The jAER Open Source Project. SourceForge web-site. Available online
at: http://jaer.wiki.sourceforge.net/

Joshi, S., Deiss, S., Arnold, M., Yu, T., and Cauwenberghs, G. (2010). “Scalable
event routing in hierarchical neural array architecture with global synaptic con-
nectivity,” in Cellular Nanoscale Networks and Their Applications (CNNA), 2010
12th International Workshop on (Berkeley, CA), 1–6. doi: 10.1109/CNNA.2010.
5430296

Lazzaro, J., Wawrzynek, J., Mahowald, M., Sivilotti, M., and Gillespie, D. (1993).
Silicon auditory processors as computer peripherals. IEEE Trans. Neural Netw.
4, 523–528. doi: 10.1109/72.217193

Lichtsteiner, P., and Delbruck, T. (2005). “A 64x64 AER logarithmic temporal
derivative silicon retina,” in Research in Microelectronics and Electronics, 2005
PhD, Vol. 2 (Lausanne), 202–205.

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.
Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Mahowald, M. (1992). VLSI Analogs of Neuronal Visual Processing: A Synthesis
of Form and Function. PhD thesis, Department of Computation and Neural
Systems, California Institute of Technology (Pasadena, CA).

Mead, C. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley.
doi: 10.1007/978-1-4613-1639-8

Merolla, P., Arthur, J., Shi, B., and Boahen, K. (2007). Expandable net-
works for neuromorphic chips. IEEE Trans. Circ. Syst. I 54, 301–311. doi:
10.1109/TCSI.2006.887474

Mitra, S., Fusi, S., and Indiveri, G. (2009). Real-time classification of complex pat-
terns using spike-based learning in neuromorphic VLSI. Biomed. Circuits Sys.
IEEE Trans. 3, 32–42. doi: 10.1109/TBCAS.2008.2005781

Moradi, S., and Indiveri, G. (2014). An event-based neural network architecture
with an asynchronous programmable synaptic memory. IEEE Trans. Biomed.
Circ. Syst. 8, 1–10. doi: 10.1109/TBCAS.2013.2255873

Navaridas, J., Furber, S., Garside, J., Jin, X., Khan, M., Lester, D., et al.
(2013). Spinnaker: fault tolerance in a power-and area-constrained
large-scale neuromimetic architecture. Parallel Comput. 39, 693–708. doi:
10.1016/j.parco.2013.09.001

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas,
R. (2013). Synthesizing cognition in neuromorphic electronic sys-
tems. Proc. Natl. Acad. Sci. U.S.A. 110, E3468–E3476. doi: 10.1073/pnas.
1212083110

Neftci, E., Chicca, E., Cook, M., Indiveri, G., and Douglas, R. (2010). “State-
dependent sensory processing in networks of VLSI spiking neurons,” in
International Symposium on Circuits and Systems, (ISCAS), 2010 (Paris:IEEE),
2789–2792.

Neftci, E., Chicca, E., Indiveri, G., and Douglas, R. (2011). A systematic method for
configuring VLSI networks of spiking neurons. Neural Comput. 23, 2457–2497.
doi: 10.1162/NECO-a-00182

Neftci, E., Toth, B., Indiveri, G., and Abarbanel, H. (2012). Dynamic state and
parameter estimation applied to neuromorphic systems. Neural Comput. 24,
1669–1694. doi: 10.1162/NECO-a-00293

Northmore, D., and Elias, J. (1998). “Building silicon nervous systems with den-
dritic tree neuromorphs,” in Pulsed Neural Networks, Chapter 5, eds W. Maass
and C. Bishop (Cambridge, MA: MIT Press), 135–156.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-
time classification and sensor fusion with a spiking deep belief network. Front.
Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Painkras, E., Plana, L., Garside, J., Temple, S., Galluppi, F., Patterson, C., et al.
(2013). SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neu-
ral network simulation. IEEE J. Solid-State Circ. 48, 1943–1953. doi: 10.1109/
JSSC.2013.2259038

Patterson, C., Garside, J., Painkras, E., Temple, S., Plana, L. A., Navaridas,
J., et al. (2012). Scalable communications for a million-core neural pro-
cessing architecture. J. Parall. Distributed Comput. 72, 1507–1520. doi:
10.1016/j.jpdc.2012.01.016

Russell, A., Orchard, G., Dong, Y., Mihalas, S., Niebur, E., Tapson, J., et al. (2010).
Optimization methods for spiking neurons and networks. Neural Netw. IEEE
Trans. 21, 1–13. doi: 10.1109/TNN.2010.2083685

Rutishauser, U., and Douglas, R. (2009). State-dependent computation
using coupled recurrent networks. Neural Comput. 21, 478–509. doi:
10.1162/neco.2008.03-08-734

Samsung-GRO. (2013). Samsung Global Research Outreach (gro) Program.
Samsung’s SAIT Website. Available online at: http://www.sait.
samsung.co.kr/

Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., and Millner, S. (2010).
“A wafer-scale neuromorphic hardware system for large-scale neural modeling,”
in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International
Symposium on (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.
5536970

Serrano-Gotarredona, R., Camuas-Mesa, L., Serrano-Gotarredona, T., Leero-
Bardallo, J., and Linares-Barranco, B. (2007). The stochastic i-pot: a cir-
cuit block for programming bias currents. Circ. Syst. II 54, 760–764. doi:
10.1109/TCSII.2007.900881

Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P., Linares-Barranco, A., Paz-
Vicente, R., Gómez-Rodriguez, F., et al. (2009). CAVIAR: A 45k neuron,
5M synapse, 12G connects/s aer hardware sensory–processing– learning–
actuating system for high-speed visual object recognition and track-
ing. IEEE Trans. Neural Netw. 20, 1417–1438. doi: 10.1109/TNN.2009.
2023653

Sheik, S., Coath, M., Indiveri, G., Denham, S., Wennekers, T., and Chicca, E. (2012).
Emergent auditory feature tuning in a real-time neuromorphic VLSI system.
Front. Neurosci. 6:17. doi: 10.3389/fnins.2012.00017

Sheik, S., Stefanini, F., Neftci, E., Chicca, E., and Indiveri, G. (2011). “Systematic
configuration and automatic tuning of neuromorphic systems,” in International
Symposium on Circuits and Systems, (ISCAS), 2011 (Rio de Janeiro: IEEE),
873–876. doi: 10.1109/ISCAS.2011.5937705

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 13

http://www.research.ibm.com/
http://jaer.wiki.sourceforge.net/
http://www.sait.samsung.co.kr/
http://www.sait.samsung.co.kr/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Stefanini et al. PyNCS: a microkernel for neuromorphic systems

Silver, R., Boahen, K., Grillner, S., Kopell, N., and Olsen, K. (2007). Neurotech for
neuroscience: unifying concepts, organizing principles, and emerging tools. J.
Neurosci. 27, 11807. doi: 10.1523/JNEUROSCI.3575-07.2007

Wijekoon, J., and Dudek, P. (2012). VLSI circuits implementing computa-
tional models of neocortical circuits. J. Neurosci. Methods 210, 93–109. doi:
10.1016/j.jneumeth.2012.01.019

Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., et al. (1974).
Hydra: the kernel of a multiprocessor operating system. Commun. ACM 17,
337–345. doi: 10.1145/355616.364017

Yang, M., Liu, S.-C., Li, C., and Delbruck, T. (2012). “Addressable current reference
array with 170db dynamic range,” in Circuits and Systems (ISCAS), 2012 IEEE
International Symposium on (Seoul: IEEE), 3110–3113. doi: 10.1109/ISCAS.
2012.6271979

Yu, T., Park, J., Joshi, S., Maier, C., and Cauwenberghs, G. (2012). “65k-neuron
integrate-and-fire array transceiver with address-event reconfigurable synap-
tic routing,” in Biomedical Circuits and Systems Conference (BioCAS), 2012,
(Hsinchu: IEEE), 21–24. doi: 10.1109/BioCAS.2012.6418479

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 01 August 2014; published online: 29 August
2014.
Citation: Stefanini F, Neftci EO, Sheik S and Indiveri G (2014) PyNCS: a microkernel
for high-level definition and configuration of neuromorphic electronic systems. Front.
Neuroinform. 8:73. doi: 10.3389/fninf.2014.00073
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Stefanini, Neftci, Sheik and Indiveri. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, pro-
vided the original author(s) or licensor are credited and that the original publi-
cation in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroinformatics www.frontiersin.org August 2014 | Volume 8 | Article 73 | 14

http://dx.doi.org/10.3389/fninf.2014.00073
http://dx.doi.org/10.3389/fninf.2014.00073
http://dx.doi.org/10.3389/fninf.2014.00073
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems
	Introduction
	Software Ecosystems for Neuromorphic Electronic Computing Platforms

	The Neuromorphic Setup as a Spike-Event Transceiver
	The Neuromorphic Hardware Mark-up Language
	The Definition of a Neuromorphic Ecosystem: the Multi-Chip Setup
	From Abstract Addresses to Neuronal Populations
	Definition and Configuration of the Network Topology
	Monitoring Spiking Activity
	Sequencing Recorded or Synthetic Spike Trains

	Modular Architecture of PyNCS
	Communication API
	Configuration API

	Usage Examples
	Interfacing a Spiking Neuromorphic Chip with a Silicon Retina
	Synthesis of ``Soft State Machines'' for Performing Cognitive Tasks

	Discussion
	Comparison with Existing Solutions
	Performance Issues
	A Neuromorphic Microkernel in Python
	Improvements, Limitations and Outlook

	Conclusions
	Acknowledgments
	Supplementary Material
	References

