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Background: OSA is an independent risk factor for several systemic diseases.

Compared with mild OSA, patients with moderate-to-severe OSA have more

severe impairment in the function of all organs of the body. Due to the current

limited medical condition, not every patient can be diagnosed and treated in

time. To enable timely screening of patients with moderate-to-severe OSA,

we selected easily accessible variables to establish a risk prediction model.

Method: We collected 492 patients who had polysomnography (PSG), and

divided them into the disease-free mild OSA group (control group), and

the moderate-to-severe OSA group according to the PSG results. Variables

entering the model were identified by random forest plots, univariate analysis,

multicollinearity test, and binary logistic regression method. Nomogram were

created based on the binary logistic results, and the area under the ROC

curve was used to evaluate the discriminative properties of the nomogram

model. Bootstrap method was used to internally validate the nomogram

model, and calibration curves were plotted after 1,000 replicate sampling

of the original data, and the accuracy of the model was evaluated using

the Hosmer-Lemeshow goodness-of-fit test. Finally, we performed decision

curve analysis (DCA) of nomogram model, STOP-Bang questionnaire (SBQ),

and NoSAS score to assess clinical utility.

Results: There are 6 variables entering the final prediction model, namely

BMI, Hypertension, Morning dry mouth, Suffocating awake at night, Witnessed

apnea, and ESS total score. The AUC of this prediction model was 0.976

(95% CI: 0.962–0.990). Hosmer-Lemeshow goodness-of-fit test χ2 = 3.3222

(P = 0.1899 > 0.05), and the calibration curve was in general agreement with

the ideal curve. The model has good consistency in predicting the actual

occurrence of moderate-to-severe risk, and has good prediction accuracy.

The DCA shows that the net benefit of the nomogram model is higher than

that of SBQ and NoSAS, with has good clinical utility.
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Conclusion: The prediction model obtained in this study has good predictive

power for moderate-to-severe OSA and is superior to other prediction models

and questionnaires. It can be applied to the community population for

screening and to the clinic for prioritization of treatment.
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moderate-to-severe OSA, prediction model, nomogram, SBQ, NoSAS

Introduction

Obstructive sleep apnea (OSA) is a sleep disorder in which
repeated collapsed obstruction of the upper airway during
sleep with hypoventilation and decreased blood oxygenation
leads to multisystem lesions and injury (Senaratna et al.,
2017). Respiratory obstruction leads to arousal of the brain,
sympathetic activation, and decreased oxygen saturation, and
recurrent upper airway obstruction during sleep can lead
to sleep fragmentation and non-restorative sleep. Therefore,
people with OSA may have symptoms such as fatigue, excessive
daytime sleepiness, or morning headaches, or some people may
not have these symptoms. However, there is no denying that
OSA is subtly damaging our body systems and organs.

OSA is classified into three levels: mild, moderate, and
severe. According to the American Academy of Sleep Medicine
(AASM) definition of OSA (Sateia, 2014; Kapur et al.,
2017), the apnea hypoventilation index (AHI) is used to
define the severity grading of OSA, 5 ≤ AHI < 15/h for
mild OSA, 15 ≤ AHI < 30/h for moderate OSA, and
AHI ≥ 30/h for severe OSA.

Seventeen studies in 16 countries provided reliable data
on the prevalence of OSA, with an estimated 936 million
adults aged 30–69 years worldwide suffering from mild-to-
severe OSA and 425 million adults aged 30–69 years suffering
from moderate-to-severe OSA (Benjafield et al., 2019). The
largest number of people affected are in China, followed by the
United States, Brazil, and India (Benjafield et al., 2019). About
one in five adults has at least mild OSA, and one in fifteen has
moderate or severe OSA (Somers et al., 2008). However, more
than 85% of people with clinically significant and treatable OSA
have never been diagnosed (Young et al., 1997; Kapur et al.,
2002; Tufik et al., 2010).

Polysomnography (PSG) is the gold standard for diagnosing
OSA. The device assesses the underlying cause of sleep disorders
by monitoring the subject’s EEG, EOG, EMG, pulse oximetry,
routine ECG, chest, and abdominal airflow movements, and
lying position during sleep (Rundo and Downey, 2019). Sleep
staging is determined by information from EEG, EOG, and
EMG (Basunia et al., 2016). There are two types of sleep,
namely non-rapid eye movement (NREM) sleep and rapid eye
movement (REM). NREM sleep is divided into three sub-stages:

N1, N2, and N3. Sleep stages usually begin with a shorter NREM
stage 1 (N1), followed by stage 2 (N2), then stage 3 (N3), and
finally REM (Basunia et al., 2016). A cyclic EEG alteration occurs
during NREM, namely the cyclic alternating pattern (CAP),
which reflects the microstructure of sleep and has a crucial
role in establishing and maintaining sleep integrity (Terzano
and Parrino, 2000; Smerieri et al., 2007). The CAP represents
an adaptive state of persistent arousal instability that oscillates
between higher levels of arousal and activation (stage A) and
lower levels of arousal and deactivation (stage B) (Parrino et al.,
2012; Gnoni et al., 2021). CAP and arousal are fundamental
mechanisms of sleep regulation, with subtype A1 contributing
to the accumulation and consolidation of deep slow-wave sleep
(SWS), while subtypes A2 and A3 attenuate sleep and lead
to episodes of REM sleep or arousal (Terzano et al., 2005).
Studies have shown that CAP subtype A1 predominates in the
mild OSA, while CAP subtypes A2 and A3 predominate in
patients with moderate-to-severe OSA (Gnoni et al., 2021). In
patients with mild OSA, CAP A1 subtypes may enhance sleep
continuity, whereas, in moderate-to-severe OSA, there may be
a loss of compensation of these sleep stabilization mechanisms
and more invasive CAP fluctuations disrupting sleep circuits
(Gnoni et al., 2021). Thus, compared to patients with mild OSA,
patients with moderate-to-severe OSA constantly experience
sleep fragmentation, producing physical symptoms such as
drowsiness and fatigue, as well as psychological symptoms such
as stress (Bardwell et al., 2000; Santos et al., 2017).

OSA is an independent risk factor for a variety of systemic
diseases. Compared to mild OSA, moderate-to-severe OSA
can cause more severe damage to various organs in the
body. Cardiovascular disease is the most serious complication
of OSA (Guilleminault et al., 1976), while hypertension is
one of the clearest cardiac risk factors associated with OSA.
Muxfeldt et al. (2014) analyzed 422 patients with intractable
hypertension and found an overall prevalence of 82.2% and
55.5% for OSA and moderate-to-severe OSA, respectively, with
a preponderance of non-dipping hypertension in patients of
moderate-to-severe OSA (Gonzaga et al., 2015). On the other
hand, there is sufficient evidence that moderate and severe OSA
is associated with decreased ventricular function and increased
atrial volumes, resulting in a high prevalence of chronic heart
failure and atrial fibrillation in moderate-to-severe OSA patients
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(Sascău et al., 2018). In the cerebrovascular system, it has been
reported that the more severe the OSA, the higher the risk
of cerebrovascular disease, and there is a strong relationship
between OSA and stroke (Yaggi et al., 2005; Lin et al., 2018). OSA
is associated with early neurological deterioration, increased
stroke recurrence, prolonged hospitalization, and decreased
functional recovery, and adverse neurological outcomes are
directly related to the severity of OSA (Yaggi et al., 2005;
Yan-fang and Yu-ping, 2009; Loke et al., 2012). 57% of
patients with chronic stroke have undiagnosed moderate-to-
severe OSA (Gottlieb et al., 2021). In addition, it is worth
noting that patients with moderate-to-severe OSA have a higher
incidence of asymptomatic cerebrovascular disease than those
with less severe OSA (Nishibayashi et al., 2008). OSA is also
affecting the metabolism of endocrine hormone levels, and
patients with OSA are at a higher risk of developing certain
endocrine and metabolic diseases (Akset et al., 2022). The
relationship between endocrine disorders and OSA is complex
and bidirectional. Several endocrine disorders are risk factors
for OSA. Compared to the general population, patients with
obesity, hypothyroidism, acromegaly, Cushing’s syndrome, and
type 1 and type 2 diabetes have an increased prevalence of OSA
(Brúsik et al., 2016; Bruyneel et al., 2022). The prevalence of
insulin resistance is also higher in non-diabetic patients with
moderate-to-severe OSA (Michalek-Zrabkowska et al., 2021).
A meta-analysis showed that OSA increased the risk of early
kidney injury and that patients with moderate-to-severe OSA
combined with hypertension and/or diabetes had significantly
reduced glomerular filtration rate with more severe kidney
injury (Liu et al., 2021). Meanwhile, moderate-to-severe OSA is
a common cause of insomnia in patients (Hein et al., 2017).

Lazazzera et al. (2021) have designed a sleep monitoring
platform that detects apnea and hypoventilation with a correct
rate of up to 75.1%. At night patients need to wear smart
gloves for signal acquisition and open a smartphone application
where the information is transmitted to a remote server for
cloud computing to estimate the status of sleep, breathing and
heart rate during the night. Compared to other monitoring
devices, this platform is less invasive and simpler. However, the
platform requires the purchase of smart gloves for measurement
and cannot distinguish the severity of OSA, so we believe it is
not suitable for primary screening and can be used for post-
treatment outcome evaluation. In patient interviews, it was
found that most patients were not aware that they had OSA
and considered it expensive to treat and examine, while on
the other hand, OSA was not considered to be a health hazard
and was even mistaken for a sign of good sleep. In recent
years, tremendous efforts are being made to diagnose individuals
with OSA, but data show that even in developed countries,
most patients with OSA remain undiagnosed and untreated. In
developing countries, OSA is poorly understood, often without
diagnosis and treatment, and not adjusted to the lack of medical

resources (Jaiswal et al., 2017). In China, the largest developing
country, diagnosis, and treatment for OSA are also only carried
out in tertiary hospitals. As people become more concerned
about their health, awareness of OSA is slowly increasing, but
due to the scarcity of monitoring equipment, PSG is often in
short supply. Studies in China have shown that approximately
80% of males and 90% of females with moderate-to-severe
disease do not receive a clinical diagnosis. The 5-year mortality
rate for untreated OSA patients can be 11–13% (Young et al.,
1993). The admission of patients with less severe OSA to the
sleep monitoring unit further increases the strain on available
resources. Given the dangers of moderate-to-severe OSA, it
is imperative that patients with moderate-to-severe OSA are
screened for PSG monitoring and treated as soon as possible,
o realize the maximum utilization of resources.

However, there is no screening tool specifically for
moderate-to-severe OSA. Therefore, we aim to build a
predictive model that screens for moderate to severe OSA at
no cost. We conducted a survey in the northeastern region
of China, which has the highest prevalence of OSA(as shown
in a meta-analysis of OSA prevalence by Chinese scholars
in 2021) and developed a prediction model specifically for
screening moderate-to-severe OSA based on risk factors and
clinical symptoms of OSA patients. After reviewing the data,
we included gender, age, BMI, neck circumference (NC),
neck height ratio (NHR), history of hypertension, morning
headache, Morning dry mouth, suffocating awake at night,
witness respiratory pause, and ESS total score as predictor
variables to develop the model, and compared the developed
model with the current widely used tool (SBQ, NoSAS score)
to evaluate its clinical effects.

Materials and methods

Study subjects

Patients who consulted the sleep monitoring centers of
the First and Third Hospitals of Jinzhou Medical University
and underwent PSG from 2017 to 2021 were included in this
study. The study was approved by the Ethics Committee of
Jinzhou Medical University (LLSC2020008) and was following
the 1964 Declaration of Helsinki and subsequent amendments,
and informed consent was obtained from each study subject
before the study.

Inclusion criteria: (1) age ≥ 18 years; (2) have not been
diagnosed with OSA. Exclusion criteria: (1) patients with
severe cardiopulmonary disease and severe sleep disorders; (2)
patients with uncontrolled mental illness; (3) patients with
neuromuscular disease and a history of stroke. A total of 492
study subjects were included in this study.
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Predictor variables and outcome
indicators

The study used easily measured general information and
basic symptoms of patients as predictors, including gender, age,
BMI, NC, NHR, history of hypertension, morning headache,
morning dry mouth, suffocating awake at night, witness apnea,
and ESS total score. Because of the low awareness of OSA,
many people are not aware that morning headache, witness
apnea, suffocating awake at night, morning dry mouth, daytime
sleepiness is caused by OSA, but they only consider it as
an ordinary phenomenon and do not draw attention to it.
Therefore, we included them as predictor variables, the outcome
variable of OSA severity. On the other hand, we predicted
moderate-to-severe OSA, where symptoms are more prominent
compared to mild OSA, so morning headache, witness apnea,
suffocating awake at night, morning dry mouth, daytime
sleepiness would have more predictive value.

The researchers measured the net height, weight (in light
clothing), and NC of the study subjects. The NC is measured
just below the cricoid cartilage, at the level of the mid-cervical
spine (Zen et al., 2012). The normal reference values for neck
circumference were < 38 cm for males and < 35 cm for females
(Yang et al., 2010). BMI is calculated as the weight divided by
the square of the height. The NHR is calculated by dividing the
NC by the height. The Epworth Sleepiness Scale (ESS) (Johns,
1991) assesses the degree of daytime sleepiness in study subjects,
which has a total of 8 entries and a total score of 24. It was
validated by Chinese scholars in 2002, and the Cronbach’s α was
0.81, with good reliability (Chen et al., 2002). In addition, we
calculated participants’ Stop-Bang Questionnaire (SBQ) (Chung
et al., 2008) and NoSAS (Marti-Soler et al., 2016) scores to
compare with our derived prediction model. Relevant study (Yu
et al., 2012) in China have shown that the SBQ can be used to
assess patients with high-risk OSA. It is a simple and easy-to-
use screening and prediction tool for moderate-to-severe OSA
with high sensitivity and negative predictive value (NPV). It is

appropriate that the subject of this study is moderate-to-severe
OSA, which can be compared with our prediction model.

All subjects included in this study underwent full-night PSG
and were monitored for more than 7 h. The patient’s sleep is first
automatically analyzed by the ResMed system software and then
all information is manually evaluated by a professional sleep
technician. Information such as the disease status of the study
subjects was determined from the PSG report. According to the
definition of OSA by the AASM (Sateia, 2014; Kapur et al., 2017),
the cut-off point was AHI ≥ 15/h, and the group was divided
into a disease-free mild OSA group (control group, AHI < 15/h)
and a moderate-to-severe OSA group (AHI ≥ 15/h).

Statistical methods

Statistical analysis of the data was performed using statistical
analysis and graphing software with IBM SPSS 25.0, R 4.1.1, and
GraphPad Prism 8.

Variable description

The normality of continuous variables was assessed using
the Kolmogorov-Smirnov goodness-of-fit test (Massey, 1951).
Those that conformed to a normal distribution used the t-test,
described as mean ± standard deviation; conversely, the Mann-
Whitney U-test, described as median (interquartile spacing);
and categorical variables used the chi-square test, described as
frequency (percentage).

Variable screen

First, the random forest model was used to determine the
importance of NC and NHR and to select the appropriate
risk factors. The importance of variables is calculated by using

FIGURE 1

Flow chart of statistical process.
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Gini Importance, which is used to determine the nodes of the
individual decision trees, to generate Mean Decrease in Impurity
(MDI) (Sydney, 2019). Each predictor variable used to create
the random forest model has a resulting MDI value, which is
used to rank variable importance to the model. Higher Mean
Decrease in Gini indicates higher variable importance (Sydney,
2019). The selected predictive factors were used as independent
variables one by one in the univariate analysis, and the variables
with p< 0.05 were included in the diagnosis of multicollinearity
to determine whether there was multicollinearity among the
variables. The larger the value of variance inflation factor (VIF),
the stronger the degree of multicollinearity among the variables,
and it was generally considered that factors with VIF > 5
had strong collinearity among them (Chatterjee et al., 2000).
The selected independent variables were included in a binary
logistic regression analysis using forward stepwise regression to
obtain the predictive factors for moderate-to-severe OSA and
the strength of their associations.

Nomogram and evaluation

The variables screened in the binary logistic regression
analysis were used as the final predictors to create a nomogram
predicting the probability of moderate-to-severe OSA. We
evaluated the model in terms of its discrimination, accuracy and

clinical usefulness. Mature clinical prediction models require
three necessary stages: construction, internal validation, and
external validation. Internal validation is the evaluation of
the model using data from sources similar to those used
to construct the prediction model, while external validation
is the evaluation of the model with data that are spatially
(multicenter) different from those used for model construction.
Our data are from the population of Liaoning region, and if the
internal validation is performed the population is also the same
population, so we believe that dividing the data into training
and validation sets is not necessary in our study. We perform
internal validation on the original data using Bootstrap method
with 1,000 repetitions of sampling.

Discrimination
The area under the curve (AUC) was used to assess the

differentiation of the nomogram model, and the sensitivity,
specificity, positive predictive value (PPV), and NPV of
the model were calculated to evaluate the discriminatory
capability of the model.

Accuracy
The Bootstrap method was used for internal validation of

the nomogram model, and the calibration curve was plotted
after 1,000 repetitions of the original data, while the consistency
of the model was judged using the Hosmer-Leme show test,

FIGURE 2

Box plot of age, BMI, NC, and ESS.
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and P > 0.05 was considered as a good degree of predictive
conformity of the model (Hosmer and Lemeshow, 2000).

Clinical utility
Decision curve analysis (DCA) is a metric to assess

the predictive value and clinical utility of the model, and
differentiating between patients at high and low risk of
occurrence is the primary purpose of the model. Finally,
we performed DCA of nomogram model, SBQ, and NoSAS
to assess clinical utility. DCA estimates the net benefit of
the prediction model based on the difference between the
number of correctly and incorrectly predicted positive outcomes
(Vickers and Holland, 2021).

The flow chart of the statistical method is shown in Figure 1.

Results

Basic information about variables

Of the 492 subjects, 366 (74.390%) had moderate-to-
severe OSA and 126 (25.610%) had no disease and mild
OSA. There were 375 (76.220%) males and 117 (23.780%)

females; 347 (70.528%) with hypertension; 175 (35.569%) with
morning headache; 346 (70.325%) with morning dry mouth;
337 (68.496%) with nocturnal awakening; and 345 (70.122%)
with witnessed apnea. The mean NHR was 0.242. The data
distributions of age BMI, NC, and total ESS score were
expressed as medians, and their box plots are shown in
Figure 2, and the specific values of each variable are shown in
Table 1.

Screening variables

Random forest model screening variables
The importance of predictors on the dependent variable

was determined by the random forest model, and the results
are shown in Figure 3. NHR has better predictive power for
moderate-to-severe OSA compared to NC, therefore, NC was
excluded and NHR was included as a predictor in this study.

Univariate analysis and multicollinearity test
Univariate analysis of predictors between the disease-free

mild OSA group and moderate-to-severe OSA group showed
statistically significant differences (P < 0.05) between the

TABLE 1 Information about the study subjects and single-factor analysis.

Predictive factors All subjects (N = 492) Comparison of predictive factors between the two groups [M (P25, P75)/Mean ± SD]

Disease-free mild OSA
group (n = 126)

Moderate-to-severe
OSA group (n = 366)

Z/t/χ2 P

Gender 28.583 0.003

Male 375 (76.220%) 74 301

Female 117 (23.780%) 52 65

Age (years) 46.0 (36.0, 53.0) 46.5 (32.0, 54.25) 46.0 (37.0, 53) −0.944 0.345

BMI (kg/m2) 28.374 (25.543, 31.157) 24.405 (23.146, 27.341) 29.055 (27.051, 32.010) −10.405 0.000

NC (cm) 42 (39, 44) 39 (36, 42) 42 (40, 44)

NHR (cm) 0.242 ± 0.019 0.230 ± 0.019 0.246 ± 0.018 −8.612 0.000

Hypertension 109.891 0.000

Yes 347 (70.528%) 23 (4.675%) 324 (65.854%)

No 145 (29.472%) 103 (20.9355%) 42 (8.537%)

Morning headache 82.804 0.000

Yes 175 (35.569%) 25 (5.081%) 150 (30.488%)

No 317 (64.431%) 101 (20.528%) 216 (43.902%)

Morning dry mouth 123.148 0.000

Yes 346 (70.325%) 27 (5.488%) 319 (64.837%)

No 146 (29.675%) 99 (20.122%) 47 (9.553%)

Suffocating awake at night 131.122 0.001

Yes 337 (68.496%) 27 (5.488%) 315 (64.024%)

No 155 (31.504%) 99 (20.122%) 51 (10.366%)

Witness apnea 123.148 0.000

Yes 345 (70.122%) 23 (4.675%) 322 (65.447%)

No 147 (29.878%) 103 (20.935%) 44 (8.943%)

ESS total score 17 (7, 21) 5 (3, 5) 20 (15, 22) −12.997 0.000
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FIGURE 3

Variable importance Plot — MeanDecreaseGini.

TABLE 2 Multicollinearity test of predictors and the way
to assign values.

Risk factors Tolerance VIF Assignment

Gender 0.881 1.135 “Male” = 1, “female” = 2

BMI (kg/m2) 0.583 1.715 Original value entry

NHR 0.616 1.624 Original value entry

Hypertension 0.527 1.898 “No” = 0, “yes” = 1

Morning headache 0.928 1.078 “No” = 0, “yes” = 2

Morning dry mouth 0.612 1.635 “No” = 0, “yes” = 1

Suffocating awake at night 0.533 1.877 “No” = 0, “yes” = 1

Witnessed apnea 0.517 1.935 “No” = 0, “yes” = 1

ESS total score 0.578 1.731 Original value entry

nine factors of gender, BMI, NHR, hypertension, morning
headache, morning dry mouth, suffocating awake at night,
witness apnea, and ESS total score, while there was no
statistically significant difference between the two groups in
terms of age. Details are shown in Table 1 the nine statistically
significant predictive factors derived above were tested for
multiple covariances. The VIF of the included predictive factors
was < 5, so there was no covariance. The predictors were
also assigned values for binary logistic regression analysis,
and the covariance test results and assignments are shown in
Table 2.

Binary logistic regression analysis
A binary logistic regression analysis was performed with

whether the OSA was moderate-to-severe (“no” = 0, “yes” = 1)
as the dependent variable and the nine statistically significant

predictors mentioned above (gender, BMI, NHR, hypertension,
morning headache, morning dry mouth, suffocating awake
at night, witnessed apnea, and ESS total score) as the
independent variables; the assignment table is shown in Table 2.
The results of the binary logistic regression analysis showed
independent predictors of BMI, hypertension, morning dry
mouth, suffocating awake at night, witnessing apnea, and ESS
total score for moderate-to-severe OSA, as detailed in Table 3.

Construct and evaluate the nomogram

Based on the predictor variables derived from the above
binary logistic regression analysis, we created the nomogram
shown in Figure 4. The scores corresponding to each patient’s
six indicators of BMI, hypertension, morning dry mouth,
suffocating awake at night, witnessing apnea, and ESS total score
in the nomogram were summed to calculate the total score,
and the risk of having moderate-to-severe OSA for that patient
could be derived.

Discrimination
The area under the ROC curve was used to assess the

discrimination of the nomogram model, as shown in Figure 5,
the area under the ROC curve: AUC = 0.976 (95% CI:
0.962–0.990), the cut-off value was 0.620, and sensitivity,
specificity, PPV, and NPV were 95.9%, 89.7%, 96.4%, and 88.3%,
respectively, suggesting that the nomogram model has good
discrimination ability.

Accuracy
The Bootstrap method was used to internally validate the

nomogram model, and the calibration curve was plotted after
the original data were repeatedly sampled 1,000 times (see
Figure 6), while the Hosmer-Lemeshow goodness-of-fit test
χ2 = 3.3222, P = 0.1899, and there was no statistically significant
difference between the risk prediction value and the actual
observation value, suggesting that the model predicts the actual
occurrence of moderate-to-severe risk with good agreement,
indicating that the model has good prediction accuracy.

Clinical utility
Figure 7 shows the DCA for the nomogram model, SBQ,

and NoSAS. The DCA has the threshold probability as the
horizontal coordinate and the net benefit rate after subtracting
the disadvantage as the vertical coordinate, and the closer the
curve is to the upper right corner, the greater the net clinical
benefit obtained using this prediction model. The graph shows
that the net benefit of the nomogram model is higher than that
of SBQ and NoSAS. Figure 8 shows the clinical impact curves
of the nomogram model. The red curve (Numberhigh risk)
represents the number of individuals classified as positive (high
risk) by the nomogram model at each threshold probability; the
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TABLE 3 Results of binary logistic regression analysis.

Predictive factors B SE Wals P OR 95% CI

BMI (kg/m2) 0.454 0.087 27.478 0.000 1.574 1.329–1.865

Hypertension 1.463 0.501 8.510 0.004 4.317 1.616–11.532

Morning dry mouth 1.911 0.493 15.054 0.000 6.759 2.574–17.748

Suffocating awake at night 2.080 0.522 15.893 0.000 8.004 2.879–22.254

Witnessed apnea 1.558 0.530 8.623 0.003 4.747 1.679–13.427

ESS total score 0.242 0.045 28.535 0.000 1.274 1.166–1.393

Constants –18.238 2.948 38.266 0.000 0.000

FIGURE 4

Predicting the risk of moderate-to-severe OSA in the nomogram.

blue curve (Number high risk with outcome) is the number of
true positives at each threshold probability.

Figure 9 shows an example of a nomogram for a patient.
This patient has a BMI of 24, hypertension, dry mouth in the
morning, no apnea in others, suffocating awakenings at night,
and an ESS score of 14. According to the nomogram model,
this patient has a total score of 116.5 and an approximately 84%
probability of having moderate-to-severe OSA.

Discussion

OSA is a recognized sleep disorder, and the number of PSG
devices, the gold standard for diagnosis of OSA, is limited and
often in short supply. Compared with mild OSA, moderate-to-
severe OSA is more harmful to health. In order to achieve the
maximum utilization of resources, this study selected simple and
easy-to-measure general information and clinical symptoms of

patients as predictors and established a prediction model for
moderate-to-severe OSA. It helps to realize the difficult task of
rapid screening of patients with moderate-to-severe OSA. In the
following, we describe the selection of variables and the basic
conditions of the model developed.

Gender

OSA has long been considered to be associated with males,
and many studies have shown a higher prevalence among males
than females (Kapsimalis and Kryger, 2002). Data from sleep
labs suggest that male risk of OSA is 5–6 times higher compared
to female risk, while results from community studies suggest
that male risk of OSA is only 2–3 times higher (Flemons,
2002; Daltro et al., 2006), so we included gender in this study
to explore the relationship between gender and moderate-to-
severe OSA. Our findings showed a statistical difference between
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FIGURE 5

ROC curves for the nomogram model to predict the risk of moderate-to-severe OSA occurrence.

FIGURE 6

Calibration curves for the nomogram model predicting the risk of developing moderate-to-severe OSA.

genders in whether or not to have moderate-to-severe OSA (as
shown in Table 1), but random forest plots showed that gender
was a poor predictor of moderate-to-severe OSA (as shown

in Figure 3) and ultimately did not enter into our prediction
model (as shown in Figure 4). Possibly because of the relatively
mild degree of disease and atypical symptoms in females with
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FIGURE 7

DCA of the nomogram model, SBQ, NoSAS.

FIGURE 8

The clinical impact curves of the nomogram model.

OSA, studies suggest that failure to identify gender-specific
differences may lead to under-diagnosis or misdiagnosis of OSA
in females (Kapsimalis and Kryger, 2002). There are many

prediction models or screening questionnaires that include
gender as a predictor (Chen et al., 2002; Zou et al., 2013; Marti-
Soler et al., 2016; Tawaranurak et al., 2021; Song et al., 2022),
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FIGURE 9

Example of nomogram.

which has a high potential to cause under-diagnosis in female
patients. In our prediction model, gender is not included, which
largely reduces the underdiagnosis rate in female patients with
moderate-to-severe OSA.

Age

Many studies have shown a strong correlation between age
and OSA (Ancoli-Israel et al., 1991; Liu et al., 2022), as age
increases, the muscles in the nasopharynx relax and tend to
collapse. Kapsimalis and Kryger (2002) found that 61.2% of
people aged < 55 years had OSA, 78% of people aged > 55 years
had OSA, and the prevalence of OSA increased significantly after
age > 60 years. In contrast, in our study, age was not statistically
different between moderate-to-severe OSA and disease-free
mild OSA group (p < 0.05), and the medians were similar
between the two groups (as shown in Figure 2 box plots).
The reason for this analysis may be related to our sample
population, all of us were Chinese. It was shown that the Chinese
have underlying craniofacial skeletal differences compared to
Caucasians, with significantly smaller maxillae and mandibles,
more severe mandibular retrusion, anterior lower incisors, and
increased total and upper facial height, and steeper and shorter
anterior cranial bases (Liu et al., 2000). We speculate that the
natural cranial characteristics of the Chinese population may
contribute to moderate-to-severe OSA, and that the correlation
with age may be relatively low.

BMI, neck circumference, and neck
height ratio

Obesity is a recognized risk factor for OSA (Daltro et al.,
2006). Studies have shown that for every 10% increase in body
weight, the risk of the probability of developing moderate-to-
severe OSA increases sixfold (Peppard et al., 2000). In our study,
BMI was significantly higher in moderate-to-severe OSA than
in controls (as shown in Figure 2). Each 1 unit increase in BMI
was associated with a 1.574-fold increase in the probability of
having moderate-to-severe OSA (as shown in Table 3). Related
obesity studies have shown that obesity can lead to a decrease
in lung volume, resulting in a decrease in pharyngeal diameter;
on the other hand, obesity leads to a narrowing of the pharynx
and fat deposition on the pharyngeal wall, which is strongly
related to NC, and many scholars have included NC in studies
of OSA, and the findings have found a correlation between NC
and OSA (Simpson et al., 2010; Kawaguchi et al., 2011; Ahbab
et al., 2013). There is also evidence that NHR is superior to NC
when assessing upper body fat distribution in patients with OSA
(Ho et al., 2016). And in our study, we compared the prediction
performance of NC and NHR for moderate-to-severe OSA by
random forest model, and the results showed that the prediction
ability of NHR was better than that of NC (as shown in Figure 3),
so we included the NHR in this study. Unfortunately, the NHR
did not enter into final prediction model, which is different from
the previous studies (Ho et al., 2016). However, we believe that
BMI, NC, and NHR are all indicators for assessing body obesity,
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and it is sufficient to include one indicator in our model to
measure body obesity.

Hypertension

There is a strong association between OSA and
hypertension, and OSA is a major risk factor for hypertension
(Cai et al., 2016). In contrast to hypertension, awareness of
OSA is low and a large number of people are unaware that
hypertension is often caused by OSA, therefore we will select a
history of hypertension as a predictor for the prediction model.
In our study, 88.525% of patients with moderate-to-severe OSA
had hypertension, which is slightly lower than the previous
study by Wang et al. (2016) (94.41% prevalence of hypertension
in moderate-to-severe OSA), which may be related to the
sample size. Hypertension was a predictor of OSA, which is
similar to many previous studies (Chung et al., 2008; Marti-
Soler et al., 2016; Tawaranurak et al., 2021) and we will not
elaborate too much on it, as detailed in Tables 1, 3.

Morning headache

Sleep and headache have a complex interrelationship (Stark
and Stark, 2015), morning headaches are common in habitual
snorers, and a study by Chen et al. (2011) found OSA to be an
independent predictor of headache. Morning headaches were
found to be significantly higher in those with OSA compared
to those without OSA, with the prevalence of sleep apnea
headaches being 11.6% and 13.3% in those with moderate and
severe OSA, respectively (Kristiansen et al., 2012). However,
some studies have also found that OSA is not associated with
headaches (Russell et al., 2014; Suzuki et al., 2015). In our study,
morning headache was statistically different between moderate-
to-severe OSA and disease-free mild OSA group (p < 0.05),
but this variable did not enter into our prediction model. We
reviewed previous screening models and questionnaires and
almost none of them included morning headache as a variable.
The specifics between moderate-to-severe OSA and disease-free
mild OSA are yet to be confirmed by a large amount of data.

Morning dry mouth

Dry mouth is a typical clinical symptom of OSA, and
morning dry mouth increases the likelihood of OSA in patients.
One study combined morning dry mouth with the SBQ, which
could improve the sensitivity and specificity of the questionnaire
(Zhang et al., 2021). Oksenberg et al. (2006) found that the
prevalence of dry mouth upon waking increased with the
severity of OSA. In our study, 70.325% reported dry mouth and
the risk of moderate-to-severe OSA was 1.635 times higher in

those who reported dry mouth than in those who had no disease
or mild OSA (as shown in Tables 1, 3).

Witnessed apnea and Suffocating
awake at night

OSA, as the name implies, results in apnea, a condition that
is highly likely to occur in patients with moderate-to-severe
OSA. Because of the airway obstruction, the lack of oxygen
causes the brain to stimulate microarousal or arousal, which
in turn may cause the patient to wake up suffocating at night.
The majority of patients who came to the clinic complained of
suffocating awake at night, 70.122% of all our study subjects
witnessed apnea and 68.496% experienced suffocating awake
at night (as shown in Table 1), and both were statistically
significant (P < 0.05) between moderate-to-severe OSA and
control groups (as shown in Table 3).

Epworth sleepiness scale total score

The most common symptom of OSA is excessive sleepiness,
which is reported by only 15–50% of patients with OSA in
the general population (Gottlieb and Punjabi, 2020). The ESS
is a measure of daytime sleepiness. In the clinical evaluation
of OSA, the ESS is often used as a tool to measure daytime
sleepiness (Pouliot et al., 1997). ESS has important value in the
assessment of patients with severe OSA (Lee et al., 2020), but
it has also been shown that ESS should not be used in clinical
settings for individual-level comparisons to determine whether
to make a priority diagnosis (Lee et al., 2020). Therefore, in
our study, ESS was combined with several variables to create
a predictive model that can screen for moderate-to-severe
OSA. As can already be seen in Figure 2, the ESS total score
was significantly higher in patients with moderate-to-severe
OSA than in controls and statistically different between the
two groups (p < 0.05). However, a random forest plot and
nomogram (Figures 3, 4) shows that the ESS total score has a
moderate ability to predict moderate-to-severe OSA, similar to
previous studies (Chiu et al., 2017).

Prediction model

In conclusion, in our study, the model for predicting
moderate-to-severe OSA had six variables, namely BMI,
hypertension, morning dry mouth, suffocating awake at night,
witnessing apnea, and ESS total score. We visualize the model
and represent it as a nomogram. The ROC curve and Hosmer-
Lemeshow goodness-of-fit test showed that the prediction
model had good discrimination and calibration; AUC = 0.976
(95% CI: 0.962–0.990), sensitivity, and specificity of 95.9%
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and 89.7%, respectively, Hosmer-Lemeshow goodness-of-fit test
χ2 = 3.3222 (P = 0.1899 > 0.05). In clinical application, the
scores corresponding to the risk factors can be summed to
obtain a total score, and the risk of having moderate-to-severe
OSA can be judged by the total score. The predictive model
with the greatest net benefit for any given probability threshold
is the optimal model. The DCA derived from this study shows
that outcome prediction using our final resulting nomogram has
greater net benefit than the SBQ and NoSAS scores for screening
patients with moderate-to-severe OSA.

The sensitivity and specificity for identifying OSA in the
predictive model for screening OSA developed by Tawaranurak
et al. (2021) were approximately 93% and 26%, respectively,
with a lower specificity. Kushida et al. (1997) developed
a morphological model using BMI, NC, and oral cavity
measurements by 1997, with a sensitivity of 97.6% and a
specificity of 100%. Some morphological variables were also
included in our study, but unfortunately, only BMI entered
our model. Xu et al. (2019) also developed a model to predict
OSA based on anthropometric variables, with AUCs of 0.755
and 0.788 for predicting moderate and severe OSA, respectively.
Xu et al. (2019) also mentioned in the limitations of their
article that the model did not incorporate clinical symptoms
and medical history. This regret was remedied in the model
we developed by including both anthropometric variables as
well as clinical features and medical histor, which is the
reason for the high predictive power of our predictive model,
which is inseparable from the combination of variables. Lin
et al. (2019) developed a prediction model with AHI as the
dependent variable, which was more complicated to calculate
and predicted moderate-to-severe OSA with AUC = 0.816, and
our model outperformed it and the model was simple and easy
to calculate. In 2010, Taipei Medical University based on an
artificial intelligence system a prediction model for screening
moderate-to-severe OSA was developed, and the study showed
that both weight and height showed no statistical significance
in the model, and the genetic algorithm involved (chromosomal
examination) was not applicable to the screening of the general
population (Sun et al., 2011). Other than that, we did not
identify predictive models dedicated to screening for moderate-
to-severe OSA.

Several screening questionnaires have been widely used
for OSA, such as the Berlin questionnaire (BQ), SBQ, STOP
questionnaire, and ESS. Studies have shown that the SBQ is
more accurate in detecting mild, moderate, and severe OSA
compared to the BQ, STOP, and ESS (Chiu et al., 2017). SBQ
has higher sensitivity than other tools but lower specificity
than ESS, so ESS was included in our study to improve the
specificity of our model (Chiu et al., 2017). NoSAS score
is a new tool that has been widely used in recent years to
screen for OSA. Many studies have shown that the NoSAS
score is more accurate than previous tools (BQ, SBQ, etc.)
(Marti-Soler et al., 2016). A Meta-analysis of NoSAS showed a

combined sensitivity of 79.8%, a combined specificity of 58.2%,
and the AUC was 0.77 (Chen et al., 2022). When evaluating
moderate-to-severe OSA, the AUC was 0.746, the sensitivity
was 68.2% and the specificity was 75.4% (Costa et al., 2020).
Our predictive model still outperformed the NoSAS score
compared to our model.

Limitation

The model was developed based on the Chinese population
and may not be applicable to other ethnic groups. In this
study, internal validation was conducted due to limited sample
size, and no validation group was established to validate this
prediction model. It is hoped that the model will be externally
validated in future studies by conducting multicenter studies
to increase the sample size, and applying it to community
populations for screening to assess the performance of the high
model. The model developed in this study was based on the
severity of OSA and the results of this study differed from
previous studies, possibly due to different groupings, and future
prediction models could attempt to link to AHI.

Conclusion

The prediction model developed in this study included
six variables, namely BMI, Hypertension, Morning dry mouth,
Suffocating awake at night, Witnessed apnea, ESS total score,
which had good predictive power for moderate-to-severe OSA
and was superior to other prediction models and questionnaires.
The model is simple, does not use invasive tests, and the selected
predictors are all easily collected variables, which makes it easy
to use and can be applied to both community populations for
screening and clinical settings to prioritize treatment.
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