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Abstract: This paper addresses the two simultaneous leak diagnosis problem in pipelines based
on a state vector reconstruction as a strategy to improve water shortages in large cities by only
considering the availability of the flow rate and pressure head measurements at both ends of the
pipeline. The proposed algorithm considers the parameters of both leaks as new state variables
with constant dynamics, which results in an extended state representation. By applying a suitable
persistent input, an invertible mapping in x can be obtained as a function of the input and output,
including their time derivatives of the third-order. The state vector can then be reconstructed by
means of an algebraic-like observer through the computation of time derivatives using a Numerical
Differentiation with Annihilatorsconsidering its inherent noise rejection properties. Experimental
results showed that leak parameters were reconstructed with accuracy using a test bed plant built at
Cinvestav Guadalajara.

Keywords: fault diagnosis; pipelines; multiple leaks; numerical differentiation; experimental results

1. Introduction

In recent decades, climate change and the overuse of natural water resources have
caused water scarcity in big cities. Furthermore, water distribution systems operators
(WDSOs) are facing major water losses as high as 65% due to pipeline leaks caused by lack
of maintenance, illegal intrusion, or accidents.

According to a study performed by the Organisation for Economic Co-operation
(OECD), entitled Water Governance in Cities [1], aging water networks have a negative
impact in terms of efficiency. One of the consequences is water loss from pipeline leaks.
On average, water loss in the surveyed cities (in the referred report) was 21% in 2016.
However, for Mexican cities, water loss was more than 40% (Chihuahua, Mexico City, San
Luis Potosi) or even up to 65% (Tuxtla), see Figure 1.

On the other hand, to satisfy the current demand, government policies are focused
on bringing more water from far away places instead of solving water losses due to leaks.
This means that the amount of water lost is currently considered in the water budget.
Interestingly, the amount of water needed to meet the demand in deficit is very similar to
what is lost through leaks. In other words, it could be possible to satisfy the current water
demand by minimizing the water losses due to leaks without the need for bringing more
water from far away places.
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Figure 1. Proportion of water loss in surveyed cities (leakage rate).

The implementation of leak detection and isolation (LDI) systems has demonstrated
a reduction in water losses in pipelines. LDI systems are algorithms that perform the
following tasks: detection and localization of one or several leaks in a pipeline system.
Thus, once a leak is identified, the repair technicians can fix the leak and avoid the water
loss. Many works that address the LDI problem for one leak have been reported [2–6].
For instance, in [2], a leak isolation methodology using a fitting loss coefficient calibration is
presented on the basis of two stages: in the first stage, the equivalent straight length (ESL) is
fixed by a model-based observer designed as an extended Kalman filter (EKF); in the second
stage, an algebraic observer is started with the ESL value fixed by the previous observer.
Finally, the estimated leak position is recovered in original coordinates since the observer
deals with ESL coordinates. Authors in [3] presented a methodology for leak detection
and isolation in pipelines based on data fusion using two approaches: a steady-state
estimation and an EKF. Authors concluded that the solution of the LDI problem improves
significantly when a steady-state estimation is incorporated to the estimation provided
by the EKF. In other words, the solution provided by the EKF is less accurate by itself.
In [4], authors propose a bank of observers together with a Genetic Algorithm (GA), which
is exploited to minimize the integration of the square observation error. The minimum
integral observation error is reached in the observer where the estimated leak parameters
match the real values. Experimental results evidence an accurate leak position estimation in
a test bed pilot plant. In [5], a combined artificial neural network (ANN) for leak diagnosis
in pipelines is presented. The ANN scheme estimates the location and friction factor based
on measurement data. An average error of 0.629% was obtained for leak location in the
experiments. More recently, in [6], a new approach for solving the LDI problem in pipelines
is introduced on the basis of a Kalman filter for linear parameter varying (LPV) systems.
The off-line computation of the filter gain allows the computational effort to be reduced
and the authors claim that the LPV design outperforms the classical EKF design in terms of
parameter-estimation accuracy.

On the other hand, the multi-leak case study has also been considered from two
different perspectives: (i) for sequential leaks (non-concurrent case) [7–9] and (ii) for the
simultaneous leak problem (concurrent case) [10].

In [7], a model adaptation strategy is proposed to isolate non-concurrent multiple
leaks based on extended Kalman filters. Experimental results show the potential of this
approach by allowing to monitor each new leak, no matter where it appears. Following this
direction, a scheme is proposed in [8] for detecting and locating multiple sequential leaks
based on a combination of an adaptive observer to identify the hydraulic gradient in real
time and a leak location observer to estimate the leak position and its outflow. Experimental
results of a pilot pipeline showed a satisfactory estimation in spite of operational changes
and leaks. More recently, in [9], a pressure distribution analysis is proposed to diagnose
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the location of leaks via an experimental study and computational fluid dynamics (CFD)
simulation. Multiple flow rate testing is conducted to detect the locations of two leaks.

In the same way, a more complex case of the multi-leak problem is when two or more
leaks occur at the same time, also known as the concurrent case. In [10], the orthogonal
collocation method (OCM) is used to obtain an approximate solution of the water hammer
equations (WHE). An estimator is then designed based on the spatially-discretized model
to detect multiple leaks by identifying their positions and leak coefficients by applying a
persistent input [11]. The results are presented via simulation.

Regarding the one leak problem, state observer-based techniques have been proposed
and successfully evaluated since the observer convergence is guaranteed, even by applying
constant inputs. This is because the structure of underlying state-space representation
fulfills a uniform observability condition (which is independent of the input) [12]. Con-
versely, when two or more leaks occur simultaneously, such an observability condition is
no longer satisfied and the observability depends on the input. Particularly in steady state,
the output obtained by two or more leaks is equivalent to the one obtained by a single
virtual leak, which is known as indistinguishability [11].

1.1. Problem Statement

• In a real pipeline system, several leaks can occur and usually they are not fixed as they
appear; this means that the leak problem becomes a challenging multi-leak problem
known as the simultaneous leak case. In addition, this situation worsens when water
management companies frequently lack flow rate and pressure head records of the
leak events.

• Therefore, a methodology to address the simultaneous leak case is proposed on
the basis of an input–output numerical differentiation-based strategy by applying a
persistent input in the sense of [11].

1.2. Methods

• By considering a state-space representation of a pipeline with two leaks in which
the leak parameters are considered as new state variables with constant dynamics,
the extended state can be reconstructed via its expression in terms of input, output,
and the corresponding time derivatives.

• A persistent input is experimentally generated via a frequency variation of the pump
driver that produces a sine-like pressure signal. This persistent input allows the
parameters of each leak to be reconstructed. This approach could be extended to a
more general case of simultaneous leaks if the applied input is regularly persistent,
such that the observability condition is guaranteed [11]. However, this approach could
also be limited to physical constraints since a persistent input might cause additional
leaks due to the flow transient effect that it produces.

Hereinafter, the paper is organized as follows: In Section 2, a mathematical model
is derived from the well-known water hammer equations and the two simultaneous leak
problem is stated. State vector reconstruction based on injection of input–output time
derivatives is presented in Section 3. Experimental results are presented in Section 4
by using databases from a pilot plant built at Cinvestav Guadalajara. Finally, several
conclusions and future perspectives are given in Section 5.

2. Preliminaries
2.1. Pipeline Mathematical Model
2.1.1. Governing Equations

The transient fluid through a pipeline can be described by conservation mass and mo-
mentum equations known as water hammer equations, which are a couple of quasi-linear
hyperbolic partial differential equations (PDE). Generally, PDE are derived considering
the following assumptions: the fluid is slightly compressible, the duct wall is slightly
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deformable, and the convective velocity changes are negligible. The cross section and the
fluid density are assumed to be constant [13]:
Momentum Equation

∂Q(z, t)
∂t

+ gA
∂H(z, t)

∂z
+ µQ(z, t)|Q(z, t)| = 0 (1)

Continuity Equation
∂H(z, t)

∂t
+

b2

gA
∂Q(z, t)

∂z
= 0 (2)

Here, Q stands for the flow rate [m3/s]; H is the pressure head [m]; z is the length
coordinate [m]; t is the time coordinate [s]; g is the gravity acceleration [m/s2]; A is the
cross-section area [m2]; b is the pressure wave speed in the fluid [m/s]; µ = τ/2φA, where
φ is the inner diameter [m] and τ is the friction factor. The dynamics in Equations (1) and (2)
are fully defined by related pairs of initial and boundary conditions.

2.1.2. Finite Difference Approximation

For the purpose of obtaining a finite dimensional model from (1) and (2), the partial
differential equations are discretized with respect to the spatial variable z, as in [14,15],
by using the following approximations:

Section i :

{
∂H(zi ,t)

∂z w Hi+1−Hi
∆zi

∀i = 1, · · · , n
∂Q(zi−1,t)

∂z w Qi−Qi−1
∆zi−1

∀i = 2, · · · , n
(3)

where index i stands for the variable discretized in (1) and (2) at section i. To solve the
LDI problem for two simultaneous leaks, Equations (1) and (2) admit a simple spatial
discretization as shown in Figure 2, where sections are defined according to the two
leakage positions:
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Figure 2. Discretization of the pipeline with two arbitrarily located leaks.

Here Ql1,2 represent the leaking flows that can be modeled as:

Ql1,2 = λ1,2
√

H2,3 (4)

Where, λ1,2 is a constant that depends on the orifice size and the discharge coefficient,
and H2,3 is the head pressure at the leak point.

Thus, assuming a lumped-parameter-model for the flow equations and considering
that the pressure head and flow-rate measurements are available at both ends of the
pipeline via sensors, a low order dynamical representation of the system with two leaks
can be written using approximation (3) in equations (1) and (2), as follows:




Q̇1
Ḣ2
Q̇2
Ḣ3
Q̇3



=




−gA
∆z1

(H2 − H1)− τ
2φA Q1|Q1|

−b2
2

gA∆z1

(
Q2 −Q1 + λ1

√
H2
)

−gA
∆z2

(H3 − H2)− τ
2φA Q2|Q2|

−b2
2

gA∆z2

(
Q3 −Q2 + λ2

√
H3
)

−gA
∆z3

(H4 − H3)− τ
2φA Q3|Q3|




(5)

Notice that due to mass conservation, Ql1,2 must satisfy the next relation:

Ql1,2 = Qb1,2 −Qa1,2 (6)

where Qb1,2 and Qa1,2 are the flows in an infinitesimal length before and after the leak,
respectively.

2.1.3. Pipeline Equivalent Straight Length

It is worth pointing out that the mathematical model (5) assumes a straight pipe. This
is not a loss of generality because even if the pipe is not straight, it is possible to obtain
an equivalent straight length (ESL) of the pipe. The ESL is the straight length of a virtual
pipe (with the same parameters as the original duct) that would give rise to the same
pressure drop as the real pipeline. Such an equivalence is calculated by considering losses
due to each “non-straight element” (i.e., fitting) in accordance with the Darcy-Weisbach
formula [16], [17] and [18]:

le =
φ

τ
K (7)

where, le means the equivalent straight length of a specific fitting, K is the so-called loss
coefficient parameter, which is normally provided by the pipe manufacturer, and τ is the
friction coefficient. Thus, the total ESL of the pipe, Le, can be calculate as follows:

Le = Lr +
φ

τ

n f

∑
i=0

Ki (8)

Figure 2. Discretization of the pipeline with two arbitrarily located leaks.

Here, Ql1,2 represent the leaking flows that can be modeled as:

Ql1,2 = λ1,2
√

H2,3 (4)

where, λ1,2 is a constant that depends on the orifice size and the discharge coefficient,
and H2,3 is the head pressure at the leak point.

Thus, assuming a lumped-parameter model for the flow equations and considering
that the pressure head and flow rate measurements are available at both ends of the pipeline
via sensors, a low order dynamical representation of the system with two leaks can be
written using approximation (3) in Equations (1) and (2), as follows:
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


Q̇1
Ḣ2
Q̇2
Ḣ3
Q̇3



=




−gA
∆z1

(H2 − H1)− τ
2φA Q1|Q1|

−b2
2

gA∆z1

(
Q2 −Q1 + λ1

√
H2
)

−gA
∆z2

(H3 − H2)− τ
2φA Q2|Q2|

−b2
2

gA∆z2

(
Q3 −Q2 + λ2

√
H3
)

−gA
∆z3

(H4 − H3)− τ
2φA Q3|Q3|




(5)

Notice that, due to mass conservation, Ql1,2 must satisfy the next relation:

Ql1,2 = Qb1,2 −Qa1,2 (6)

where Qb1,2 and Qa1,2 are the flows in an infinitesimal length before and after the leak,
respectively.

2.1.3. Pipeline Equivalent Straight Length

It is worth pointing out that the mathematical model (5) assumes a straight pipe. This
is not a loss of generality because even if the pipe is not straight, it is possible to obtain
an equivalent straight length (ESL) of the pipe. The ESL is the straight length of a virtual
pipe (with the same parameters as the original duct) that would give rise to the same
pressure drop as the real pipeline. Such an equivalence is calculated by considering losses
due to each “non-straight element” (i.e., fitting) in accordance with the Darcy–Weisbach
formula [2,16,17]:

le =
φ

τ
K (7)

where, le means the equivalent straight length of a specific fitting, K is the so-called loss
coefficient parameter, which is normally provided by the pipe manufacturer, and τ is the
friction coefficient. Thus, the total ESL of the pipe, Le, can be calculated as follows:

Le = Lr +
φ

τ

n f

∑
i=0

Ki (8)

where Lr stands for the sum of all pipeline straight length elements, Ki is the fitting loss
coefficient for the i-th fitting, and n f the number of the pipeline fittings.

2.1.4. Friction Model

The friction factor (τ in Equation (1)) represents the loss of pressure of a fluid due to
the interactions between the fluid and the internal surface roughness of the pipe. Thus,
such a friction factor is a function of the Reynolds number, Re, and the pipe’s roughness,
ε [18,19].

In many practical cases, τ is deemed to be a constant value, which is commonly
taken from the Moody chart; nevertheless, in pipes with a relative roughness usually less
than 1× 10−3 m, the zone where the friction factor is almost constant (i.e., the complete
turbulence zone), is difficult to reach. Consequently, when the LDI scheme is applied to a
plastic pipe, it is preferable to obtain a more accurate friction value by using a formula or
an algorithm to estimate such value. In this work, the authors propose the use of the well
know Swamee–Jain equation to directly calculate the coefficient of friction:

τi(Qi) =
0.25

[
log10

(
ε

3.7φ + 5.74
Re0.9

i

)]2 (9)

where subscript i denotes the section number of the pipeline (see Figure 2). The Reynolds
number is, in turn, function of the flow rate, Qi, as follows:
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Rei =
Qiφ

νA
(10)

where, ν is the kinematic viscosity of the water. Notice that, due to leak occurrence, the flow
rate is different in each pipeline section (see Figure 2), causing a significant deviation of
the friction factor value (since the working plastic pipe area is commonly in the transition
zone). Therefore, it is important to introduce Equations (9) and (10) in the mathematical
model to calculate, at any sampling time, the friction coefficient due to the flow variations
in each i-th section.

2.2. Two Simultaneous Leak Problem Statement

In this work, the two simultaneous leak case is considered, i.e., a couple of leaks
can appear in a pipeline at locations: z1 ∈ (0, L) and z2 ∈ (0, L), with z2 > z1. Thus,
the problem is reduced to the size estimation of the pipe sections: ∆z1 (∆z1 = z1) and ∆z2
(∆z2 = z2 − z1), see Figure 2.

Now, Equation (5) can be written in compact form as follows:

ζ̇ = ξ(ζ) + ρ(ζ)γ
Ψ = ϑ(ζ)

(11)

where ζ = [ζ1 ζ2 ζ3 ζ4 ζ5]
T = [Q1 H2 Q2 H3 Q3]

T ∈ R5 is the state vector, γ = [Hin Hout]T ∈
R2 is the input vector, and Ψ = [Qin Qout]T ∈ R2 is the output vector for some functions ξ,
ρ, and ϑ.

The leak diagnosis problem for two simultaneous leaks appearing in a pipeline
can then amount to the estimation of parameters ∆z1, ∆z2, λ1, and λ2 in (5). Let us
consider those parameters as new state variables with constant dynamics [11], that is:
if θ = [z1 z2 λ1 λ2]

T then θ̇ = 0. This results in an extended state: x = [ζ θ]T =
[Q1 H2 Q2 H3 Q3 ∆z1 ∆z2 λ1 λ2]

T =: [x1 x2 x3 x4 x5 x6 x7 x8 x9]
T ∈ R9. Then, con-

sidering an unidirectional flow given by Qi|Qi| = Q2
i , the extended state representation

of (11) can take a form as follows:

ẋ = f (x, u)
y = h(x)

(12)

where u .
= [H1 H4]

T .
= [u1 u2]

T , and f , g are differentiable vector fields with the follow-
ing structure:

f (x, u) =




− gA
x6
(x2 − u1)− µ1(x1)x2

1

− b2

Agx6
(x3 − x1 + x7

√
x2)

− gA
x8
(x4 − x2)− µ2(x3)x2

3

− b2

Agx8
(x5 − x3 + x9

√
x4)

− gA
L−x6−x8

(u2 − x4)− µ3(x5)x2
5

O4×1




h(x) =
[

y1(x)
y2(x)

]
=

[
Q1
Q3

]
=

[
x1
x5

]

(13)

where O4×1 is the 4× 1 zero matrix, µi =
τi

2φA is computed as in Equation (9), and τ1,2,3 are
functions of x1, x3, and x5, respectively.

3. State Vector Reconstruction Based on Input–Output Numerical Differentiation
3.1. Observability Discussion

For the one leak case, the so-called observability rank condition is satisfied, and such
a property does not depend on the inputs [12]. However, in the case of two simultaneous
leaks (or even more), this is no longer true, since the states are not distinguishable by
applying constant inputs, and thus a persistent input is required [11].
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In fact, to reconstruct the actual state vector x of (12), one can compute time derivatives
of the output as functions of state variables as well as input and its time derivatives (using
Equation (13)), such that an invertible map with respect to the full state vector x is obtained
by applying an appropriate input. More precisely, by considering the two simultaneous leak
case described by (12), we have two input variables and two output variables, from which
input–output time derivative vectors can be generally defined up to orders p, p′ for the
input and q, q′ for the output, as:

U(p,p′)(t) :=
[
u1 u̇1 · · · u(p)

1 u2 u̇2 · · · u(p′)
2

]T
(14)

and
Y(q,q′)(t) :=

[
y1 ẏ1 · · · y(q)1 y2 ẏ2 · · · y(q

′)
2

]T
(15)

Clearly, from (13), the output time derivatives depend on the state and input time
derivatives, so that we can get:

Y(q,q′)(t) = Γ
(

x, U(p,p′)

)
(16)

for some p, p′, given q, q′.
On this basis, observability somehow means that this relationship is invertible and

that it is possible to find elements among the components of Γ defining an invertible map
with respect to x [20,21]. Specifically, if such an inverted map exists, and the input–output
and the corresponding time derivatives are known, then, it is possible to compute each
independent state in (16) as follows:

x = Γ−1
(

U(p,p′), Y(q,q′)

)
(17)

Notice that, in general, it can be of interest to avoid or limit time derivatives of the
input, but assuming that they are available or can be estimated in the same way as time
derivatives of y is enough for our present application.

It should be noted that for this LDI problem, it is even enough to obtain an expression
by only relating the input, output, and their time derivatives with leak parameters. We
will propose this in Section 3.3, with a similar procedure as elimination (which, conversely
to realization, consists of deriving an externally equivalent representation not containing
the state [22]). We will even see how to recover the full state vector. However, let us first
discuss the way to obtain input–output time derivatives.

3.2. Numerical Differentiation with Annihilators

The LDI scheme proposed in this work is based on Equation (17), that is, the injection
of the inputs, outputs, and their time derivatives. Although there are multiple algorithms
to numerically compute a time derivative, here we use a numerical differentiation with an-
nihilators [23] due to its inherent noise rejection properties. Hereinafter, a brief explanation
of such an algorithm is given, which is proposed for the first time in this paper, and it is
described by Equation (25).

Let γm(t) denote the m-th order derivative of a smooth signal γ(t) defined on an
interval I ⊂ R+. The signal γ(t) could represent a measurement variable corrupted by
some noise, whose derivatives are not directly available.

Ignoring the noise for a moment, let γ(t) be an analytical function on I . So, with-
out any loss of generality, it is possible to consider the truncated Taylor expansion at
t = 0:

γ(t) =
m

∑
i=0

ai
ti

i!
+O(tm) (18)
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where ai = diγ(t)
dti

∣∣∣
t=0

. This implies that γ(t) can be approximated by the polynomial

pm(t) = ∑m
i=0 ai

ti

i! .
In this way, the i-th order time derivative estimation of γ(t) can be tackled as a

parameter estimation problem for pm(t). Using the method described in [23], it is possible
to calculate each ai (i = 0, . . . , m) independently, reducing in this manner the sensitivity to
noise and numerical computation errors which often appear in simultaneous estimation
methods. Moreover, the independent calculation allows the use of higher order polynomials
without the calculation of all their coefficients. The algorithm is described as follows (a
complete explanation is given in [23]):

• Let pm(t) be the m-th order polynomial approximation of γ(t),

pm =
a0

0!
+

a1

1!
t +

a2

2!
t2 + . . . +

am

m!
tm (19)

• Transforming Equation (19) into Laplace domain yields:

Pm =
a0

s
+

a1

s2 +
a2

s3 t2 + . . . +
am

sm+1 (20)

• In order to calculate the i-th time derivative approximation, ai, it is necessary to first
annihilate every ax (x > i) in (20), using the next operator:

[
m−i

∏
l=0

d
ds

]
· sm+1 (21)

• Then, to annihilate every ax (x < i), the following operator is subsequently applied to
Equation (20): [

i

∏
h=0

d
ds

]
· s−1 (22)

• Finally, the resulting equation (after applying Equations (20)–(22)) is:

(−1)i(m− i)!i!ais−(i+1) =

i

∑
h=0

m−1+h

∑
l=0

(−1)i−h
(

i
h

)(
m− i + h

l

)
(i− h)!(m + 1)!
(i + 1− h + l)!

sl dl Pm(s)
dsl

(23)

• Now, multiplying both sides of the above equation by s−(m+1) yields a polynomial
taking the following form:

cm

si+m+2 ai =
1
s

dmPm(s)
dsm +

cm−1

s2
dm−1Pm(s)

dsm−1 + . . . +
c0

sm+1 Pm(s) (24)

• Using the Cauchy rule for iterated integrals, the time domain expression for ai in
Equation (24) yields:

ai =
(m + i + 1)!
cmTm+i+1

∫ T

0

[
tm +

cm−1

1!
(T − t)tm−1 + . . . +

c0

m!
(T − t)m

]
p(t) · dt (25)

It should be noted that each constant cj, j = {0, 1, . . . , m}, is obtained from Equation (23),
and T represents a moving window of length T for the integrals. A short time window is
sufficient to obtain accurate estimations. In addition, the iterated integrals work as low pass
filters that provide a smoother form of highly fluctuating noises. Therefore, no previous
knowledge on the statistical properties of the noise is required to filter it out.
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3.3. Extended State Vector Reconstruction

The purpose of this section is to provide a synthesis of the proposed LDI scheme.
In this sense, the method is based on the study of the structure of the input–output
differential equation; thus, the problem is solved by exploiting the observability property of
the system (13). First, a set of equations describing each state just as a function of the inputs,
outputs, and the corresponding time derivatives is derived. Then, taking advantage of the
filtering characteristic of the numerical differentiation exposed in Section 3.2, the input–
output time derivatives are computed. Thus, the leak positions and magnitudes can be
calculated by a pair of algebraic equations. In the next step, the algorithm used to derive
this set of equations is described.

It is easy to check that the observability rank condition for the system (12) is satisfied
(for the finite number of input–output time derivatives), only by applying a persistent
input. More precisely, it is also easy to see that for an input of the form Ap sin (ωt) . This
wave form is easy to achieve by a variable frequency drive, a commonly installed device in
a pumping station.

The rank condition of (12) is fulfilled with p = 3, p′ = 2, q = 4, and q′ = 3 for
Equations (14) and (15). Thus, the output derivatives as well as the inverse mapping can
be computed as follows (perhaps the major difficulty of the algorithm is to obtain the
inverse mapping due to the complexity of the resulting equation):

First, by construction of Equation (13), the state variables x1 and x5 are taken directly
from the measurements:

x1 = y1 (26)

x5 = y2 (27)

Now, the following step is to take the time derivatives of Equations (26) and (27),
by using (13) and replacing x1, x5 by outputs according to (26) and (27) solving the resulting
equation for x2 and x4, respectively, yields expressions without x1 and x5:

x2 = Φ1(x6, u1, y1, ẏ1) (28)

x4 = Φ2(x6, x8, u2, y2, ẏ2) (29)

In the same way, the third step is to compute the derivative of Equation (28), substitute
x1, x5, x2, and x4 according to (26), (27), (28), and (29), respectively. Solving this equation
for x3, yields an expression without x1, x5, x2, x4:

x3 = Φ3(x6, x7, u1, u̇1, y1, . . . , y(2)1 ) (30)

Following the same steps, now for (29) and (30), it is possible to find an expression for
x7 and x9 free of x1, x2, x3, x4, and x5:

x7 = Φ4(x6, x8, u1, . . . , u(2)
1 , u2, y1, . . . , y(3)1 , y2, ẏ2, ) (31)

x9 = Φ5(x6, x8, u1, . . . , u(2)
1 , u2, u̇2, y1, . . . , y(3)1 , y2, . . . , y(2)2 ) (32)

The final step is to apply the same methodology for Equations (31) and (32), but now
for solving for the states x6 and x8. In this way, it is feasible to obtain an expression of x6
and x8 just as a function depending on the input and output, and their time derivatives:

x6 = Φ6(u1, . . . , u(3)
1 , u2, u̇2, y1, . . . , y(4)1 , y2, . . . , y(3)2 ) (33)

x8 = Φ7(u1, . . . , u(3)
1 , u2, .., u(2)

2 , y1, . . . , y(4)1 , y2 . . . , y(3)2 ) (34)

At this point, we are able to recover the whole state with the acknowledgement of the
input and output time derivatives calculated through Equation (25); this is achieved by
first obtaining x6 and x8 (leak positions) from Equations (33) and (34). Once x6 and x8 are
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obtained, leak magnitudes, x7 and x9, can be computed by using (31) and (32). The rest of
the state can then be recovered going backwards through Equations (30)–(28) .

4. Experimental Results

In this section, experimental results are presented to evaluate the proposed LDI
methodology. The experiments are performed using several databases from the pilot plant
located at Cinvestav Guadalajara. A couple of different two simultaneous leak scenarios
were emulated by opening different electrovalves located along the pilot plant. A general
description of the pipeline prototype is presented below with a detailed description of
each experiment.

4.1. Pilot Pipeline Description

The layout of the pilot pressurized water pipe of Cinvestav Guadalajara, which is
68.2 [m] long (between sensors) with an internal diameter of 6.271× 10−2 [m], thickness
1.27× 10−2 [m], friction coefficient 1.66× 10−2, pressure wave speed 358 [m/s], and gravity
acceleration 9.81 [m/s2], is shown in Figure 3. The line is instrumented with two water-flow
(FT) and pressure-head (PT) sensors at the inlet and outlet of the pipe. To emulate the
leak, three control valves at position 16.8, 33.3, and 49.8 [m] are installed together with a
electronic-based actuator to practically set any opening of the valve.

Valve n◦3

Valve n◦1 Valve n◦2

FTPT

FTPT

4.
2

m
4.

2
m

16.8 m 12.3 m

18.4 m 12.3 m

Figure 3. Schematic diagram of the pipeline’s prototype.

The prototype is manufactured with a plastic material known as polypropylene
copolymer random, for which technical characteristics can be found in [24]. It is integrated
with a store tank of 7.5× 10−1 [m3], a hydraulic pump of 5 HP, and a variable-frequency
driver (VFD) which controls the pressure in the system through the rotational speed of the
pump motor (more details about the pipeline prototype can be found in [25]).

To ensure the application of a persistent input, experiments with operation point
variations are carried out by the pump variation via the VFD (specifically, a change in
the form of Ap sin (ωt), where ω stands for the angular frequency induced via the VFD).
Table 1 summarizes the pipeline’s main parameters.
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Table 1. Pipeline’s main parameters.

Parameter Symbol Value Units

Pipeline length Lr 68.2 [m]

Upstream to valve n◦1 z1 16.8 [m]

Upstream to valve n◦2 z2 33.3 [m]

Upstream to valve n◦3 z3 49.8 [m]

Internal diameter φ 6.271× 10−2 [m]

Pipe roughness ε 7× 10−6 [m]

Friction factor τ 1.66× 10−2 [dimensionless]

Pressure wave speed b 358 [m/s]

Gravity acceleration g 9.8 [m/s2]

4.2. LDI Results

Hereinafter, two off-line examples of the LDI scheme are displayed. Both results were
carried out by taking data from the pipeline prototype previously described. The experi-
ment was performed as follows: Pump 1 is started in a steady state operation during the
first 65 [s] approximately. After that, it begins to operate in some unsteady state, namely
a sine-like pressure signal is introduced, just exactly like a persistent input in the sense
of [11]. This sine signal was experimentally obtained by setting up the pump controller as
follows:

VFD(t) = 60[Hz], ∀t ≤ 65[s]
VFD(t) = 50 + 5sin(2.7313t)[Hz], ∀t > 65[s]

(35)

At t ≈ 60 [s], two leaks were induced simultaneously at the opening of the control
valves in the pilot plant.

The leak position estimations were undertaken by the injection of the inputs and
outputs for which a low pass filter was previously applied (u1, u2, y1, and y2 in (13)),
and the corresponding derivatives together with Equations (33) and (34), respectively.

Then, the leak magnitudes were also estimated by using Equations (31) and (32). It is
possible to recover the whole state going backwards using Equations (30)–(28). As stated
earlier, the time derivatives were computed using the methodology discussed in Section 3.2.

4.2.1. Experiment 1: Leaks Induced in Valves n◦1 and n◦3

The first experiment consists of simultaneously inducing two leaks in valve n◦1 and
valve n◦3 (see Figure 3). The algorithm starts once the leak is detected. This initial detection
is obtained when a deviation between the upstream and downstream flow is detected
|Qin −Qout| > δ, where δ is a constant threshold defined by the designer (normally related
to the signal-noise ratio): here δ = 1× 10−4 [m3/s]. Immediately afterwards, a sinusoidal
wave form as (35) is applied to ensure enough observability of the model (13) via persistent
inputs (see Section 3.1). Once the sinusoidal steady state has been reached, the LDI scheme
starts. Figure 4 shows the time evolution of the pressure head at the inlet and outlet of the
pipe (system input, Hin = u1 and Hout = u2). As it can be seen, the LDI algorithm begins
close to 65 [s].
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Hin6

Hout?

Figure 4. Pressure heads Hin and Hout.

Following with the same idea, Figure 5 shows the inlet and outlet flows (system output
Qin = y1 and Qout = y2). It is clear that, due to the physical nature of the leak phenomena,
the inlet flow is separated from the outlet flow:

Qin
-

Qout
-

Figure 5. Flow rates Qin and Qout.

Now, once the input and output time derivatives have been computed with Equations (25),
(33), and (34), then they are used to reconstruct the leak positions. For clarity, just one signal
cycle (Tin = 20 s), as seen in Figure 6, is enough to correctly locate the two leaks, despite signal
noise. To quantify the accuracy of the leak position estimation, a Mean Absolute Error index is
applied. For the first leak, the estimation accuracy is 96.62% (with respect to the whole pipeline
length), whereas the second leak localization accuracy is 96.33%. As Figure 6 shows, one cycle
has demonstrated to be enough to isolate the leak well despite signal noise.
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Figure 6. Estimation of leak positions.

Similarly, once the leak positions are obtained, it is possible to reconstruct the leak
magnitudes using Equations (31) and (32). The corresponding results are shown in Figure 7,
where estimated magnitudes are set around 1.3× 10−4 [m5/2/s] and 0.95× 10−4 [m5/2/s],
respectively. The outflow computed by using Equation (4) for each leak is consistent with
the total outflow.
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Figure 7. Estimation of leak magnitudes.

Notice that for the LDI problem, the estimation of the leak parameters of both leaks is
enough, but, as mentioned before, it is also possible to recover the remaining states of (13),
going backwards from Equations (30) and (28).

4.2.2. Experiment 2: Leaks Induced in Valve n◦1 and n◦2

To better illustrate the effectiveness of the method, a second experiment is exposed.
The experiment setup was exactly the same as in Section 4.2.1 except that two leaks are
now induced in valve n◦1 and valve n◦2 (see Figure 3). Figure 8 shows the time evolution
of the pressure head at upstream and downstream, respectively. In the same way as
before, the LDI algorithm starts when a flow deviation exceeds a predefined threshold, δ,
(|Qin −Qout| > δ).
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Figure 9 shows the corresponding flow rate evolution at upstream and downstream.
As stated above, due to the physical nature of the leak phenomena, the inlet flow is
separated from the outlet flow.
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Figure 9. Flow rate Qin and Qout (2nd experiment).

As performed above, once the algorithm starts, the input and output time deriva-
tives are computed following the algorithm explained in Section 3.2. Subsequently,
Equations (33) and (34) are used to obtain the leak positions. The results are presented in
Figure 10. As before, the leak positions are well estimated despite signal noise in just one
signal cycle (Tin = 20 s). Here, the MAE yields an estimation accuracy for the first leak of
95.01%, while the second leak position presents an estimation accuracy of 97.94%.
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Continuing with the algorithm, the leak magnitudes are computed with Equations (31)
and (32). These results are shown in Figure 11.
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ẑ1?

Figure 10. Estimation of leak positions (2nd experiment).

Continuing with the algorithm, the leak magnitudes are computed with equations370

(29a) and (29b). These results are shown in Figure 11.371

λ̂16

λ̂2?

Figure 11. Estimation of leak magnitudes (2nd experiment).

5. Conclusions372

The simultaneous-leak detection and isolation problem is currently an open and373

challenging problem. Even though extensive research in the field is currently in progress,374

to the best of our knowledge, only simulation results have been reported until now. One375

of the reasons is that the distinguishability of two (or more) simultaneous leaks depends376

on the input.377

In this work, an LDI methodology for two-simultaneous leak detection and isolation378

has been proposed based on an algebraic observer that uses the injection the inputs379

and outputs of the system and the corresponding time derivatives, by applying an380

appropriate input. The time derivatives are computed using Numerical Differentation381

with Annihilators, and the approach has been successfully applied to real data. This382

methodology could be extended to more general cases of simultaneous leaks in real383

operational conditions, such as the case of the SIAPA aqueduct in Guadalajara Mexico.384

Author Contributions: A. Navarro: software, validation, data curation, writing—original draft385

preparation, methodology, formal analysis and investigation; J.A. Delgado-Aguiñaga: concep-386

tualization, methodology, formal analysis, writing—review and editing and investigation; O.387

Figure 11. Estimation of leak magnitudes (2nd experiment).

5. Conclusions

The simultaneous leak detection and isolation problem is currently an open and
challenging problem. Even though extensive research in the field is currently in progress,
to the best of our knowledge, only simulation results have been reported until now. One of
the reasons is that the distinguishability of two (or more) simultaneous leaks depends on
the input.

In this work, an LDI methodology for the two simultaneous leak detection and isola-
tion has been proposed based on an algebraic observer that uses the injection, the inputs
and outputs of the system, and the corresponding time derivatives, by applying an ap-
propriate input. The time derivatives are computed using Numerical Differentiation with
Annihilators and the approach has been successfully applied to real data. This method-
ology could be extended to more general cases of simultaneous leaks in real operational
conditions, such as the case of the SIAPA aqueduct in Guadalajara, Mexico.
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