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Abstract

In many protein-protein docking algorithms, binding site information is used to help predicting the protein complex
structures. Using correct and accurate binding site information can increase protein-protein docking success rate
significantly. On the other hand, using wrong binding sites information should lead to a failed prediction, or, at least
decrease the success rate. Recently, various successful theoretical methods have been proposed to predict the binding sites
of proteins. However, the predicted binding site information is not always reliable, sometimes wrong binding site
information could be given. Hence there is a high risk to use the predicted binding site information in current docking
algorithms. In this paper, a softly restricting method (SRM) is developed to solve this problem. By utilizing predicted binding
site information in a proper way, the SRM algorithm is sensitive to the correct binding site information but insensitive to
wrong information, which decreases the risk of using predicted binding site information. This SRM is tested on benchmark
3.0 using purely predicted binding site information. The result shows that when the predicted information is correct, SRM
increases the success rate significantly; however, even if the predicted information is completely wrong, SRM only decreases
success rate slightly, which indicates that the SRM is suitable for utilizing predicted binding site information.
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Introduction

Most proteins interact with other proteins or molecules to

perform their biological functions. On average, each protein

interacts with three to ten partners approximately [1]. The details

of protein-protein interactions need 3D structures of complexes.

However, it is difficult to determine the structures of protein

complexes experimentally, thus the number of available complex

structures is still limited, compared with monomer protein

structures. Therefore, it is helpful to use computational approaches

to predict structures of protein complexes.

Many great docking algorithms have been developed. Some

algorithms are based on Fast Fourier Transform (FFT) methods

[2], such as MolFit [3], 3D-Dock [4,5,6], GRAMM [7], ZDock

[8,9], DOT [10], BiGGER [11], HEX [12] and so on. These

FFT-based algorithms search 6D space fast and effectively. Thus,

they are usually used as initial stages in docking procedures.

However, the FFT-based algorithms consider receptor and ligand

as rigid bodies. So, many of them are combined with other

methods to further refine or re-rank the structures obtained in the

initial stage [4,13,14]. Besides these FFT-based algorithms, some

other algorithms are also developed, which are able to consider

flexibility of proteins during docking procedure, such as Rosetta-

Dock [15], ICM-DISC [16], AutoDock [17], and HADDOCK

[18].

If binding sites of a protein are known, they can be used to

improve success rate of docking prediction [5,19]. Many

properties have been used to predict protein binding sites or

interface residues and the widely used features include the

hydrophobicity of residues [20,21,22,23], the evolution conserva-

tion of residues [24,25,26,27,28,29], planarity and accessible

surface area of patches [30,31]. Besides, some other interface-

distinguishing features have also been explored. For example, it

was found that the protein binding sites are surrounded by more

bound waters and have lower temperature b-factors than other

surface residues [32]. Some analysis also showed that protein

interfaces are likely to contain backbone hydrogen bonds which

are wrapped by more than nine hydrophobic groups [33]. Another

work indicated that the side chains of interface residues have

higher energies than other surface residues [34]. A single feature

mentioned above cannot distinguish the binding sites from other

surface residues. Thus some algorithms and meta servers have

been developed, which combine different features to improve the

binding site prediction success rate [32,35,36,37,38,39,40,41]. A

test on a dataset of 62 complexes shows that the success rates of

these methods are about 30 percent [41].

Several groups integrate experimentally determined binding

sites into their docking algorithms [4,5,19,41,42,43,44,45]. These

algorithms use the information in three different ways: (1) Most

groups treat the information as a post filtering stage [4,5,41,44,45].

(2) Some algorithms [46,47,48], including Zdock’s block method

[46], use the information to restrict the docking area during

sampling stage. (3) Ben-zeev and Eisenstein implemented a

weighted geometric method into Molfit [19]. For the first two

kinds of algorithms, using correct binding site information can
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increase the success rate significantly, but obviously using wrong

information will lead to a failed prediction. The third kind of

algorithm could tolerant some inaccurate information, which

made a success on a dataset of five complexes.

The predicted binding site information is not always reliable

[41]. Thus, there is a high risk of using the unreliable information.

In this work, A softly restricting method (SRM) is developed to

utilize the predicted information. This SRM is based on our

ASPDock algorithm [49], which has been proved to be successful

in CAPRI(Critical Assessment of PRediction of Interactions) [50]

rounds 18 and 19. SRM softly constrains the receptor and ligand

to bind around predicted key residues during the sampling stage.

The result shows that using SRM, the hit count number of the

dataset increases significantly, which should greatly help scorers to

pick out the near-native structures.

This work is different from Ben-zeev and Eisenstein’s. Ben-zeev

and Eisenstein’s method is based on geometric complementary.

On the contrast, our softly restricting method (SRM) is based on

the ASPDock algorithm, which uses atomic solvation parameters

(ASP) [51] rather than geometric complementary. Ben-zeev and

Eisenstein test their method on several systems with experimental

biochemical and biophysical data, which is correct information.

However, in this work, we perform a large test on 99 complexes in

benchmark 3.0 using only purely predicted information, which is

mixed with correct and incorrect information.

Results and Discussion

Antibody-antigen and Dockground Complexes
Antibody-antigen complex structures are difficult to predict

using ordinary FFT docking method without binding site

information, mainly because each antibody Fab structure has

two big pockets that are not the binding sites (Figure 1). The native

binding site, CDR, usually has no advantage on geometry features.

Using our ASPDock, antigens also have strong tendency to bind at

the big pockets of antibodies because the accessible surface area

decreases dramatically when antigens bind at the pockets.

However, there are several methods to specify the CDR residues

from sequences of antibodies. Using AbM definition, we specified

CDR residues of all the 21 antibodies as correct information. We

softly restrict the antigens to bind at the CDR residues and adjust

the key residues weight in our algorithm by verifying the value of

the weight factor a. When a.1.5, antigens strongly tend to bind at

CDR residues. Consequently, the success rate and hit count are

enhanced dramatically (Figures 2a and 2b).

However, even using correct information, there are still 5

antibody-antigen complexes that cannot be successfully predicted

in top 2000 structures (Table 1), mainly because each of these

complexes has a very small relative interface. In the top 2000

predictions, these 5 antigens tend to bind around the CDR

residues of their conjunct antibodies, but the predicted interfaces

of antigens are not correct. It implies that for these 5 antibody-

antigen complexes, only information of CDR cannot make a

successful prediction and it also needs to know antigen’s binding

sites (antigenic determinant).

The sensitivity of SRM to incorrect information is also tested.

For each antibody, we randomly selected 10 surface but non-

interface residues as incorrect information. All the incorrect

residues are out of CDR biding site, therefore, the incorrect

information should result decrease of success rate and hit count.

When the incorrect information is used for these 21 antibody-

antigen complexes and the weight factor a is still set as1.5, success

rate and hit count decrease slightly. This indicates that SRM is

insensitive to incorrect information (Figures 2a and 2b).

For test on the 11 dockground3.0 complexes, when the weight

factor a is also set as 1.5, success rate and hit count increase for

correct information and did not decrease significantly for incorrect

information (Figures 2c and 2d). This indicates that ASPDock

Figure 1. An example of antibody-antigen prediction. a. Native
structure of antibody-antigen (1dqj), light blue structure is the receptor,
Fab structure of antibody, CDR is colored orange. Green structure is the
ligand. b. Ligand mass centers predicted by ASPDock without any
predicted information. c. Ligand mass centers predicted by SRM, weight
of CDR is 1.5. d. Ligand mass centers predicted by SRM, weight of CDR is
3.
doi:10.1371/journal.pone.0075936.g001

Figure 2. Results of 21 antibody-antigen and 11 dockground
complexes.Predicted by ASPDock, SRM+Correct binding site
information and SRM+Wrong binding site information. a.
Success rate of antibody-antigens. b. Hit count of antibody-antigens.
c. Success rate of Dockground complexes. d. Hit count of Dockground
complexes. e. Success rate of total complexes. f. Hit count of total
complexes.
doi:10.1371/journal.pone.0075936.g002
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evaluates near-native predictions as high score predictions, which are

easy to get into top rank when the weight factor is 1.5. By contrast,

most wrong predictions are evaluated as low score structures, even

the ASP values of their binding site residues are enhanced 1.5 times,

they still have no enough high scores to get into top rank.

Enzyme-inhibitor and Other Complexes
The tests on 21 antibody-antigen and 11 dockground3.0

complexes demonstrate that using SRM, correct information

improves success rate and hit count significantly, while the

incorrect information reduces success rate and hit count only

slightly (Figures 2e and 2f). This means SRM is suitable for

utilizing predicted information. Therefore, we test SRM on a 99-

complexes data set by using predicted information from PPI-

PRED server (figure 3).

This data set includes 35 enzyme-inhibitor complexes and 64

other type complexes. For enzyme-inhibitor complexes, ASPDock

has already made a high success rate without using any predicted

information, 24 out of 35 complexes are successfully predicted (in

top 2000 predictions). Using information provided by PPI-PRED,

the success rate doesn’t increase significantly, and 25 out of 35

complexes were successfully predicted (in top 2000 predictions).

Table 1. Results of antibody-antigen and dockground complexes predicted by ASPDock and SRM.

ASPDock SRM

PDB

Hit
Count

First
RMSD
(Å)

First
Rank

Best
RMSD
(Å)

Best
Rank

Hit
Count

First
RMSD
(Å)

First
Rank

Best
RMSD
(Å)

Best
Rank

Relative
Interface
area

UB-RMSD
of
receptor (Å)

UB-RMSD
of
ligand(Å)

Antibody-antigen

1ahw 0 – – – – 8 5.52 463 2.37 936 0.07 0.7 1.38

1bgx 0 – – – – 0 – – – – 0.11 1.55 1.34

1bj1 0 – – – – 0 – – – – 0.06 0 0.72

1bvk 3 6.82 1043 6.37 1896 60 7.25 16 5.62 1670 0.08 0.81 1.16

1dqj 0 – – – – 3 9.52 828 9.37 1137 0.07 0.79 0.82

1e6j 0 – – – – 24 9.58 243 3.84 1946 0.04 1.11 1.54

1fsk 0 – – – – 57 3.31 203 3.22 756 0.06 0 0.59

1i9r 0 – – – – 6 9.57 142 6.74 422 0.04 1.5 0

1iqd 3 4.08 948 3.87 1716 65 3.35 3 3.02 1308 0.08 0 0.68

1jps 7 8.07 602 8 1036 37 8.5 27 2.56 104 0.07 0.68 1.01

1k4c 0 – – – – 0 – – – – 0.07 0 0.6

1mlc 0 – – – – 52 5.96 259 4.95 434 0.06 1.05 0.74

1nby 0 – – – – 1 9.19 1255 9.19 1255 0.07 0.8 0.79

1nca 0 – – – – 28 5.17 91 1.5 462 0.06 0 0.23

1nsn 2 3.24 1691 3.24 1691 59 3.28 64 1.59 1071 0.07 0 0.76

1vfb 0 – – – – 63 6.9 36 3.4 543 0.09 0.56 0.98

1wej 0 – – – – 2 9.92 145 9.92 145 0.05 0.9 0.4

2fd6 0 – – – – 10 7.85 472 7.74 1183 0.04 1.24 3.48

2hmi 0 – – – – 0 – – – – 0.02 3.54 0

2jel 3 9.01 1447 7.76 1501 64 7.76 14 5.16 134 0.07 0 0.76

2vis 0 – – – – 0 – – – – 0.04 5.4 0.59

Dockground

1a2y 3 7.37 280 7.01 1822 2 7.37 388 7.05 1260 0.08 0.66 1.27

1cgj 84 2.7 1 1.88 291 64 2.7 1 1.88 406 0.16 0.35 1.14

1cse 6 9.34 496 9.25 1765 6 9.34 690 9.34 690 0.12 0.30 1.19

1f7z 7 9.53 378 9.27 1803 5 9.53 554 9.28 573 0.11 0.32 0.28

1ppf 39 9.35 63 5.92 1447 30 9.35 88 6.74 1966 0.1 0.38 0.45

1shw 25 6.84 13 5.73 1933 19 6.84 20 5.98 128 0.07 2.75 0.87

1tx4 25 7.47 1 5.02 647 21 7.47 2 5.02 1044 0.13 0.67 0.41

1uex 5 7.15 154 7.05 1399 4 7.15 170 7.05 1585 0.09 0.58 0.43

2jb0 11 8.15 92 6.23 592 10 8.15 133 6.23 840 0.12 0.48 0.52

2kai 20 9.16 325 6.95 683 13 9.16 437 6.95 921 0.11 0.68 0.54

2pav 25 5.52 35 3.66 878 22 5.52 48 3.66 1144 0.11 1.11 0.76

Hit count and success rate are analyzed form top 2000 predictions of each complex. Relative interface area, UB-RMSD of receptors and ligands implicate the difficulty of
prediction.
doi:10.1371/journal.pone.0075936.t001
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However, the hit count number in top 2000 predictions increases

from 742 to 2348 (Table 2). This improvement could help scorers

easier to pick up the near-native structures using their scoring

functions.

For 64 complexes of other types, ASPDock successfully predicts

26 complexes in top 2000 predictions. This number increases to 31

(by 19%) by using SRM with binding site information from PPI-

PRED. However, hit count in top 2000 doesn’t increase a lot,

which is raised from 831 to 1094.

As a first stage sampling algorithm, the most important goal is

obtaining as many hits as possible. For all of the 99 complexes, the

number of correctly predicted complexes from ASPDock is 50,

total hit count from ASPDock is 1573, and thus the average hit

count for ASPDock is 31.5; By contrast, the number of correctly

predicted complexes from SRM is 56, total hit count from SRM is

3442, therefore the average hit count for SRM is 61.5. Once more,

it demonstrates that SRM is able to get a better success rate as well

as larger average hit count. Here we noticed that the average hit

count from SRM is increased to almost twice as from ASPDock,

which is very useful for the scoring functions to pick up the correct

structures from the top 2000 structures for each complex.

In the above results, all the hits are defined as structures with

LRMSD#10 Å, which are ‘‘acceptable predictions’’ in CAPRI

criterion. In order to test how SRM performs on predicting

‘‘medium predictions’’, we did another analysis by defining hits to

be structures with LRMSD#5 Å. Under this definition, For all of

the 99 complexes, the number of correctly predicted complexes

from ASPDock is 23, total hit count from ASPDock is 284, and

thus the average hit count for ASPDock is 12.3; By contrast, the

number of correctly predicted complexes from SRM is 31, total hit

count from SRM is 834, therefore the average hit count for SRM

is 26.9. This analysis indicates that even the criterion is stricter, the

SRM still works better than ASPDock. We didn’t test the

performance of SRM on predicting ‘‘high accuracy predictions’’

(LRMSD#2.5 Å). Because without scoring function and structure

refinement program, SRM, a sampling stage algorithm, is not

supposed to be good at obtaining ‘‘high accuracy predictions’’.

As mentioned in method section, the weight factor a value is

searched from 1.0 to 3.0 by a step of 0.1, and we found the

optimized value of a is 1.5, which can enhance the success rate

when using correct information and tolerate some incorrect

information. The weight factor a is the key parameter, it effects

the success rate and hit count. For example, when the a is set

as 2.0 and the criterion for hit is set as LRMSD#10 Å, the

number of correctly predicted complexes from SRM is 53, total

hit count from SRM is 3051, therefore the average hit count

for SRM is 57.6. The reason for the decrease is that when the a
value is enhanced, the wrong information gets more weight, which

may decrease the success rate. However, the optimized weight

factor equal to 1.5 is based on the atomic solvation parameters

scoring function in ASPDock. Other docking method based on

different scoring functions may need different optimized weight

factors.

The results on 21 antibody-antigen complexes and 11 dock-

ground3.0 complexes demonstrate that by using proper weight

factor, our protein-protein docking sampling method is sensitive to

correct information and insensitive to incorrect information. Based

on this feature, we only use purely predicted information to test 99

complexes in benchmark3.0. The result shows that the SRM can

improve docking prediction significantly, even when the informa-

tion used is not totally correct.

Conclusions

Results on antibody-antigen and dockground 3.0 complexes

indicate that SRM is much more sensitive to correct information

than wrong information. This implies that SRM is effective if we

know all or some of the native binding sites. Moreover, SRM can

tolerate some wrong information. Results on enzyme-inhibitor and

other complexes show that using predicted information overall hit

count number increases significantly and success rate is also raised.

The result should be better if predicted information is more

accurate.

In our test on 99 complexes from benchmark3.0, only purely

theoretically predicted information is used. Currently, there are lot

of great works focusing on enhancing the success rate of theoretical

binding site prediction. It is believed that the theoretical binding

site prediction method will be more accurate in the future due to

those great works. We will keep on improving our SRM to utilize

the theoretically predicted binding information more effectively.

Combining the binding site prediction method and protein-protein

docking method together to predict the protein-protein interaction

should be more widely used in the future.

Methods

ASPDock
ASPDock is a docking algorithm based on FFT method [49].

Traditional FFT docking methods consider the shape comple-

mentarity as a crucial criterion to rank the predicted complex

structures [2]. ASPDock implements atomic solvation parameters

in traditional FFT method to rank the predicted complex

structures. ASPDock performs better than the shape complemen-

tarity docking method on benchmark3.0 [52], and it also made

successes in CAPRI rounds 18 and 19.

In ASPDock [49], receptor and ligand are projected on 3-

dimensional grids as follows:

Figure 3. Results of 35 enzyme-inhibitor complexes and 64
other type complexes. Predicted by ASPDock and SRM. a. Success
rate of enzyme-inhibitors. b. Hit count of enzyme-inhibitors. c. Success
rate of other complexes. d. Hit count of other complexes.
doi:10.1371/journal.pone.0075936.g003
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Table 2. Results of enzyme-inhibitor and other complexes predicted by ASPDock and SRM.

ASPDock SRM

Relative
Interface
area

UB-RMSD
of
receptor
(Å)

UB-RMSD
of
ligand (Å)

PDB
Accuracy-Ra

(%)
Accuracy-La

(%) Hit Count
Best
RMSD (Å)

First
rank

Hit
Count

Best
RMSD (Å)

First
rank

enzyme-inhibitor

1acb 41.18 14.29 3 8.50 168 7 7.77 301 0.12 1.61 1.32

1avx 36.67 16.00 0 – – 7 9.73 72 0.10 0.46 0.52

1ay7 40.00 34.62 22 2.29 335 233 1.28 11 0.13 0.46 0.55

1bvn 34.37 86.67 60 2.56 60 163 1.94 43 0.11 0.58 0.36

1cgi 43.14 44.44 23 6.06 451 117 2.29 79 0.16 1.33 1.52

1d6r 6.98 38.46 11 7.71 67 7 8.66 125 0.12 1.08 0.94

1dfj 62.07 19.35 1 8.58 1184 50 2.33 7 0.11 0.65 1.50

1e6e 6.10 29.63 43 3.26 111 24 3.88 196 0.09 1.04 1.05

1eaw 47.22 73.33 20 3.92 459 233 2.56 14 0.15 0.53 0.48

1ewy 26.09 53.85 94 3.14 12 212 2.78 1 0.08 1.00 0.76

1ezu 40.00 15.69 0 – – 0 – – 0.12 0.33 2.21

1f34 22.92 42.11 8 5.35 300 10 5.21 198 0.16 0.61 1.09

1fq1 3.70 2.56 0 – – 0 – – 0.08 0.72 3.19

1hia – 55.56 53 7.48 1 115 7.42 1 0.14 0.78 1.96

1ijk 0.00 0.00 0 – – 0 – – 0.08 0.88 0.43

1kkl 0.00 47.62 0 – – 1 8.68 1718 0.06 2.84 0.43

1m10 40.62 0.00 0 – – 0 – – 0.10 1.22 1.66

1mah 28.12 24.00 1 8.35 1273 2 2.58 1732 0.10 0.73 0.64

1n8o 85.71 45.71 1 4.10 861 55 2.14 16 0.12 0.49 0.77

1nw9 30.95 0.00 7 7.37 49 16 5.38 37 0.14 2.83 0.66

1oph 0.00 40.00 0 – – 0 – – 0.06 1.52 0.31

1ppe 42.11 50.00 310 1.64 1 461 1.27 1 0.17 0.42 0.40

1pxv 11.76 36.11 0 – – 0 – – 0.15 2.41 0.81

1r0r 45.00 50.00 13 2.13 243 132 1.86 205 0.12 0.31 0.60

1tmq 31.82 41.18 5 3.10 437 72 2.13 55 0.12 0.38 0.91

1udi 44.44 76.19 28 3.40 234 248 2.21 13 0.15 0.45 0.92

1yvb 38.10 28.57 11 4.15 577 93 2.85 285 0.10 0.58 2.62

2b42 4.35 18.87 0 – – 0 – – 0.12 0.72 0.70

2mta 0.00 38.89 12 7.28 98 19 7.28 248 0.06 0.44 0.58

2o8v 21.15 11.11 0 – – 0 – – 0.10 1.02 1.20

2pcc 20.63 33.33 0 – – 15 6.19 797 0.06 0.36 0.48

2sic 31.43 0.00 1 6.58 1151 0 – – 0.11 0.27 0.61

2sni 43.75 56.25 7 6.92 775 26 7.66 223 0.13 0.26 0.42

2uuy 0.00 36.00 1 9.55 1761 0 – – 0.11 0.31 1.85

7cei 42.11 17.39 7 4.22 634 30 4.93 279 0.12 1.10 1.60

other

1a2k 13.95 16.13 0 – – 0 – – 0.08 1.11 1.10

1ak4 41.38 0.00 0 – – 0 – – 0.07 0.52 1.36

1akj 0.00 4.00 21 6.00 78 8 7.26 830 0.07 1.14 0.89

1atn 0.00 0.00 0 – – 0 – – 0.07 2.64 0.43

1azs 0.00 29.51 0 – – 0 – – 0.06 0.00 0.51

1b6c 56.00 13.79 4 6.46 555 28 2.87 132 0.09 0.31 1.82

1bkd 0.00 0.00 0 – – 0 – – 0.11 2.42 3.12

1buh 2.08 40.91 36 3.27 52 2 2.88 1578 0.08 1.02 1.02

1de4 0.00 0.00 0 – – 0 – – 0.03 1.31 1.61
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Table 2. Cont.

ASPDock SRM

Relative
Interface
area

UB-RMSD
of
receptor
(Å)

UB-RMSD
of
ligand (Å)

PDB
Accuracy-Ra

(%)
Accuracy-La

(%) Hit Count
Best
RMSD (Å)

First
rank

Hit
Count

Best
RMSD (Å)

First
rank

1e96 27.27 30.00 3 8.45 208 14 6.10 128 0.07 0.68 0.59

1eer 58.82 0.00 0 – – 14 7.66 50 0.11 3.79 3.75

1efn 9.52 28.00 1 9.74 1627 5 6.94 612 0.15 0.56 0.59

1f51 0.00 40.74 27 2.21 190 18 4.63 281 0.11 1.37 0.70

1fak 0.00 19.05 0 – – 0 – – 0.14 6.09 1.67

1fc2 40.00 3.92 0 – – 0 – – 0.09 0.00 0.80

1fqj 37.74 43.75 2 6.74 1414 69 4.36 26 0.08 0.51 0.85

1gcq 0.00 52.00 1 8.90 697 83 6.50 201 0.17 0.58 1.01

1ghq 0.00 10.34 0 – – 0 – – 0.04 1.02 0.70

1gla 0.00 25.00 0 – – 0 – – 0.05 0.61 0.37

1gp2 19.05 0.00 0 – – 0 – – 0.07 1.62 1.52

1gpw 0.00 44.44 11 4.99 119 71 1.15 19 0.11 3.44 0.60

1grn 10.53 4.26 0 – – 14 3.88 130 0.13 1.63 0.57

1h1v 15.71 0.00 0 – – 0 – – 0.07 1.50 13.90

1he1 6.06 3.23 32 5.72 20 29 5.48 16 0.15 0.83 0.71

1he8 0.00 0.00 0 – – 0 – – 0.03 1.57 0.60

1i2m 48.84 26.04 0 – – 9 5.86 1037 0.13 2.45 1.03

1i4d 9.09 15.00 0 – – 0 – – 0.06 0.88 1.26

1ib1 0.00 48.48 0 – – 0 – – 0.10 2.29 0.62

1ibr 41.86 21.21 0 – – 0 – – 0.12 0.00 2.91

1ira 42.03 86.21 0 – – 0 – – 0.15 19.58 0.59

1j2j 29.73 29.73 247 2.42 32 64 2.06 154 0.11 1.08 1.02

1jmo 7.14 0.00 0 – – 1 6.39 1982 0.11 3.69 0.44

1k5d 0.00 48.08 0 – – 0 – – 0.08 1.54 0.73

1k74 0.00 42.55 40 3.53 67 121 1.60 1 0.09 1.01 1.44

1kac 5.71 41.67 2 9.48 1697 0 – – 0.10 0.48 0.91

1klu 0.00 45.71 0 – – 0 – – 0.04 1.27 0.96

1ktz 0.00 0.00 0 – – 0 – – 0.09 2.03 0.60

1kxp 30.00 18.88 40 2.75 41 63 2.20 1 0.09 0.81 2.09

1ml0 0.00 75.00 0 – – 41 2.79 41 0.06 1.52 1.25

1n2c 0.00 0.00 0 – – 0 – – 0.05 0.43 4.02

1qa9 3.33 0.00 0 – – 0 – – 0.12 0.76 0.66

1r8s 59.37 79.31 0 – – 0 – – 0.18 3.89 1.31

1rlb 0.00 0.00 3 8.36 190 0 – – 0.05 0.70 0.51

1s1q 17.24 50.00 33 2.42 260 21 2.26 538 0.11 0.70 1.01

1sbb 16.67 0.00 0 – – 0 – – 0.05 0.89 0.49

1t6b 1.32 0.00 0 – – 0 – – 0.05 1.43 1.07

1wq1 0.00 0.00 15 7.47 245 8 6.00 803 0.14 0.93 0.91

1xd3 41.18 87.50 63 5.12 40 122 4.66 55 0.17 1.05 0.83

1xqs 28.77 7.29 0 – – 1 9.94 1591 0.12 2.15 0.63

1y64 0.00 0.00 0 – – 0 – – 0.07 10.28 0.95

1z0k 19.35 50.00 96 2.17 8 50 2.39 14 0.17 0.90 0.41

1z5y 0.00 11.11 28 4.85 84 0 – – 0.10 1.02 0.98

1zhi 18.18 0.00 0 – – 0 – – 0.07 1.22 1.73

2ajf 1.02 0.00 0 – – 0 – – 0.05 0.46 2.83

2btf 20.00 37.93 0 – – 11 5.39 99 0.10 2.69 0.59
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RASP(l,m,n)~

ASP value, on the surface

rzi, inside of the molecule

0, outside of the molecule

8>><
>>:

LASP(l,m,n)~

ASP value, on the surface

rzi, inside of the molecule

0, outside of the molecule

8>><
>>:

ð1Þ

ASP (atomic solvation parameters) value here depends on atom

type, which is always a negative number. r is a constant positive

number, which is a penalty for protein-protein overlap. In this

work r = 20. i~
ffiffiffiffiffiffiffiffi
{1
p

is the imaginary unit.

Then we can search the 3-dimensional translation space by

calculating the correlation function:

SASP(o,p,q) ~

Im
XN

l~1

XN

m~1

XN

n~1

RASP(l,m,n).LASP(lzo,mzp,nzq)

" #
ð2Þ

This calculation can be accelerated by using FFT method,

SASP ~ Im
1

N3
IFT(IFT(RASP).DFT(LASP))

� �
ð3Þ

For rotation scan, we use 10 degree step and pick up top 3

structures in each rotation. Grid step in translation scan is 1 Å.

Softly Restricted Method

Based on the ASPDock [49], we develop a softly restricting

method (SRM) to utilize the predicted binding site information.

The residues at the predicted binding sites are taken as key

residues. We enhance the ASP value of these key residues by

multiplying a weight factor a, and keep ASP values of other

residues unchanged.

ri ~
a.si , atom i belongs to key residues

si other atoms

�
ð4Þ

where si is the original ASP value and ri is the enhanced ASP

value of atom i. a.1 if atom i is expected to be on the interface.

0,a,1 if atom i is expected to be NOT on the interface. In this

work, we don’t consider the later situation.

Then based on ASPDock, we can search the 6-dimensional

space using ri instead of si and pick up top N predictions. These N

predictions should tend to bind at the key residues. The tendency

could be adjusted by the weight factor a, and a larger a leads to a

stronger tendency to bind at the key residues.

As shown by Huang in 2008 [41], success rate of predicting

interface residues is only about 30%, there is a risk to use

predicted information. Thus the weight factor a should be a

moderate value and it cannot be a very large number. In this

work a simple grid step method is used to optimize the weight

factor a. We search a value from 1 to 3 by a step of 0.1, and

found the optimized value of a is 1.5, which can enhance the

success rate when using correct information and tolerate some

incorrect information.

Dataset

Most docking algorithms can improve the predictions if correct

information is used. However, if the information is incorrect, the

post filtering algorithms and restrict algorithms would fail to

predict near-native structure. Predicted information cannot be

always correct. When using the predicted information, the crucial

problem is to keep docking success rate not decreasing when

information is incorrect.

In this work, 21 antibody-antigen complexes from bench-

mark3.0 [52] and dockground3.0 [53] are selected as our train-

ing set. Totally there are 30 non-redundant antibody-antigen

Table 2. Cont.

ASPDock SRM

Relative
Interface
area

UB-RMSD
of
receptor
(Å)

UB-RMSD
of
ligand (Å)

PDB
Accuracy-Ra

(%)
Accuracy-La

(%) Hit Count
Best
RMSD (Å)

First
rank

Hit
Count

Best
RMSD (Å)

First
rank

2c0l 4.41 27.27 0 – – 1 9.91 1842 0.11 1.78 3.89

2cfh 43.75 41.67 123 3.27 1 94 2.74 6 0.15 1.05 0.00

2h7v 0.00 0.00 0 – – 0 – – 0.07 1.76 1.13

2hle 27.91 41.46 54 3.19 3 54 3.21 14 0.14 1.89 0.84

2hqs 7.14 0.00 26 7.49 183 0 – – 0.11 2.41 0.55

2hrk 39.13 30.43 0 – – 3 5.02 923 0.11 0.99 0.84

2nz8 0.00 0.00 37 6.88 141 29 6.06 44 0.11 2.37 1.80

2oob 66.67 62.50 3 7.76 956 39 2.16 93 0.12 0.65 0.83

2ot3 83.33 80.95 2 9.40 334 7 8.97 201 0.12 1.09 2.69

aAccuracy here is calculated by Nsuc/Npred, which is mentioned in method section.
Hit count and success rate are analyzed form top 2000 predictions of each complex. Relative interface area, UB-RMSD of receptors and ligands implicate the difficulty of
prediction.
doi:10.1371/journal.pone.0075936.t002
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complexes in benchmark3.0 and dockground3.0. For these

antibody-antigen complexes, we only select the complexes that

contain the entire Fab (Fragment of antigen binding region)

structures. Because the complexes with entire Fab structures are

difficult for docking programs without any information and their

complementarity determining regions (CDR) could be detected by

AbM definition or other prediction methods. Thus 9 out of 30

complexes are removed from our training set. Antibody proteins

with Fab structures are well studied and their binding sites can be

easily specified from their sequences. There are several different

methods (http://www.bioinf.org.uk/abs/) to specify the CDR of

antibodies. Here we use a simple method of AbM definition

(http://www.bioinf.org.uk/abs/). The results have no significant

change if we choose other methods. As the binding site of

antibodies could be well predicted before docking, the antibody-

antigen training set is suitable for assessing the SRM’s ability to use

correct predicted information during docking procedure. We also

randomly selected 10 surface but non-interface residues for each

antibody as wrong information.

Antibody-antigen complexes are difficult to predict without

predicted binding site information. Besides the antibody-antigen

complexes, we also selected some other complexes which are easier

to predict than antibody-antigen complexes. These complexes are

selected from dockground3.0 rank1 and all of the bound-unbound

complexes are removed. The redundant complexes compared to

benchmark3.0 are also removed. After these filtering procedures,

17 complexes remain. Using our ASPDock, we successfully

predicted (at least 1 hit in top 2000 predictions) 11 in 17 of these

complexes. For each of these 11 complexes’ receptor, we randomly

selected 10 interface residues as correct information and 10 surface

but non-interface residues as incorrect information. Our training

set is built up by these 11 complexes and 21 antibody-antigen

complexes mentioned above with correct and incorrect informa-

tion.

Enzyme-inhibitor and other type complexes of benchmark3.0

are selected as our test dataset. This test dataset totally contains 99

complexes, including 35 enzyme-inhibitor and 64 complexes of

other types. We predicted the binding sites for each monomer in

this dataset using PPI-PRED [37].

PPI-PRED

Five binding site prediction methods have been test on a data

set in Huang and schroeder’s work. Success rate of these

methods are from 14 to 34 percents. Among the five methods,

PPISP [40] and PPI-PRED [37] have 34% and 33% success

rate, respectively. PPI-PRED considers more sequence and

structure features than PPISP and is selected as the prediction

method in our work.

Criterion

LRMSD is the RMSD between the predicted and native ligand

molecules after superposing the predicted and native receptor

molecules. LRMSD is used as a criterion in CAPRI (Critical

Assessment of PRediction of Interactions) [50]: predictions with

LRMSD#10 Å are considered as ‘‘acceptable predictions’’;

predictions with LRMSD#5 Å are considered as ‘‘medium

predictions’’; predictions with LRMSD#2.5 Å are considered as

‘‘high accuracy predictions’’. This CAPRI style measure is widely

used in protein-protein docking and scoring works. [14,49,54,55];

In this work, a hit is defined as a predicted complex with

LRMSD#10 Å, which is an ‘‘acceptable prediction’’. Since our

SRM is a structure sampling method, which is the first stage of the

entire docking algorithm, the LRMSD of acceptable structures

could be decreased after some other refinement process.

[56,57,58].

A residue is a surface residue if there is more than 10% relative

residue surface area exposed to solvent, where the surface area is

calculated by NACCESS (http://wolf.bms.umist.ac.uk/naccess).

An interface residue is defined as a surface residue if the minimum

distance of its atoms from the atoms of another protein in the

native complex structure is less than 5 Å. We don’t use 10 Å as a

criterion because it is useless if a predicted binding site is 10 Å

away from interface. The radius of some small protein is no more

than 20 Å. For each monomer, accuracy of prediction is

calculated by Nsuc=Npred . Here Nsuc is the number of successful

predicted interface residues, and Npred is total number of predicted

interface residues.

We used unbound-bound RMSD (UB-RMSD) and relative

interface area to assess the difficulty to predict each complex. UB-

RMSD is the RMSD between unbound and bound monomers.

Relative interface area is the ratio of interface area and total

complex area. Obviously a complex is difficult to predict if it has a

large UB-RMSD of its monomers, or if it has a small relative

interface area.

Our SRM is a first stage sampling method, which should be

combined with some post processing methods. [47,48,59,60]

Currently, most post processing methods are able to handle at least

2000 structures. [55,61,62] The post processing methods are

aiming at re-score the top 2000 (or even more) predictions and

then pick up the best 10–20 predictions. Thus, for each docking

prediction, we keep top 2000 predicted structures for further

analysis.
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