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Briquetting of subbituminous 
coal and torrefied biomass using 
bentonite as inorganic binder
A. A. Adeleke1, J. K. Odusote2, P. P. Ikubanni3*, A. S. Olabisi4 & P. Nzerem5

The use of inorganic binder for briquetting of subbituminous coal and torrefied biomass for energy 
generation is scarce. The present study focuses on the physicomechanical durability and energy 
content of briquettes produced from subbituminous coal (SubC) and torrefied biomass (TM) using 
bentonite as binder. Briquettes were produced using 95% SubC and 5% TM. Bentonite was varied 
at 2–10% of the total SubC and TM weight. The briquettes were produced with a constant pressure 
(28 MPa) in a hydraulic press. The briquettes were primarily cured at room temperature and then 
at 300 ◦C in a tubular furnace under an inert condition for 60 min. The density and water resistance 
(WRI) of the briquettes were evaluated. Drop to fracture (DF), impact resistance index (IRI), cold 
crushing strength (CCS) and tumbling strength index  (TSI+3 mm) of the briquette were obtained. 
The reactivity index (RI), proximate, ultimate and calorific values analyses were assessed based on 
different ASTM standards. Microstructural studies and elemental mapping were carried out using 
scanning electron microscope equipped with EDS and electron probe microanalyzer. The density 
increased with increment in bentonite content. The WRI decreased with increase in bentonite while 
the least (95.21%) was obtained at 10% binder content. The DF and IRI ranges from 100 to 150 and 
2000–3000, respectively. The CCS were in the range of 19.71 to 40.23 MPa. The RI varies from 34 to 
50%. Fixed carbon, carbon and calorific values were impaired as the bentonite content in the briquette 
increases. Oxygen and silica bridges with mechanical interlocking were observed on the micrographs 
of the briquettes. The briquettes produced with 2% bentonite content have better physicomechanical 
durability with equivalent energy content. It is recommended as feedstock for thermal and 
metallurgical applications.

Waste generation is an integral part of man. Some of these wastes are good raw materials for various industrial 
and domestic applications. Wastes from coal mining, handling and transportation are always in million  tonnes1. 
Coal fines (< 3 mm) are often referred to as wastes and are inevitably produced when lump coals are processed or 
 handled2,3. Wastes from the wood processing industries have also been reported to be in million tonnes especially 
in developing  countries4,5. These wastes have been found useful in various area of applications which includes 
energy  generation6,7, reinforcement in metal matrix  composites8–10, microelectromechanical  systems3 among oth-
ers. Predominantly, developing nations have peculiar issues with low energy mix. Thus, researchers from various 
fields continue to harness these wastes (coal and biomass) as possible additional energy sources to the existing 
ones.  Adeleke11 improved the energy content of biomass wastes through mild pyrolysis and added it to lean grade 
coal wastes to produce composite briquettes. The fuel briquettes produced were recommended for industrial and 
domestic usage. Adeleke et al.12 produced briquettes from upgrade biomass and coal fines as solid fuel. It was 
reported that the briquettes were mechanically stable with good combustion characteristics. Trubetskaya et al.13 
characterized woodstove briquettes from torrefied biomass and coal. Inorganic matter influenced the reactivity of 
the briquettes less than the organic composition of the raw materials. The porosity of the briquettes was lowered 
with increase in the inorganic matter. Physicomechanical integrities of the briquettes were not reported. Guo 
et al.14 optimized composite binders for lignite briquettes. The binders used were polyvinyl alcohol and sodium 
humate. Sodium humate (2wt.%) and polyvinyl alcohol (0.5wt.%) were obtained as the optimal composite 
binder for better mechanical strength. The lignite briquettes were recommended for industrial applications. In 
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an attempt to produce strong briquettes from coal wastes, molasses and coal tar pitch were blended as binder 
by Zhong et al.15. The best briquette produced was reported to have a compressive strength of 13.06 MPa with a 
drop to fracture of 56.6 time/2 m. The briquettes were primarily produced for COREX iron making processes. 
Adeleke et al.2 produced and characterized composite briquettes from coal and wood fines using pitch binder. 
The wood fines were initially torrefied for an improved calorific value and enactment of its bonding properties. 
The briquettes were produced from 3 to 20% torrefied biomass and 80–97% coal fines. The optimum cold crush-
ing strength of 4 MPa, drop to fracture of 54 time/2 m and an impact resistance index of 1350 were recorded for 
the composite briquettes. The briquettes were recommended for industrial application. Adeleke et al.4 further 
produced briquettes from torrefied biomass and coal where molasses and blended pitch were used as binders. 
The tumbling strength index  (TSI+3 mm) and reactivity index (RI) of the samples were evaluated for possible use 
as feedstock in metallurgical applications. The  TSI+3 mm was obtained for the cured samples and samples exposed 
to 1200 ◦C . The  TSI+3 mm of the cured briquette samples were between 95.5 and 98.3% which drastically declined 
to 57.4–77.4% for the samples were exposed to 1200 ◦C . The RI of the briquettes were between 48 and 56%, and 
it was an indication of high reactiveness. As a result of the  TSI+3 mm and RI, the briquettes were reported to be 
appropriate as carbonaceous material especially in rotary kiln in the making of direct reduced iron. There is an 
unending argument about the mechanical stability of various briquettes produced as composite of coal and bio-
mass. This led to a renewed interest in using various type of binders to produce briquettes with better mechanical 
strength without compromising its energetic value. This could ultimately guide researchers and industrialists 
to standardized acceptable mechanical and energy properties of solid fuel briquettes. Thus, the present study 
focuses on improving the mechanical integrity of briquettes produced from subbituminous coal and torrefied 
biomass using bentonite, which is an inorganic binder. Bentonite is an aluminum phyllosilicate which is obtained 
frequently from volcanic ash alteration. This binder is available in million tons in  Nigeria16. Bentonite is a good 
binder with tendency of improving the strength of briquettes with no addition of pollutant to the composite 
 materials17. The present study is proposed based on limited research work on the use of bentonite as binder for 
briquetting of subbituminous coal and torrefied biomass. Briquettes are produced from subbituminous coal 
(95%) and torrefied biomass (5%) while varying bentonite based on the total weight of the briquettes from 2 to 
10%. Physicomechanical and energy content analyses were carried out on the briquettes. The use of bentonite 
as inorganic binder is expected to improve the physicomechanical properties of the hybrid briquettes. This will 
serve as good comparison for briquettes produced from other organic and inorganic binders.

Methodology
Materials. The materials used for the production of briquette in this study were subbituminous coal (SubC) 
fines, melina woody biomass (MWB) and bentonite. SubC was obtained from Okaba mine, Nigeria while MWB 
was obtained from Benin City, Nigeria. Bentonite was used as binder and it was obtained from Jamshedpur, 
India. These raw materials are shown in Fig. 1.

Material preparations. Subbituminous coal fines were further pulverized, sun-dried and screened to less 
than 0.70 mm. Further drying was done in an oven at 105 ◦C for 30 min to eliminate unbounded moisture as pre-
viously described by Adeleke et al.1. The proximate, ultimate and calorific value (HHV) as reported by Adeleke 
et al.2 are shown in Table 1. The details of torrefaction of melina has also been reported by Odusote et al.7. The 
torrefied biomass used was below 0.70 mm. Table 1 showed the proximate, ultimate, and calorific values of the 
torrefied biomass. The bentonite was sun-dried and screened to particle size below 0.70 mm. This was to achieve 
uniformity in particle sizes for all the composite materials and binder. The chemical composition (oxides) of the 
bentonite was obtained using X-ray fluorescence spectrometer (Bruker 58 TIGER model). The compositions are 
presented in Table 1.

Briquetting. Subbituminous coal fines (95% of 25 g), torrefied biomass (5% of 25 g) and bentonite (2–10% 
of the overall briquette weight) were mechanical mixed. Water was added as 10% overall weight of coal and 
torrefied biomass, and the whole materials were blended together using a mechanical stirrer at 50 rpm for five 
(5 min) in order to obtain homogeneousness. The blend was then dispensed a cylindrical die of 25 mm internal 
diameter. A hydraulic press at a constant pressure of 28 MPa was used to compress the blend to briquettes. The 
load was gradually removed from the die and then the sample was ejected from the mold. The green briquettes 
were allowed to dry at room temperature for 36 h. Further curing of the samples was done by introducing nitro-

Figure 1.  Raw materials (a) subbituminous coal, (b) torrefied biomass, (c) bentonite.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8716  | https://doi.org/10.1038/s41598-022-12685-5

www.nature.com/scientificreports/

gen (50 ml/min) into a tubular furnace to form an inert environment at a temperature of 300 ◦C for a 60 min 
residence time. The samples were removed and placed in a desiccator to be cooled at room temperature. The 
samples were preserved in a zip-lock bag prior to physicomechanical integrity and energy content assessment.

Physical integrity. The physical integrity is adjudged with the physical properties such as density and water 
resistance index (WRI). The densities of the briquettes were obtained using Eq. (1), where m is mass and v is 
volume. The water resistance was obtained using modified Richard’s  method18. Briquette with weight ( W1 ) was 
immersed in a cylindrical glass which contains distill water of volume 200 ml at 30± 2◦C for 30 min. The bri-
quette sample was then removed, cleaned to reduce water on its surface. The sample was later reweighed as W2 . 
The relative change in weight of the briquette was determined and percentage water absorption was evalulated 
using Eq. (2) while WRI (%) was obtained using Eq. (3).

Mechanical integrity. The mechanical integrity of briquette is a measure of the mechanical properties of 
the briquettes. These include cold crushing strength (CCS), drop to fracture (DF), impact resistance index (IRI) 
and tumbling strength index  (TS1+3 mm). A universal mechanical testing machine (10 Kw Hounsfield appara-
tus) was used to obtain the CCS. The compression mode of the machine was used as stipulated for coke and 
 briquettes19. The maximum crushing load ( Mf  ) the briquette can bear prior to cracking was noted and was 
done in triplicates for each briquette. The average Mf  was then utilized to determine the CCS based on Eq. (4). 
In Eq. (4), D is the bottom circular diameter for the briquette. DF was carried out by dropping briquette sample 
from a height of 2 m until it breaks. The average times/2 m taken for it to break was noted. The average of three 
replicates were utilized to evaluate the drop resistance. IRI was obtained from the DF test using Eq. (5).

The tumbling strength index  (TS1+3 mm) for the briquettes was obtained using the method reported in the 
study of Adeleke et al.4. Some samples were exposed to 1200 ◦C in a furnace and held for 2 h. The cured and those 
exposed to 1200 ◦C were adopted for the tumbling test. Three briquette samples of identified weight ( Wo ) were 
placed in a steel tube (40 mm inner diameter, 200 mm length) and were allowed to rotate at a speed of 30 rpm 
for 20 min. After tumbling, the samples were removed and then screened on a 3.15 mm sieve size. The + 3 mm 
particles of the sample were weighed. The obtained values were used to evaluate the  TS1+3 mm in accordance 
with Eq. (6).

where W+3mm and Wo are the weight of + 3 mm particle sizes and initial samples, respectively.

Proximate, ultimate, calorific values and reactivity index analyses. The reactivity of the briquette 
samples was carried out in accordance with ASTM D5341M-14  standard20. The details of this method have been 
reported in our previous  study2. The RI was obtained in duplicates for each sample. Proximate analyses project 

(1)Density =
m

v

(2)Water absorption(%) =
W2 −W1

W1

(3)WRI(%) = 100−%water gained

(4)CCS =
4Mf

πD2

(5)IRI =
100× Average number of drops/2m

Average no of pieces

(6)TSI+3mm =
W+3mm

Wo

× 100

Table 1.  Properties of raw materials for production of briquette. MC moisture content, VM volatile matter, AC 
ash content, FC fixed carbon, C carbon, H hydrogen, N nitrogen, S sulphur, O oxygen, HHV calorific value, TM 
torrefied biomass and SubC subbituminous coal.

Proximate analysis (%) Ultimate analysis (%) (MJ/kg)

MC VM AC FC C H N S O HHV

SubC 1.37 13.71 18.00 64.92 71.47 2.88 0.90 0.71 24.04 24.20

TM 2.63 54.07 2.17 41.08 66.08 5.18 0.30 0.20 26.30 23.45

Chemical compositions (%)

SiO2 Al2O3 Fe2O3 CaO Na2O MgO K2O TiO2 P2O5 Others

Bentonite 51.02 10.28 3.42 1.21 1.14 3.04 1.56 0.64 0.89 –



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8716  | https://doi.org/10.1038/s41598-022-12685-5

www.nature.com/scientificreports/

moisture content (MC), ash, volatile matter (VM) and fixed carbon (FC) contents of the pulverized samples 
and it was carried out following the IS: 1350-1  standard21. The ultimate analysis (Carbon, Hydrogen, Nitrogen, 
Sulphur and Oxygen) for the pulverized briquette was carried out based on ASTM D5373-16  standard22 while 
the calorific value was obtain in accordance with ASTM D5865-04  standard23 using Oxygen Bomb Calorimeter 
(Model A1290DDEE).

Microstructural studies and elemental mapping. The microstructures of the briquettes were observed 
under a scanning electron microscope (Nova Nano SEM 430) equipped with EDS. The briquette with 2% ben-
tonite was exposed to elemental mapping under the electron probe microanalyzer equipped with EDX (JEOL 
8230 Model). This was because it gave the best energy value. Thus, the need to understand the spread and cover-
age of each element within its formation.

Results and discussion
Density and water resistance of the briquettes. Density is a vital physical property of fuel briquettes. 
Higher density implies higher energy/volume ratio. The densities of the green and cured briquettes are shown 
in Fig. 2a. The densities of green samples were in the range of 1.48 to 1.64 g/cm3. The densities of the cured 
briquettes were between 1.24 and 1.44 g/cm3. The density of the briquette increased with increase in benton-
ite content. This implied that bentonite is denser and thus, an increase in density. The curing process led to a 
reduction in density. This is expected as unbounded moisture loss, light volatiles evolution and reactive drying 
takes placed at 300 ◦C24. The density of the briquettes produced in this study is a little higher than our previous 
 studies1,2. This is because of the addition of bentonite, which is denser than the binders (molasses and pitch) used 
in those studies. Materials with finer particles possess large surface area for bonding. This may also be respon-
sible for the higher density since bentonite is finer by nature than pitch binder. More of bentonite in briquettes 
could further make briquette denser. While there are no standard acceptable values for briquettes, higher density 
is good for transportation as it lowers cost and elongate burning  time25. However, the combustion properties of 
briquettes with very high density are negatively impacted. Thus, a need for balance.  Richard18 is a widely accept-
able reference for the properties of briquettes. The density recommended for acceptable briquettes of industrial 
and domestic use ranges from 1.25 to 1.30 g/cm3. Briquettes with 2 and 4% bentonite met this requirement. The 
briquettes produced in this study are fit for transportation, handling and storage. The water resistance index 
(WRI), shown in Fig. 2b, indicates the degree at which briquettes can withstand degeneration in humid environ-
ment. The WRI for the briquettes range from 98.21 to 99.36%. It could be observed that increase in bentonite led 
to a continuous reduction in WRI. This indicates that bentonite is hydrophilic in nature. More bentonite content 
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Figure 2.  Physical properties of the fuel briquettes (a) density, (b) WRI.
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implied that more water would be absorbed and retained in the briquette. The WRI of the present briquettes 
compare well with the works of Mollah et al.26, Zhong et al.15 and Adeleke et al.4.  Richard18 benchmarked WRI 
for acceptable briquette as 95%. By implication, all the briquette samples produced surpasses the benchmark. 
However, higher bentonite contents could lead to higher moisture attraction. This can lead to partial or total 
disintegration of the briquettes when exposed to humid condition or in contact with water. Though the WRI for 
the briquettes compares well briquettes recommended for various energy applications, it should be stored in a 
place with little or no exposure to moisture.

Drop to fracture and impact resistance for the briquettes. The response of briquette to gravitational 
deterioration is an indication of its mechanical  durability27. Drop to fracture (DF) and impact resistance index 
(IRI) are useful tools in evaluating the durability. The DF and IRI for briquettes in this study are shown in Fig. 3. 
The DF varies from 100 to 150 times/2 m and the highest was obtained at 10% bentonite content within the 
briquette. Bentonite contains high  SiO2, which implied that the low temperature bonding strength of Si–O–Si 
bonds might have strengthened the briquettes against gravitational impact. The IRI values for the briquettes 
vary from 2000 to 3000. This range of value is extremely high compared to IRI of 50 that was recommended for 
briquettes of industrial  applications18. The IRI of the briquette produce using bentonite binder is higher than 
what was obtained for briquettes of coal and biomass using pitch and molasses binders (150–1175) as reported 
by Adeleke et al.2. The curing process for the briquettes interestingly enacted the bonding strength of Si–O–Si 
bonds within the bentonite at 300 ◦C to enhance the DF and IRI. All the briquettes are very good feedstock that 
can be transported, handled and stored based on the DF and IRI without degeneration.

Cold crushing strength of the briquettes. Figure 4 shows the cold crushing strength (CCS) for the 
briquettes. The CCS depicts the ease of breakage or wear during transportation, handling and storage of the 
briquettes. CCS is also a litmus check of the mechanical durability of the briquettes. The CCS of the briquettes 
produced in this study were in the range of 19.72 to 40.12 MPa. The CCS increased with bentonite increment in 
the briquette. As earlier stated, the present study explored the Si–O–Si bonds reported as strong bond for geo-
polymer making at low temperature to enhance the CCS of the  briquettes4. The more the Si–O–Si bonds in the 
briquettes, the better the CCS. Comparatively, the briquette outperformed all our previous studies on coal and 
torrefied biomass briquettes in terms of  CCS2,28. The briquette strength surpassed the minimum 1.0 MPa rec-
ommended by Borowski and  Hycnar29 for briquettes of industrial applications. The DF, IRI and CCS of the bri-
quettes were positively influenced by increase in bentonite. The physicomechanical properties of the briquettes 
shows they are essentially durable and fit for transportation, handling and storage conditions. Thus, bentonite is 
a viable inorganic binder for briquetting subbituminous coal and torrefied biomass to durable fuel.

Tumbling strength index for the briquettes. Figure 5 shows the tumbling strength index  (TSI+3 mm) 
for all the briquettes. The tumbling strength is referred to as attrition strength and it is measured through the 
 TSI+3  mm values. For all the briquettes, the tumbling strength indices surpassed the 95% recommended by 
 Richard18 and  Thoms30 for durable briquettes. The responses of the briquettes in this study to attrition forces 
is slightly similar to the briquettes produced using pitch and molasses as binder. There is an improvement in 
 TSI+3 mm for the briquettes in the present study. This may be due to bonding strength of the content of bentonite 
 (SiO2, MgO and CaO). The  TSI+3 mm of the cured briquettes were extremely attractive (> 95%) and this implied 
less generation of small particles (fines) under tumbling forces or attrition during handling, transporting and 
utilizing the briquette. The  TSI+3 mm of the samples exposed to 1200 ◦C was in the range of 78.20 to 84.44%. The 
 TSI+3 mm is a mimic of coke strength after reduction (CSR) for coke. A CSR of 65% is an indication of low reactiv-
ity, which is good for  coke31,32. Compared to briquette samples that were only cured before tumbling test, further 
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devolatilization and degradation of subbituminous coal and torrefied biomass is expected to reduce the  TSI+3 mm 
of those exposed to 1200 ◦C . Thus, the rationale behind the reduced  TSI+3 mm. The tumbling strength index at 
1200 ◦C is required for briquettes produced with the intention of dual purposes (energy feedstock in thermal 
plants and metallurgical reductant). Thus, the tumbling strength of the present briquettes indicates that they will 
have resistance to tumbling degradation under high temperature regime within a rotary kiln. The briquettes are 
suitable for metallurgical process in kilns.

Reactivity index of the briquettes. The reactivity indices (RI) of the briquettes are presented in Fig. 6. 
The RI of the briquettes was in the range of 34 to 50%. The least reactive was the sample produced with 10%. The 
higher the bentonite content, the lower the RI. RI in its essence indicates the rate of reactive performance and 
mass loss tendency for the briquettes especially in oxidizing environments. It is expected that in use, briquettes 
will experience losses in weight and contents because of devolatilization and degradation. However, it must not 
be  excessive5. The decrease in RI of the briquettes due to increase in bentonite is an indication of its extremely 
low  reactivity16. The RI of the samples were above the 20–30% recommended range for normal coke used in blast 
furnace as fuel and  reductant33. The essence of the test is to understand the reactive behaviour of briquettes made 
with bentonite binder. The test has shown that the briquette will react well with other feedstock in a reduction 
scenario in a rotary kiln at ≤ 1200 ◦C.
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Proximate and ultimate contents, and calorific values of the briquettes. The inorganic binder 
used for the production of briquettes produced in this study has been opined to drastically affect its energy 
content   negatively34. Thus, the proximate, ultimate and calorific values of the briquette are the major litmus 
check of its energy content and usefulness. Chou et al.35 and Ajimotokan et al.36 emphasized that briquettes with 
good physicomechanical properties and poor energy content makes poor solid fuel. The proximate content is 
presented in Fig. 7. An increase in bentonite led to reduction in fixed carbon (FC), increase in ash while volatile 
matter and moisture were constant. The reduction in fixed carbon indicates largely a reduction in calorific values 
(heating values). This is true for these briquettes as HHV reduced from 24 to 17 MJ/kg for briquettes with 2% to 
10% bentonite, respectively. Fixed carbon is a major indicator of how efficient solid fuel is for energy and metal-
lurgical  applications37. The presence of  SiO2 and other inorganic oxides in bentonite plays a significant role in 
the declined energy content. However, with 2% bentonite, the briquettes displayed similar properties reported in 
our previous  study2. The FC of the briquettes produced from coal and biomass using organic binders were in the 
range of 65.13 to 65.25%. Increase in bentonite content damaged the energy content of the briquettes and will 
affect its combustion behavior in use. The carbon (C), hydrogen (H), nitrogen (N), sulphur (S) and oxygen (O) 
contents for the briquettes are presented in Table 2. Notably, the carbon reduced with increase in bentonite from 
72.74 to 63.41%. This is expected since the FC had a decline. The H, N, S were nearly constant while oxygen also 
reduced with increase in bentonite content. There is higher tendency of more Si–O–Si bond with oxygen as ben-
tonite increased. Thus, an increased bounded oxygen by chemical reaction. From all indications, increased ben-
tonite within the briquette impaired more energy content. Thus, 2% bentonite that produces enviable mechani-
cal durability in the briquettes is enough for bonding the subbituminous coal and torrefied biomass as solid fuel. 

Microstructural study and elemental mapping for the briquettes. To understand the mechanism 
of bonding, briquette samples were observed under microscope and the SEM images are presented in Fig. 8. The 
images (Fig. 8a–e) display granular and irregular structure with some charging effects. The charging effect was 
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reported by Zhong et al.15 for coal briquettes and it increases with increased bentonite within the briquettes in 
this present study. Figure 8e shows more of this microstructure. This phenomenon has been adduced to be oxy-
gen bridges in previous  studies5. However, with the use of bentonite as binder, this may be oxygen-silica bridges. 
The oxygen-silica bridges were pronounced on Fig. 8d,e. Coupled with mechanical interlocking that could be 
seen in the structural makeup of the briquettes, the oxygen bridges and silica content may be responsible for 
improved strength with increased bentonite. In a critical evaluation, Fig. 9 projects the elemental analysis of 
four different points on the SEM image of Fig. 8e. Oxygen and silicon dominated the area where the charging 
effects were pronounced (1, 2, and 3) while the dark spot (4) contained more carbon content (83.51%). This is 
an addendum to initial explanation that silica plays a significant role along with oxygen bridges in improving 
strength of the briquettes. The elemental mapping of the best briquette in terms of energy content (2% benton-
ite) is presented in Fig. 10. The mapping shows that carbon is the predominant element in the briquette. This 
is because subbituminous coal and biomass are majorly carbon dominated. Figure 10 also shows that oxygen, 
magnesium, aluminum, silicon, sulphur, potassium, calcium and iron were picked along carbon. The uniform 
spread of these elements is important for complete combustion when briquettes are in  use2. The distributions of 
these elements are even on the entire surface of the briquette. No element is dominant at a position which can 
inhibit combustion of the fuel briquette at such position.

Conclusion
The use of bentonite as inorganic binder for briquetting of subbituminous coal and torrefied biomass has been 
studied. The physicomechanical durability and energy content of the produced briquettes have been evaluated. 
Bentonite reduced water resistance index of the briquette. The increment in bentonite within the briquette 
improved the drop to fracture and impact resistance. The highest drop to fracture and impact resistance index 

Table 2.  Ultimate contents and calorific values of the briquettes.

%Binder content %C %H s%N %S %O HHV (MJ/kg)

2 72.74 2.46 0.91 0.71 23.18 24.00

4 71.72 2.44 0.90 0.70 24.24 22.54

6 68.50 2.44 0.89 0.71 27.46 21.12

8 67.66 2.45 0.90 0.71 28.28 19.84

10 63.41 2.42 0.90 0.71 32.56 17.68

Figure 8.  SEM images of the briquettes with varying bentonite contents (a) 2%, (b) 4%, (c) 6%, (d) 8%, (e) 10%.
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Figure 9.  Point elemental analyses of sample with 10% bentonite.

Figure 10.  Elemental mapping of the briquette with 2% bentonite.
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for the briquettes were 150 times/2 m and 3000, respectively. The highest cold crushing strength was obtained 
at 10% bentonite content. Bentonite impaired the energy content of the briquettes. The least energy content 
(17.68 MJ/kg) was obtained at 10% bentonite. Carbon and other elements were evenly distributed within the 
briquettes. Based on balance needed between physicomechanical durability and energy content, 2% bentonite 
is recommended as binder content for briquetting subbituminous coal and torrefied biomass. The briquette 
produced with 2% coal bentonites are good feedstock for thermal plants and rotary kiln.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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