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SYSTEMATIC REVIEW AND META-ANALYSIS

Consensus Transcriptional Landscape of 
Human End-Stage Heart Failure
Ricardo O. Ramirez Flores , BSc*; Jan D. Lanzer , MD*; Christian H. Holland , MSc; Florian Leuschner , MD; 
Patrick Most, MD; Jobst-Hendrik Schultz, MD; Rebecca T. Levinson , PhD†; Julio Saez-Rodriguez , PhD†

BACKGROUND: Transcriptomic studies have contributed to fundamental knowledge of myocardial remodeling in human heart 
failure (HF). However, the key HF genes reported are often inconsistent between studies, and systematic efforts to integrate 
evidence from multiple patient cohorts are lacking. Here, we aimed to provide a framework for comprehensive comparison 
and analysis of publicly available data sets resulting in an unbiased consensus transcriptional signature of human end-stage 
HF.

METHODS AND RESULTS: We curated and uniformly processed 16 public transcriptomic studies of left ventricular samples from 
263 healthy and 653 failing human hearts. First, we evaluated the degree of consistency between studies by using linear 
classifiers and overrepresentation analysis. Then, we meta-analyzed the deregulation of 14 041 genes to extract a consensus 
signature of HF. Finally, to functionally characterize this signature, we estimated the activities of 343 transcription factors, 
14 signaling pathways, and 182 micro RNAs, as well as the enrichment of 5998 biological processes. Machine learning ap-
proaches revealed conserved disease patterns across all studies independent of technical differences. These consistent 
molecular changes were prioritized with a meta-analysis, functionally characterized and validated on external data. We provide 
all results in a free public resource (https://saezl​ab.shiny​apps.io/rehea​t/) and exemplified usage by deciphering fetal gene re-
programming and tracing the potential myocardial origin of the plasma proteome markers in patients with HF.

CONCLUSIONS: Even though technical and sampling variability confound the identification of differentially expressed genes in in-
dividual studies, we demonstrated that coordinated molecular responses during end-stage HF are conserved. The presented 
resource is crucial to complement findings in independent studies and decipher fundamental changes in failing myocardium.
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C linical care for heart failure (HF) has not yet 
overcome the poor prognosis of the syndrome.1 
To develop novel treatment and diagnostic ap-

proaches, the understanding of molecular patho-
physiology of myocardial failure is crucial. Large-scale 
transcriptomic studies have helped elucidate the 
complexity of gene regulation in HF, notably in pro-
cesses influencing cardiac hypertrophy,2 reverse re-
modeling,3 and cardiac metabolism.4 However, low 
sample sizes of most studies may underestimate the 

effects of comorbidities, clinical history, and genetic 
background that interact with the molecular pro-
cesses active during myocardial remodeling. Poor 
patient characterization in published data limits the 
extent to which the generated knowledge can be 
generalized and applied to independent cohorts. 
Lack of standards in experimental design, tissue 
protocols, and data analysis add technical confound-
ing factors.5 Additionally, most transcriptomic stud-
ies focus mainly on identifying substantial changes 
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in mean expression of genes, disregarding subtle 
changes in patterns of variation and coexpression 
of genes during cardiac remodeling, which may be 
more conserved across patients with variable clini-
cal features. Therefore, the combination of multiple 
studies can be used to assess the robustness of the 
previously reported patterns of gene dysregulation, 
identify consistent molecular changes that are less 

likely influenced by confounding factors, and allow 
for functional characterizations that can contribute 
to the identification of novel targets with diagnostic 
or therapeutic relevance. Current data repositories 
and resources, such as ArrayExpress,6 the Gene 
Expression Omnibus,7 the European Nucleotide 
Archive,8 recount2,9 and BioJupies,10 facilitate the 
access to public transcriptomic studies and allow 
their comparison. While repositories like recount2 
provide access to preprocessed data sets, they cur-
rently do not contain all publicly available HF studies. 
Thus, it is timely to perform an integrative analysis of 
reported HF specific molecular processes.

Several reports have attempted to compare HF 
gene expression studies,11–14 but, to our knowledge, 
no resource that provides a consensus transcrip-
tional disease signature characterized with functional 
tools exists. Furthermore, previous studies have a 
limited sample size, did not analyze study similarity, 
and focused on a single etiology. Here, we present a 
meta-analysis of 16 publicly available end-stage HF 
transcriptome studies comprising 653 HF and 263 
healthy left-ventricle biopsies. First, we identically 
reprocessed and reanalyzed all data sets to reduce 
confounding noise produced by bioinformatic pipe-
lines. We evaluated the extent to which these geo-
graphically and technically diverse studies agree and 
derived an HF consensus signature (HF-CS) that 
reflects robust and consistent molecular hallmarks 
of end-stage HF. We functionally characterized this 
ranking and estimated transcription factor (TF), micro 
RNAs (miRNAs), and signaling pathway activities 
that revealed established and novel insights to the 
transcriptional landscape of HF. Finally, we made 
our results publicly available to be leveraged by the 
research community and exemplified their utility by 
exploring the reactivation of fetal gene programs in 
HF and by tracing the potential myocardial origin of 
plasma proteomic markers.

METHODS
All data and supporting materials have been provided 
with the published article. Results can be queried 
and explored at (https://saezl​ab.shiny​apps.io/rehea​t/), 
code used for all analyses is available at https://github.
com/saezl​ab/HF_meta-analy​sis/, and processed data 
can be downloaded from Zenodo at https://zenodo.
org/recor​d/37970​44#.XsQPM​y2B2u5.

Study Inclusion Criteria
We identified human HF transcriptomic studies per-
formed with either microarray or RNA sequencing by 
querying the Gene Expression Omnibus database,7 
the European Nucleotide Archive,8 and ArrayExpress.6 

CLINICAL PERSPECTIVE

What Is New?
•	 We provided a consensus transcriptional signa-

ture of human end-stage heart failure built from 
more than 900 individuals from 16 different pa-
tient cohorts that is independent of technical 
biases.

•	 This work integrates the efforts of the past 
15  years in the field of heart failure transcrip-
tomics; we designed an interactive platform to 
make all results available to the cardiovascular 
research community: ReHeaT (Reference of 
the Heart Failure Transcriptome; https://saezl​
ab.shiny​apps.io/rehea​t/).

•	 Cardiovascular researchers can use this re-
source to analyze and validate independent 
omics data sets.

What Are the Clinical Implications?
•	 A reliable reference of the molecular processes 

underlying heart failure is needed to identify 
generalizable biomarkers with diagnostic or 
therapeutic relevance.

•	 By tracing the potential myocardial origin of 
plasma proteomic biomarkers and defining 
molecular processes during the reactivation of 
the fetal program during heart failure, we dem-
onstrate that the presented resource is crucial 
to complement findings in independent studies 
and decipher fundamental changes in failing 
myocardium in a large patient population.

Nonstandard Abbreviations and Acronyms

BH	 Benjamini–Hochberg
GSEA	 gene set enrichment analysis
HF-CS	 heart failure consensus signature
JAK-STAT	 Janus kinase signal transducer and 

activator of transcription
miRNA	 micro RNA
ReHeaT	 Reference of the Heart Failure 

Transcriptome
TF	 transcription factor

https://saezlab.shinyapps.io/reheat/
https://github.com/saezlab/HF_meta-analysis/,
https://github.com/saezlab/HF_meta-analysis/,
https://zenodo.org/record/3797044#.XsQPMy2B2u5
https://zenodo.org/record/3797044#.XsQPMy2B2u5
https://saezlab.shinyapps.io/reheat/
https://saezlab.shinyapps.io/reheat/
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Search terms included “heart failure,” “ischemic car-
diomyopathy,” “dilated cardiomyopathy,” “cardiac fail-
ure,” and “heart disease.” We manually reviewed the 
results and selected studies for inclusion if (1) case 
samples came from biopsies of the left ventricle of the 
human heart of patients with end-stage HF with either 
ischemic cardiomyopathy or dilated cardiomyopathy; 
(2) control samples were obtained from patients with 
nonfailing hearts; (3) data from at least 5 samples were 
available; (4) microarray platforms were single-channel 
chips and could be processed through pipelines de-
scribed in Data Processing and Normalization; and (5) 
a publication or preprint with a detailed methodology 
was available. The selected studies are presented in 
Table.15–29 One study (vanHeesch19) was not found by 
database query but literature review of cardiac gene 
transcription.

Data Processing and Normalization
Available raw data were downloaded and reprocessed 
to ensure consistent processing and normalization 
of all studies. Count matrices from RNA-sequencing 
studies were obtained with BioJupies30 and normal-
ized with edgeR.31 Microarray studies were processed 
and normalized with limma32 and oligo33 packages (full 
description in Data S1).

To identify differentially expressed genes within 
each study, gene expression of the samples of control 
individuals and patients with HF were compared using 
linear models with limma.32 Sex, age, comorbidities, 
etiology, occasion of sample acquisition, and techni-
cal batches were used as covariates for experiments 
that provided this information (Table  S1). Differential 

expression of known markers associated with HF were 
used as a quality control check for all studies (Data 
S1). Estimates of the proportion of explained variance 
associated with the covariates used in the differential 
analysis were calculated for each study fitting linear 
models to a reduced data representation using princi-
pal component analysis (Data S1).

Consistency Between Studies
We tested the degree to which individual studies could 
be used to classify samples of other studies by defining 
a disease score, inspired by Probability of Expression 
(POE)34 and Pathway Responsive Genes for Activity 
Inference from Gene Expression (PROGENy).35 The 
disease score linearly combines the gene expression 
values of the samples of one study with the disease 
pattern observed in an independent reference study, 
captured by the t values obtained after differential ex-
pression analysis (Figure S1). The disease score of each 
sample estimates how similar its expression profile is 
with the disease phenotype, focusing on the coordi-
nated regulation of genes rather than on the changes 
of the mean expression of specific genes.

Standardized disease scores were used to classify 
patients with HF in individual studies using as reference 
the disease patterns of all of the other studies. Our 
assumption is that if 2 studies derive similar HF tran-
scriptional signatures, then the disease score should 
effectively differentiate patients with HF and healthy 
patients. In total, 16 disease classifiers were built cor-
responding to the t values of the top 500 differentially 
expressed genes of each study included in the anal-
ysis. The area of the receiver operating characteristic 

Table.  Overview of Studies Selected for Meta-Analysis

Study ID GEO ID Samples (Control+HF) Technology Year Country Citation

Liu15_M GSE57345 313 Microarray 2015 USA 15

Hannenhalli06 GSE5406 210 Microarray 2006 USA 16

vanHeesch19 Not in GEO 77 RNA sequencing 2019 Germany 17

Sweet18 GSE11​6250 64 RNA sequencing 2018 USA 18

Kittleson05 GSE1869 37 Microarray 2005 USA 19

Tarazon14 GSE55296 35 RNA sequencing 2014 Spain 20

Spurrell19 GSE12​6573 33 RNA sequencing 2019 USA 21

Kong10 GSE16499 30 Microarray 2010 USA 22

Molina-Navarro13 GSE42955 29 Microarray 2013 Spain 23

Greco12 GSE26887 24 Microarray 2012 Italy 24

Yang14 GSE46224 24 RNA sequencing 2014 USA 25

Barth06 GSE3585 12 Microarray 2006 Germany 26

Pepin19 GSE12​3976 9 RNA sequencing 2019 USA 27

Kim16 GSE76701 8 Microarray 2016 USA 28

Schiano17 GSE71613 6 RNA sequencing 2017 Italy 29

Liu15_R GSE57344 5 RNA sequencing 2015 USA 15

Sixteen data sets fulfilled the inclusion criteria. Samples size is displayed after processing. GEO indicates gene expression omnibus; and HF, heart failure.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57345
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5406
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116250
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1869
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55296
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126573
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16499
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42955
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26887
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46224
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3585
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123976
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76701
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71613
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57344
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curve (AUROC), where HF was used as response vari-
able, was used to test the accuracy of classification 
of patients with HF and used as a measurement of 
conservation of gene regulation patterns and similarity 
between studies.

To test that the classification performance of the 
disease score was related to the consistency of the 
direction of the transcriptional regulation, we separated 
the top differentially expressed genes of each study 
into up- and downregulated genes and enriched them 
into the sorted gene-level statistics of each of the other 
studies using gene set enrichment analysis (GSEA).36 
Gene-level statistics of each study were sorted by their 
t value.

Meta-Analysis
We combined the Benjamin–Hochberg (BH) corrected 
P values of the differential expression analysis for all 
genes that were measured in at least 10 data sets 
using a Fisher’s combined probability test. The de-
grees of freedom for the significance test of each gene 
were defined by the number of data sets that included 
it. We assumed that nonprobabilistic sampling proce-
dures happened in each study, so no additional study 
weighting was used.36 A ranking was generated based 
on the combined test P values after BH correction, 
representing the HF-CS (Table S2). The contribution of 
each study to the meta-analysis was estimated with the 
enrichment score of its top 500 differentially expressed 
genes in the HF-CS as calculated by GSEA.37 To test 
the gradient of consistency of the HF-CS, we evaluated 
the performance of disease score classifiers that used 
different numbers of top genes from the signature 
(Data S1). Additionally, to test the effect of each study 
in the final ranking, we performed a leave-one-out pro-
cedure. We repeated the meta-analysis 16 times, each 
time ignoring the values of 1 study at a time. Then we 
compared the similarity of the top 1000 genes of each 
leave-one-out experiment and the original top 1000 
genes of the HF-CS using a Jaccard index.

To evaluate the added value of the meta-analysis, 
we tested if the selection of the top 500 genes from 
the consensus signature defined a better transcrip-
tional signature of HF compared with signatures ob-
tained from individual experiments. Specifically, we 
tested if the AUROCs obtained were greater than the 
ones coming from classifications made by the top 500 
genes coming from individual studies using a Wilcoxon 
paired test. To show that the top genes of the con-
sensus signature shared a more consistent direction 
of differential regulation than signatures coming from 
individual studies, we separated the 500 top genes 
from the consensus signature into up- and downreg-
ulated independently for each data set, and enriched 
them into the sorted gene-level statistics of each of the 

other studies using GSEA as previously described. We 
compared the enrichment scores of these pairwise 
comparisons to the ones obtained using the top 500 
differentially expressed genes of individual experiments 
using a Wilcoxon paired test. Finally, to demonstrate 
generalizability, we tested a disease score classifier 
based on the HF-CS in studies from the curation ef-
fort that did not match inclusion criteria attributable to 
differences in HF etiology, biopsy location, or profiling 
platform.

Functional Characterization of the HF-CS
The-log10 (meta-analysis P value) of each gene was 
weighted by its mean direction of change in all stud-
ies to create a directed HF-CS. Gene ontology terms 
and canonical and hallmark pathways from MSigDB 
(data downloaded in December 2019)38 were tested 
for enrichment in the directed HF-CS with GSEA36 
using fgsea.39 TF and miRNA activities were esti-
mated with viper40 for human regulons obtained from 
DoRothEA41 and the miRNA collection of targets 
from MSigDB,38 respectively. The activity of signal-
ing pathways was calculated with PROGENy35,42 
(Data S1). BH corrected P values were calculated for 
each test and are available in Table S3. In the case 
of MSigDB’s gene sets, multiple test correction was 
performed to each analyzed collection (collection BH 
P value) and to the union of all collections (global BH 
P value).

RESULTS
Study Curation and Description
We identified 16 studies that fit the inclusion criteria 
(Table), which consisted of 263 control, 372 dilated 
cardiomyopathy, and 281 ischemic cardiomyopathy 
samples (Figure 1B). The studies were published be-
tween 2005 and 2019, and their sizes varied between 
5 and 313 samples. Gene coverage after processing 
was comparable for all studies (mean Jaccard index 
of ≈0.67) (Figure S2). A total of 14 041 genes were re-
ported by at least 10 studies.

HF samples from all studies were acquired during 
heart transplantation, left ventricular assist device 
implantation, or surgical ventricular restoration, all 
of which are usually performed for patients with a 
decompensated failing heart with reduced ejection 
fraction, justifying their interstudy comparability. As 
control samples, all studies included biopsies from 
donor hearts deemed unsuitable for transplant. If 
stated, unsuitability was attributable to size dispar-
ities, ABO mismatch, or other factors. Figure 1A dis-
plays the availability of sample information for each 
study concerning patient demography and HF status. 
Most of the studies lacked complete descriptions of 
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the clinical and demographic characteristics of the 
patients included in their publications. When infor-
mation was available, New York Heart Association 
classification ranged between III and IV, and left ven-
tricular ejection fraction was reported to be <40% 
(Table S1). Age and sex distributions are compared 
in Figure S3.

Sample Variability and Study Consistency
Principal component analysis and analyses of vari-
ance were applied to various transformations of the 
combined data to evaluate sample variability across 
studies and etiologies (Data S1). The expected inter-
action of technical heterogeneity with gene expres-
sion scales was observed in all samples (Figure S4), 
but was reduced by gene standardization (Figure S5). 
Analysis of individual studies revealed that most of 
the variability of the patients cannot be assigned to 
reported covariates (Figure S6A). Unmeasured vari-
ability may come from clinical, demographic, or ge-
netic differences between patients, but also from 
differences in tissue biopsies mostly associated 
with location and cell composition. In studies with 
reported age and sex differences, we observed dif-
ferent contributions of these covariates to the vari-
ability of patients, which highlighted the diversity in 
experimental designs. In the case of patients with HF 
(Figure  S6B), compared with age (mean, 0.09; SD, 
0.08), or difference in sample acquisition (mean, 0.34; 
SD, 0.04), etiology had a lower mean proportion of 

explained variance (mean, 0.0698; SD, 0.0624). The 
variability in gene expression in patients with HF may 
be explained by other clinically relevant features, but 
given the lack of patient information, this could not 
be tested.

We evaluated consistency across the studies by 
comparing their transcriptional signatures using mul-
tiple metrics (Data S1, Figures S7 and S8). We found 
an almost null concordance among their differentially 
expressed genes (mean Jaccard index of the top 
500 differentially expressed genes, 0.05; Figure 2A), 
however, the top 500 differentially expressed genes 
of one study predicted well HF in each other study, 
using sample classifications based on a disease 
score (median AUROC, 0.94; Figure 2B; see Data S1, 
Figure S1). Despite technical differences, each study 
contained meaningful and complementary informa-
tion. Studies that profiled only patients with ischemic 
forms of heart failure (eg, Kong10) effectively clas-
sified studies that profiled only patients with dilated 
cardiomyopathy (eg, Spurrell19) (AUROC, 1) and vice 
versa (AUROC, 0.95). We observed no association 
between each study’s mean AUROC and their tech-
nology (Wilcoxon test, P=0.72; Figure S9A), sample 
size, or estimated proportion of variance captured 
by HF (Pearson correlation, 0.17, 0.18, respectively; 
P>0.4; Figure S9B). These results indicate that pat-
terns of coexpression of genes are more stable 
between cohorts than substantial changes in ex-
pression of specific genes.

Figure 1.  Infographic of study information.
A, Sample information availability per study: yes, information available per sample; no*, incomplete information or only summary 
statistics; no, no information available. B, Sample size comparison of studies. CT indicates control; DCM, dilated cardiomyopathy; 
and ICM, ischemic cardiomyopathy.
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To confirm that the coordination of molecular re-
sponses is conserved among studies, we tested if 
the direction of deregulation of the top differentially 
expressed genes of each study were consistent with 
their direction in the rest of the studies. Up- and 
downregulated genes of each study (500 in total) 
were enriched separately in the gene-level statistics 
of the collection of studies (Figure 2C). Differentially 
up- and downregulated genes had a median enrich-
ment score of 0.55 (Figure 2C, upper panel) and −0.56 
(Figure 2C, lower panel), respectively. We observed 
a correlation between the AUROCs of the disease 
score classifications and the enrichment scores of 
differentially expressed genes (Pearson correlations, 
0.48 and −0.59; P<10e-15, for up- and downregu-
lated genes, respectively), supporting the idea that 
even though the size effects of HF-relevant genes are 
dependent on the study (Figure  2A), their direction 

of regulation is generally consistent (Figure  2C), al-
lowing their direct comparison. We observed similar 
patterns when we selected different numbers of top 
genes (Figure  S10). These results suggest that the 
proper way to combine the evidence of the curated 
studies is by looking at the consistency of deregula-
tion of genes and not at the dimension of the change 
in expression.

Meta-Analysis of the Transcriptional 
Responses in End-Stage HF
We meta-analyzed the differential expression of 
14  041 genes using a Fisher combined probability 
test (Table  S2) to create a HF-CS that captured a 
gradient of consistently regulated genes in end-stage 
HF across multiple studies regardless of their direc-
tion (Figure 3; Figure S11). We found no correlation 

Figure 2.  Consistency of the transcriptional signal of end-stage HF among studies.
A, Pairwise comparison of the top 500 differentially expressed genes of each study using the Jaccard index. B, area under the receiver 
operating characteristic curve (AUC) of pairwise predictions using a disease score with the top 500 differentially expressed genes of 
each study. C, Enrichment score (ES) of the top 500 differentially expressed of each study in sorted gene-level statistics lists.
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between the sample size of a study and the enrich-
ment of its differentially expressed genes in the top 
of the HF-CS (Spearman correlation, 0.24; P=0.37), 
suggesting that proper experimental design and rep-
resentative sampling could compensate for study 
size.36 Similarly, we found no association between the 
enrichment of differentially expressed genes of indi-
vidual studies in the top of the HF-CS and the tech-
nology used (Wilcoxon test, P=0.4418; Figure S9A), 
reflecting consistency for all studies. A leave-one-out 
procedure (see Methods) demonstrated robustness 
of the signature (mean Jaccard index of the top 1000 
genes, 0.91), although larger discrepancies were ob-
served when the top 4 largest studies were ignored, 
as expected (mean Jaccard index of the top 1000 
genes, 0.76). Among the top 500 genes in the HF-CS 
(Figure 3B) we observed known HF markers such as 
MYH6, MME, CNN1, NPPA, KCNH2, and ATP2A2; 
extracellular-associated proteins such as COL21A1, 
COL15A1, ECM2, and MXRA5; fibroblast-associated 
protein FGF14; mast cell–associated protein KIT; and 

proteins mapped to force transmission defects like 
FNDC1, LAMA4, SSPN, or related to ion channels 
like KCNN3.

To evaluate the added value of the meta-analysis, 
we tested if the selection of the top 500 genes from 
the HF-CS defined a better transcriptional signature 
of HF than signatures obtained from individual exper-
iments of the same size (Data S1). An improvement in 
the AUROCs of classifiers based on the disease score 
was obtained (Wilcoxon paired test, P<1×10e-16), and 
the top genes of the HF-CS were consistently more 
enriched in individual lists of differentially expressed 
genes than gene signatures from individual experi-
ments (Wilcoxon paired test, P<1×10e-16). The propor-
tion of variability in gene expression explained by HF, 
controlled for other clinical and technical covariates, 
was greater for top genes than for genes in a lower 
ranking in the HF-CS (Figures S12 and S13).

To show the added value of the meta-analysis from 
a single gene perspective, we identified genes that 
were highlighted in the HF-CS but were not considered 

Figure 3.  Meta-analysis summary.
A, Sorted −log10 (meta analysis BH P values) of the 14 041 genes included in the Fisher combined test, representing the heart failure 
consensus signature (HF-CS). B, Top 500 genes sorted by their mean log fold change across all studies; black lines represent genes 
that were not measured in specific studies. A selection of HF marker genes are highlighted. BH indicates Benjamini–Hochberg.
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significantly relevant in individual studies (BH P value 
of differential expression analysis <0.1). As expected, 
highly ranked genes in the HF-CS (rank 1–500) were 
usually captured by more individual studies than lower-
ranked genes (Wilcoxon test, P<0.0001; Figure S14A). 
The highest-ranked genes in the HF-CS that were re-
ported with a BH P value of <0.1 in only 2 of 16 studies 
were TTC3, FAM98B, CCDC125, MDH1B, and WIZ. 
These genes exhibited consistency in the direction of 
deregulation (Figure S14B). As an example, TTC3’s t 
values indicate (HF-CS rank, 109) consistent upregula-
tion (Figure S14B). TTC3 has not been investigated in 
the context of HF yet, but literature suggests a role in 
myofibroblast differentiation43 and was reported to be 
transcribed to a circular RNA that elicits cardioprotec-
tive function after ischemia.44

We tested if the HF-CS captured disease processes 
that could be extrapolated to a broad range of HF etiol-
ogies including different infectious diseases (Table S1). 
We built disease score classifiers (Data S1, Figure S8) 
based on the HF-CS and used them to classify patients 

with HF in studies excluded in the meta-analysis 
(Figure S15A). Classifier performance (mean AUROC, 
0.9) indicated that many but not all genes of the HF-
CS were generalizable to HF because of diverse etiol-
ogies. Furthermore, we tested 2 additional HF studies 
with dilated cardiomyopathy and ischemic cardiomy-
opathy samples that were processed with different 
bioinformatic pipelines for disease score performance 
(Figure S15B). The perfect classifications (AUROCs, 1) 
demonstrated the robustness of the HF-CS to techni-
cal variations.

Functional Evaluation of the HF-CS
We characterized the underlying deregulated pro-
cesses of the HF-CS by estimating the activity of 
TFs, signaling pathways, and miRNAs and testing 
for enrichment of gene sets capturing various mo-
lecular processes (Table  S3). We tested a total of 
5998 gene sets, of which 77 yielded an enrichment 
in the HF-CS (global BH, P<0.25; Figure 4A). When 

Figure 4.  Functional characterization of the HF-CS: −log10 (BH P-values) coloured by direction of enrichment (A and C) or 
by direction of activation (B and D) of the top 50 (A) most enriched canonical and hallmark gene sets, (B) transcription factor 
activities, (C) miRNAs’ targets, and (D) all signaling pathway activities.
Dashed line indicates BH P=0.25. BH indicates Benjamini-Hochberg; HF-CS, heart failure consensus signature; and miRNA, micro 
RNA.
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each collection of gene sets was analyzed sepa-
rately, 148 gene sets yielded an enrichment (col-
lection BH, P<0.25, Table  S3). Positively enriched 
gene sets predominantly relate to the matrisome, 
while negatively enriched sets associated with di-
verse processes, many of which involve inflam-
mation. From the inferred transcriptional activity 
of 343 TFs (see Methods, Figure 4B), we found 65 

TFs differentially active in HF (BH P<0.25). Among 
active TFs were MEF2A-C, ARNT, and MEIS1-2. 
MEF2 family members are expressed during car-
diac development and have been described to 
be part of the fetal reprogramming in HF.45 The 
cardiac-specific depletion of ARNT resulted in an 
increased fatty acid oxidation leading to improved 
cardiac function in mice.13 MEIS1 and MEIS2 

Figure 5.  HF-CS as a reference that complements independent studies: (A) Schematic of a suggested framework.
Marker features from independent studies are enriched in the heart failure consensus signature (HF-CS) with gene set enrichment 
analysis (GSEA). Features that belong to the leading edge are further filtered, for example, by correlation or ranking in the HF-CS. B, 
Enrichment results of marker features from 4 individual studies. C, Plasma proteome of patients with HF mapped to the HF-CS. D, 
Fetal cardiac transcriptome (Spurrell19) mapped to HF-CS on gene level and (E) transcription factor (TF) level. Black dots in (C and D) 
indicate correlated features in the enrichment leading edge; labeled features in (C and D) indicate genes with a rank <500 in HF-CS. 
Black dots in (E) indicate overlap with significantly dysregulated TFs derived from the HF-CS.
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contributed to the curbing of cardiomyocyte differ-
entiation in mice and rats.46,47 Of 211 tested miR-
NAs, 15 were enriched in the HF-CS (BH, P<0.25) 
(Figure  4C). Upregulated miRNAs include mir-137, 
which has also been reported to negatively regu-
late α1-antichymotrypsin following left ventricular 
assist device treatment in myocardial tissue48 but 
has not yet been investigated for its role in end-
stage HF. Other upregulated miRNAs include mir-
513, mir105, and mir3805P, which have not been 
studied in the context of HF before. From the es-
timated signaling pathway activities (Figure  4D), 
tumor necrosis factor-α (TNFα), NF-κB (nuclear fac-
tor κ-light-chain enhancer of activated B cells), and 
androgen receptor signaling were consistently in-
active (BH, P<0.25). While TNFα levels are elevated 
in patients with HF in relation to decreasing func-
tional status,49 clinical trials targeting TNFα failed 
to improve HF outcome.50 Additionally, there is re-
cent evidence that TNFα signaling could be part 
of a physiological inflammatory response exerting 
cardioprotective effects.51,52 Downregulated path-
way activities of TNFα and NF-κB accompanied by 
decreased TF activities of RELA and NFKB1 in the 
HF-CS indicate an ambiguous role of TNFα during 
HF that has not been fully appreciated yet. Janus 
kinase signal transducer and activator of transcrip-
tion (JAK-STAT) was the only pathway with a high 
activity (BH, P<0.25). The JAK-STAT pathway is 
activated by growth factors and cytokines and is 
an imperative regulator of cardiac development 
and inflammation. The role of JAK-STAT in HF is 
ambivalently discussed,53 with evidence that JAK-
STAT is involved in cardiac hypertrophy,54 ischemic 
pre- and postconditioning,55 and cardiac fibrosis.56 
Taken together, the functional interpretation of the 
HF-CS reflects molecular and cell biology perturba-
tions that shape the pathological gene expression 
profile in HF and therefore reveals promising ob-
jects of future investigations.

HF-CS as a Resource for Biomarker 
Detection and Hypothesis Building
Finally, we tested how the HF-CS could be leveraged 
to build or confirm hypotheses from independent 
studies by comparing the dysregulation patterns of 
their reported markers (Figure 5A, Table S4). We ana-
lyzed the plasma proteome of patients with early and 
manifest HF from Egerstedt et al57 to trace their po-
tential myocardial origin. We observed a clear enrich-
ment of manifest HF proteins (GSEA, P=0.0001) and 
a modest enrichment of early HF proteins (GSEA, 
P=0.13) in the top of the HF-CS (Figure  5B). Sixty-
four plasma proteins from manifest HF were part of 
the enrichment leading edge and agreed with the 

direction of transcriptional regulation (Figure  5C). 
These candidates were investigated for reported pro-
tein expression in heart muscle tissue in the Human 
Protein Atlas58 (Figure  S16A) and tissue specificity 
(Figure S16B). Candidate markers include the estab-
lished HF marker NPPA and novel potential markers 
including CCDC80, BID, MAP2K1, MRC2, JAK2, and 
LTBP4.

Additionally, we dissected the reactivation of fetal 
gene programs in HF by analyzing 2 public fetal car-
diac transcriptomes (GSE52601, Spurrell19) and their 
estimated TF activities. Fetal transcriptional signa-
tures of both studies were enriched in the top rank-
ings of the HF-CS (GSEA, P<0.01) (Figure 5B). A total 
of 221 of the top 500 genes from HF-CS correlated 
with fetal genes reported by Spurrell19 (Figure  5D) 
while 32 TFs correlated between fetal heart and HF-
CS (Figure  5E). Similar results were observed for 
GSE52601 (Figure S17).

DISCUSSION
In this study, we present a comprehensive meta-
analysis of the HF transcriptome, analyzing and com-
paring 16 data sets, and a total of 916 samples. To our 
knowledge, this report represents the largest meta-
analysis of human HF transcriptome studies to date. 
HF is a complex disorder on both the clinical and ge-
netic levels. As such, the published work in myocardial 
transcriptomics represents a heterogeneous picture of 
transcriptional regulation in the heart with little agree-
ment on key regulated genes. In the studies included 
in this meta-analysis, clinical heterogeneity is com-
pounded by wide variability in analysis pipeline, study 
design, tissue protocol, and patient selection. Our work 
shows that despite these difficulties, combining the in-
sights of these studies provides an opportunity not only 
to robustly evaluate their reproducibility, but also to gain 
a more complete picture of transcriptional regulation.

The presented study combines gene expression 
data from microarray and sequencing technologies. 
While the measurements of both technologies differ 
fundamentally, we demonstrated that similar biological 
profiles can be captured. We focused on comparing 
and combining differential expression results across 
studies, as opposed to integrating all samples in a 
single data set. This framework prioritized molecular 
differences between phenotypes that are similar in in-
dependent patient cohorts and allowed us to reuse 
and review a large patient cohort to create the HF-
CS. However, a simplification of the transcriptome was 
necessary. We could not regard transcript isoforms 
or noncoding transcripts in this analysis, since we 
focused on ≈14 000 protein coding genes that were 
measured to similar extent by both technologies.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52601
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52601
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Our results suggest that the magnitude of changes 
in mean expression of marker genes depends highly 
on the study. We observed a 5% agreement of the top 
500 differentially expressed genes between studies. 
This disagreement cannot be explained by differences 
in gene coverage or technologies, since the intersec-
tion of profiled genes in all studies is ≈70%. However, 
patterns of gene coexpression are stable and compa-
rable among cohorts, regardless of their sample size, 
technology, and variability, allowing for their integra-
tion. Unexpectedly, studies with fewer than 10 patients 
were still able to effectively capture similar patterns of 
gene deregulation as studies with >200 patients. This 
highlights the importance of representative patient 
sampling, since it may compensate for sample size. 
Moreover, we observed that consistent coexpression 
patterns were shared among etiologies, suggesting 
that conserved disease mechanisms converge in end-
stage HF.

One strength of this study is the added robustness 
to the gene dysregulation associations found in end-
stage HF, based on integrating equally the evidence 
of a diverse collection of studies and focusing in ex-
pression patterns, rather than in the magnitude of the 
change in expression of specific genes. In this meta-
analysis, we balanced the bias of the experimental 
design and increased the sample size, while reducing 
technical variance by standardizing the bioinformat-
ics processing and analysis of each data set. Another 
strength is the proposed transfer learning framework 
that allows comparison of the patterns of gene coex-
pression of a disease phenotype of multiple patient 
cohorts. Additionally, the estimation of TF and signal-
ing activities, as well as the enrichment of molecular 
processes, provides a functional catalog of interpre-
table features that describe mechanistic processes 
that can help to explain the observed patterns of gene 
expression.

Important limitations of our study relate to the data 
used. In this meta-analysis, we included only public 
data sets from published studies. Since most of the 
studies lack complete descriptions of the individuals 
included in their cohorts, it is unfeasible to estimate 
how much of the clinical and demographic diversity of 
patients with HF is covered in our curation. As the ne-
cessity of studying HF in clinically ramified subgroups 
is becoming evident,59 the impact of comorbidities, 
medication, and disease phenotype on the gene tran-
scription profile needs to be considered. To test how 
the reported gene expression patterns associate with 
severity and progression, a deeper patient characteri-
zation is required. With this work, we aimed to encour-
age the community in the field to open the dialogue 
about secure data-sharing standards and more inclu-
sive and transparent study designs. Another import-
ant limitation of our study, and of all studies using bulk 

RNA measurements, is that they do not allow the cap-
ture of cell type–specific contributions to the disease 
processes.

We built the user-friendly free platform ReHeaT 
(Reference of the Heart Failure Transcriptome; 
https://saezl​ab.shiny​apps.io/rehea​t/) to facilitate fur-
ther use of the HF-CS. We propose 2 ways in which 
the HF-CS can be exploited. First, the genes, TF, 
and pathways provide a rich resource for interpret-
ing and understanding the transcriptional landscape 
of HF. Second, the HF-CS can be used as a trust-
worthy reference of HF to assist in hypothesis build-
ing or confirmation. Below, we discuss in detail both 
approaches.

We aimed to interpret the presented HF-CS and 
identified established hallmarks in HF, including fetal 
reprogramming, cardiac fibrosis, and activation of 
JAK-STAT. This encouraged us to highlight findings 
that have been less explored yet, like the role of active 
TFs including MEIS1-2, ARNT, RUNX2, and TEAD1 or 
the absence of TNFα signaling. These functional in-
sights, however, still require experimental validation to 
confirm their relevance.

We demonstrated the utility of the HF-CS by inte-
gration with studies analyzing the fetal transcriptome 
and the plasma proteome from patients with HF. The 
activation of a fetal gene program has been linked to 
the molecular remodeling processes in HF. However, 
detailed pathophysiology of this process is incom-
pletely understood. Our analysis provides a plethora 
of genes and TFs that might shape the fetal response 
in HF. We detected established TFs like MEF2, but 
also identified a collection of less explored TFs in-
cluding SOX2, ZBTB7A, NANOG, and ONECUT1. 
The plasma proteome of patients with HF is used to 
identify circulating biomarkers. However, tracing the 
origin of measured candidates to the heart is often 
difficult. We filtered circulating proteins on the basis 
of the HF-CS and identified the established marker 
NPPA.60 Other identified markers include Wnt mod-
ulators SFRP1 and FRZB; the latter has been asso-
ciated with HF outcome before.61 We also identify 
CXCL12 to be of potential myocardial origin, which 
is associated with stroke62 and acute HF.63 HAPLN1, 
MATN2, and COL8A1 constitute extracellular matrix 
components with, to date, an unknown role in HF. To 
suggest cardiac tissue specificity of candidates, we 
assessed protein expression in cardiac tissue. As a 
result of this, we propose CCDC80 as a promising HF 
biomarker candidate, which has been suggested to be 
secreted by cardiomyocytes in response to pressure 
overload before.64,65 BID also displayed reasonable 
cardiac tissue specificity but has not been studied in 
the context of HF yet. Other genes with reported pro-
tein expression included MAP2K1, MRC2, JAK2, and 
LTBP4. These candidates could represent biomarkers 

https://saezlab.shinyapps.io/reheat/
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of pathophysiological relevance and potential clinical 
utility.

We propose that the utility of data integration 
with more independent studies is highly promising. 
Especially with transcriptomic technologies devel-
oping toward single-cell and spatial resolution, this 
resource could help to confirm cell type–specific 
elements in a large HF population. Additionally, 
etiology-specific responses could be derived by 
comparing differences of different cohorts with our 
proposed consensus signature. As more data are 
released, the resource described in this work will be 
updated to be a trustful reference of the transcrip-
tome of HF.

In summary, we demonstrated the feasibility of 
combining gene expression data sets from differ-
ent technologies, years, and centers in a biologically 
meaningful way. We highlight the importance of data 
sharing by building a rich resource and displaying its 
utility to advance HF research. As the number of car-
diovascular high-throughput studies increases, the 
need for structured data integration is evident. We pro-
vide a reference for this purpose that is applicable to 
many other research topics within the cardiovascular 
field.
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Supplemental Methods 

Processing of transcriptomic data sets 

For microarray studies CEL files were read using R’s oligo package and normalized using Robust Multi-

array Average (RMA) 18. Probes were annotated to their corresponding HUGO Gene Nomenclature 

Committee (HGNC) gene symbols using platform specific annotations. For duplicated measurements the 

mean intensity was calculated. For RNA-Seq studies, reads were aligned using BioJupies 10. BioJupies 

works with the ARCHS4 pipeline utilizing Kallisto to map reads onto the human GRCh38 cdna reference. 

All studies have been processed by Illumina platforms except for Tarazon14, which utilized AB 5500xl 

Genetic Analyzer. Here the nucleotide sequence is coded in color space that could not be handled by the 

BioJupies pipeline and the alignment of Tarazon14 was therefore performed with R’s Rsubread package 

66, TMM normalization factors were calculated with R’s edgeR package67. All RNAseq datasets were 

transformed using voom from R’s limma package to obtain continuous measurements 17.  

 

Hannenhalli06 only provided processed data, but followed identical normalization methods. In the case of 

Kittleson05, processed data was used since raw available data was incomplete. Identical normalization 

procedures were followed. Read alignment wasn’t performed for vanHeesch19 since they only provided 

raw transcript counts, but identical normalization procedures were followed. One sample from Liu15_R 

was excluded due to technical reasons. 

 

For each experiment, sample quality was assessed by visually comparing the distribution of gene 

expression values. Multidimensional scaling was performed to visualize the separation of HF and control 

samples. No samples were excluded based on these metrics and no additional quality control was 

performed. 

https://paperpile.com/c/BUoJfz/UbieL
https://paperpile.com/c/BUoJfz/w2hIN
https://paperpile.com/c/BUoJfz/7RUQz
https://paperpile.com/c/BUoJfz/Ynth
https://paperpile.com/c/BUoJfz/crzOc


Sample variability 

To evaluate the study specific batch effects, we used principal component analysis (PCA) on the union of 

all pre-processed datasets and the genes that were shared among all the studies (Figure S4A). Each 

principal component was then tested for association with the study labels using Analyses of Variance 

(ANOVAs) (p-value < 0.05). To obtain a simple data integration we performed a z-transformation of all 

genes independently for each study including only HF-samples. Principal component analysis was 

performed on this transformation and each principal component was tested for associations with study 

or technology labels using ANOVAs (Figure S4B). t-Distributed Stochastic Neighbor Embedding was used 

for alternative visualization (Figure S4C).  

 

In an additional analysis, we first standardized (mean = 0, sd = 1) all genes independently for each study 

including all samples and then merged them into a single matrix. Principal component analysis was 

performed on this transformation and each principal component was tested for associations with study 

or technology labels using ANOVAs (Figure S5). 

 

To quantify how much of the variability of the samples within a study can be explained by the covariates 

used in their differential expression analysis, we fitted linear models to a reduced data representation 

(Figure S6). For each study, first, we standardized its gene expression and performed dimensionality 

reduction using PCA. Then we tested each principal component for association with each covariate using 

linear models. If a covariate was associated with a Principal Component (p-value < 0.05), then we 

assigned the proportion of explained variance to it. We also applied the same methodology for HF 

patients only. Underestimations of proportion of explained variance are expected in small studies, since 

the number of evaluated principal components equals the number of samples. However this is a fair 

approximation for most of the studies.  

 

Gene-specific expression variability 

We merged studies after processing and gene standardization.  Independent two-way ANOVAs were fitted 

to each gene using disease status as a first factor, and for samples with available information, sample’s 



study, transcriptional profiling technology, sex, age or occasion of sample acquisition, as a second factor. 

The proportion of explained variance of each independent variable was measured with eta-squared 

values (Figure S12). Additionally, to evaluate the bias of the HF consensus signature towards dilated 

cardiomyopathy, we performed independent two-way analysis of variance (ANOVAs) to quantify the 

amount of explained variance in gene expression that could be accounted to differences in heart failure 

etiology (Figure S13). First, we selected 8 studies in our curation that profiled sufficient ICM and DCM 

patients (at least 3 patients of each etiology). Then, for each selected study we fitted to each gene an 

ANOVA with HF and etiology as covariates. Eta-squared values of each covariate were used as a proxy of 

the proportion explained variance. 

Differential expression analysis 

Samples with incomplete clinical information from vanHeesch19 were excluded from the analysis to be 

able to account for the clinical information of the remaining samples in the DEA. We excluded the age 

information in the DEA of the samples from Kim16. Here, excluding samples with unknown age 

information would have reduced the sample size drastically. 

Between study consistency and replicability 

The disease score is an expression footprint based transfer learning approach that compares the 

observed expression patterns in the samples of one experiment (B) with the expected disease patterns 

observed in an independent sample from another experiment (A). First, for an experiment A, k 

differentially expressed genes between the healthy and disease condition are defined using linear models. 

The t-values of these k genes are used as the expected disease pattern to be used for transfer learning. 

Then, for each sample i in experiment B we calculate its disease score by making a linear combination of 

the t-values from these k genes with their expression values in sample i, for genes present in both the 

reference signature and the expression values (Figure S8). All disease scores were standardized after 

calculation. The robustness of the disease score classification and the enrichment analysis was tested 

using 50, 100, 200,  500, and 1000 differentially expressed genes (Figure S10). 



Meta-analysis 

We evaluated the importance of the top genes of the meta-ranking in the description of HF patients by 

repeating the classifications made with the disease score described before. Samples of each study were 

classified using a disease score defined by the first n or total-n genes in the meta-ranking and study-

specific t-values. AUROCs were averaged for each predicted study and n ranged from 50 to the total 

number of genes in the meta-ranking (Figure S11).  

 

To evaluate the added value of the meta-analysis, we tested if the selection of the top 500 genes from the 

consensus signature defined a better transcriptional signature of HF compared to signatures obtained 

from individual experiments. We tested if the AUROCs obtained were greater than the ones coming from 

classifications made by the top 500 genes coming from individual studies using a Wilcoxon paired test. To 

show that the top genes of the consensus signature shared a more consistent direction of differential 

regulation than signatures coming from individual studies, we separated the 500 top genes from the 

consensus signature into up and downregulated independently for each dataset , and enriched them into 

the sorted gene-level statistics of each of the other studies using Gene Set Enrichment Analysis (GSEA) as 

in Figure 2 C. We compared the enrichment scores of these pairwise comparisons to the ones obtained 

using the top 500 differentially expressed genes of individual experiments using a Wilcoxon paired test. 

Functional analysis 

Gene sets with less than 15 or more than 300 genes were excluded from the GSEA analysis. A, B, C and D 

regulons from DoRothEA with less than 20 genes were excluded from the viper analysis. Pathway 

activities were estimated using 200 footprint genes from PROGENy. Empirical p-values for PROGENy 

scores were calculated from pathways’ null distributions calculated after permuting 1000 times the labels 

of the directed-meta-ranking. BH-corrected p-values were calculated for each test and are available in 

table S3.  

 

Extrapolation of the HF consensus signature to other etiologies, HF-related processes or 

technologies. 



Studies from the query results that did not match inclusion criteria due to differences in HF etiology, 

biopsy location or profiling platform were used for further exploration of the disease score classifier 

(GSE10161, GSE4172, GSE76701, GSE84796, GSE9800, GSE52601) (Figure S15, table S1). We calculated 

the mean disease score of each sample of these excluded studies using the top 500 genes of the meta-

ranking and the gene level statistics of the studies included in the meta-analysis. AUROCs were used to 

evaluate the ability of the disease score to differentiate between healthy and HF patients in each data set.  

Additionally, we proposed a framework to use the HF consensus signature as a resource to build and 

confirm hypotheses. First, dysregulated features are identified in an independent study. Next, a test for 

enrichment of these features is performed in the HF consensus signature using GSEA. Finally, highly 

consistent features can be filtered by dysregulation direction and significance levels. We used a 

combination of the leading edge of GSEA and the ranking of the HF consensus signature. 

For the analysis of plasma biomarkers, we used the result tables from Egerstedt, et al 57 that contained 

protein-level statistics of the comparison of plasma proteomics of healthy and HF patients (manifest HF), 

and the results of the prospective analysis of proteins during HF development (early HF). Proteins that 

mapped to a gene symbol in the HF consensus signature and had a BH corrected p-value<0.01 were tested 

for enrichment as described above. For the analysis of fetal transcriptional responses (Figure S17), we 

used the expression matrices of two studies (Spurrell19, GSE52601) that compared healthy human hearts 

with fetal hearts. Differential expression analysis and estimation of TF activities of these two studies were 

performed as described before. Genes with a BH corrected p-value < 0.05 were tested for enrichment and 

TF activities with a p-value < 0.05 were compared to the ones estimated from the HF consensus signature. 

 

Statistical analysis 

All correlations and Wilcoxon paired tests were performed using stats package. sjstats package was used 

to calculate ANOVAs and eta-squared values, ROCR package was used to calculate receiver operating 

characteristic curves 68. 

Supplemental Results 

https://paperpile.com/c/BUoJfz/PyHWw
https://paperpile.com/c/BUoJfz/Dswyx


Study Description 

Gene expression of all studies was measured with RNA-seq and microarray (eight datasets each) on eight 

different platforms (table S1). The age of HF patients is noticeably younger than what would be expected, 

since HF prevalence increases with age (Figure S3). This might be connected to age restrictions in 

transplantation guidelines and LVAD treatment recommendations.  

Study Comparability 

Despite identical normalization and analysis procedures for all datasets, we visualized variation due to 

study and technology as we expected it might impact our study. In a PCA of all unified gene expression 

values after processing, 85% of the variance of the samples was explained by the first two components 

representing study of origin and applied technology (Figure S4A). These differences among cohorts 

reflect the expected inherent interaction that technical and sample heterogeneity have with gene 

expression and reinforce the importance of adjusting for technology when combining samples. Due to the 

study and technology bias of untransformed gene expression values, HF samples were z-transformed and 

again analyzed via PCA (Figure S4B). 74% of the variance captured by the principal components 

explained differences of HF samples by study (ANOVA p-value <0.05). The difference of samples by study 

was better visualized when a t-SNE was performed to this data (Figure S4C). We did not use this approach 

of data integration for any downstream analysis, due to the strong technical variation. 

  

Next, we compared studies on the level of differential gene expression (HF vs. control) to explore how 

technical and sample variability affected gene level statistics. A strong difference in the distributions of t-

values and p-values of the genes compared is visible in the largest study in our analysis (Liu15_M) (Figure 

S7). This difference in distributions persists after adjustment for all available clinical covariates, though it 

is consistent with expectations based on study sample size. These results together establish expected bias 

among datasets, likely dependent on technical differences rather than biology. 

Gradient of information in the meta-analysis 

We tested the performance of sample classifiers using different numbers of top genes from the consensus 

signature with our previously defined disease score. We observed a constant decrease in the mean AUROCs 



of classifiers that excluded genes at the top of the consensus signature or included genes at the bottom 

(Figure S11), confirming that a gradient of meaningful information is present in this ranking. 

Gene-level variability 

A series of independent two-way ANOVAs were fitted to a complete data set that combined each 

study individually after gene-standardization to quantify the proportion of variability in gene 

expression that can be explained by HF and other clinical or technical covariates (Figure S12). Gene 

standardization cancels the effect that the study of origin and technology have on gene expression 

(Figure S5) and can be confirmed by the low eta-squared values in all genes (Figure S12 upper 

panels). For the top 500 genes in the meta-ranking we observed a higher eta-squared value for HF 

than any other additional clinical covariate (Figure S12 lower panels), suggesting that the expression 

of top-ranked genes in our consensus transcriptional signature is mostly influenced by HF than any 

other covariate measured in the analysis. Similar trends were observed when analyzing the effects of 

etiology differences in individual studies (Figure S13). 

 

  



Supplemental Tables – see Excel files 

 

Table S1. Complete description of the studies included in the meta-analysis. 

 

Table S2. Summary statistics and rankings from the meta-analysis. 

 

Table S3. Functional characterization of the consensus signature. GSEA gene set level statistics for 

MSigDB’s canonical pathways and gene ontology terms, DoRothEA’s transcription factor level statistics, 

PROGENy’s signalling pathway level statistics, and micro-RNA level statistics. 

 

Table S4. Full results from validation analysis.  

 

 

 



Figure S1. Schematic representation on how the disease score was defined. AUROC, area under the 

receiver operating characteristic. HF, heart failure.  

 

 

 

 

 

 

 



 

 

Figure S2. Overview of gene coverage of studies included in meta-analysis. 

 

A) Absolute gene coverage per study after processing. B) Pairwise comparison of covered genes measured 

with Jaccard Index.   



Figure S3. Age and sex distribution per study. 

 

 

A) Age distribution in years of control (CT) and heart failure samples (HF) per study. Displayed is mean and 

standard deviation. B) Sex of patients in % per study.  



Figure S4. Differences in samples included in the study. 

 

A) First two components from a Principal Component Analysis (PCA) done to all samples 

B) First two components from a PCA done to all z-transformed heart failure samples 

C) t-distributed stochastic neighbor embedding of all z-transformed heart failure simples 

  



Figure S5. Principal Component Analysis of all samples analyzed after gene standardization. 

The scatter plot shows the first two principal components and the percentage of variance explained by 

them. In the table is showed the cumulative proportion of variance that is explained by components 

associated to Heart Failure and study (Analysis of variance, p-value<0.05)  



Figure S6. Contribution of the covariates to the variability of individual studies. 

 

 

Estimated proportion of explained variance associated with the different covariates used in the differential 

expression analysis (See Supplemental Methods) in A) all patients and B) only heart failure.  patients. Grey 

tiles represent missing reported data. HTx, heart transplantation 

 



Figure S7. Distributions of -log10(p-values), t-values and log2(fold-changes) [LFC] from the 

differential expression analysis of all genes measured in each study. 

 

  



Figure S8. t-values from the differential expression analysis of genes that are established as 

dysregulated in heart failure (HF). 

 

Expected up and downregulated genes are in the left and right panel, respectively. 

 

 

 

 

 

 

 

 

 

  



Figure S9. Comparison of the studies included in the meta-analysis. 

 

A) Distribution of predictor performances and enrichment of differentially expressed genes in the heart 

failure consensus signature (HF-CS) grouped by technology. In the left panel each dot represents the 

mean area under the receiver operating characteristic curve (AUROC) of the disease score classifier 

trained in a study and tested in the rest (See Methods). In the right panel each dot represents the 

enrichment scores of the top 500 differentially expressed genes of the study in the HF-CS. B) Relationship 

between the predictive performance of each study and its proportion of explained variance associated 

with HF (See Supplemental Methods, Figure S6) and sample size. 

 

 

 

 



 

 

 

Figure S10. Test of robustness of the replicability measures used to compare the studies included 

in the meta-analysis. 

 

 

Each dot represents a pairwise comparison using: 

A) Jaccard Index 

B) Disease Score 

C) Enrichment Score 

  



Figure S11. Mean area under the receiver operating characteristic curve (meanAUC) of predictions 

using the disease score with n (left panel) or total-n (right panel) genes of the consensus signature 

from the meta-analysis and gene-level statistics of all studies except the one being predicted to 

avoid overfitting. 

 

 

 

The line shows where we defined the cut-off for the rest of the tests (500). A general decrease of the 

meanAUC is observed as top genes of the meta-analysis are excluded from the calculation of the disease 

score.  

  



Figure S12. Proportion of gene expression variance explained by heart failure (HF) and additional 

clinical and confounding factors. 

 

 

Each vertical panel shows the results of an independent 2-way analysis of variance with HF and another 

clinical or technical covariate, from an integrated gene standardized data set that only included samples 

with available information. Upper panels show the proportion of explained variance from each factor as 

shown by their eta-squared values. Lower panels show the difference in the proportion of variance 

explained by HF between the top 500 genes of our consensus signatures and the rest. 

  



Figure S13. Proportion of gene expression variance explained by heart failure HF and etiology (DCM 

[dilated cardiomyopathy] or ICM [ischemic cardiomyopathy]). 

 

Each panel shows the results of independent 2-way ANOVAs fitted to the top 500 genes from the heart 

failure consensus signature with HF and DCM as covariates. Each dot represents a different gene and the y-

axis is the eta-squared value of each covariate in the ANOVA model.  



Figure S14. Added value of the heart failure consensus signature (HF-CS) on single gene level. 

 

A) Histogram of genes that were reported by single studies (with adj. p-value <0.1), grouped by HF-CS rank 

< 501 (upper panel) and rank between 501-5000 (lower panel). Distribution of both groups varies 

significantly (p-value <0.0001, Wilcoxon test). B) Genes that were reported by only 2 individual studies 

(adj. p-value <0.1) and with a HF-CS rank < 500. Single study t-values are displayed for each gene to 

visualize consistency in expression. 

 

 

 



Figure S15. Disease score calculation based on the top 500 genes from the consensus signature for 

diverse heart failure (HF) studies.   

 

 

A) HF with diverse etiologies: aortic stenosis (GSE10161); PVB19 infection (GSE4172); chagas disease 

(GSE84796); eosinophilic myocarditis, alcoholic cardiomyopathy, hypertrophic cardiomyopathy, 

sarcoidosis, peripartum cardiomyopathy, ischemic cardiomyopathy (ICM), dilatative cardiomyopathy 

(DCM) (GSE84796). B) HF studies with ICM and DCM samples but processed with different bioinformatic 

pipelines (GSE3586, GSE52601). 

 

 

 



Figure S16. Biomarker candidates and their expression in the Human Protein Atlas (HPA). 

 

A) Relevant biomarker candidates taken from figure 5 and analyzed for their reported protein expression 

in heart muscle tissue in the HPA. Protein expression was reported for genes labeled in red including 

PRDX6, LTBP4, BID, BOC, NPPA, MAP2K1, JAK2 with a rank in the heart failure consensus signature (HF-

CS) < 500 and CCDC80, MAPKAPK2, MRC2, HNRNPAB with rank between 500-1000. Expression of FRZB, 

TIMP3, F3 and DPT were not assessed by the HPA. B) Assessment of tissue specificity of protein expression 

using the HPA. The total number of measured non-cardiac tissues in the HPA per candidate ranged between 

46 and 48. Tissue specificity was calculated as the ratio of tissues not expressing the protein (Low or Not 

detected) to the total number of measured tissues. NPPA is not expressed in any non-cardiac tissue. CCDC80 

and BID are showing high to moderate specificity while HNRNPAB is suggested to be unsuitable for a 

cardiac biomarker as it is reported in all non-cardiac tissues.  

 



Figure S17. Heart failure consensus signature (HF-CS) as a reference that complements 

independent studies. 

 

 

A) Disease score calculation for fetal experiments Spurrell19 and GSE52601. CT, control (adult non failing 

heart samples); fetal, fetal heart samples. See supplemental methods for details. B) Significant genes in 

GSE52601 mapped to the HF-CS. Black dots indicate correlated genes in the enrichment leading edge. 

Labels indicate genes with a rank < 500 in HF-CS and adjusted p-value < 10e-4.3.  C) Significant 

transcription factors (TFs) in GSE52601 mapped to TFs derived from the HF-CS. Black dots and labels 

indicate significant and correlated TFs in GSE52601 and HF-CS. D) Plasma proteome of early heart failure 

patients mapped to the HF-CS. All plasma proteins are displayed. Black dots and labels indicate correlated 

proteins with a rank < 500 in the HF-CS. 


