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Deep Learning in Proteomics

Bo Wen,* Wen-Feng Zeng, Yuxing Liao, Zhiao Shi, Sara R. Savage, Wen Jiang,
and Bing Zhang*

Proteomics, the study of all the proteins in biological systems, is becoming a
data-rich science. Protein sequences and structures are comprehensively
catalogued in online databases. With recent advancements in tandem mass
spectrometry (MS) technology, protein expression and post-translational
modifications (PTMs) can be studied in a variety of biological systems at the
global scale. Sophisticated computational algorithms are needed to translate
the vast amount of data into novel biological insights. Deep learning
automatically extracts data representations at high levels of abstraction from
data, and it thrives in data-rich scientific research domains. Here, a
comprehensive overview of deep learning applications in proteomics,
including retention time prediction, MS/MS spectrum prediction, de novo
peptide sequencing, PTM prediction, major histocompatibility
complex-peptide binding prediction, and protein structure prediction, is
provided. Limitations and the future directions of deep learning in proteomics
are also discussed. This review will provide readers an overview of deep
learning and how it can be used to analyze proteomics data.

1. Introduction

Mass spectrometry (MS) has been widely used for both un-
targeted and targeted proteomics studies. For untargeted pro-
teomics, all proteins extracted from a sample are digested
into peptides and then injected into a liquid chromatography-
tandem mass spectrometry (LC-MS/MS) system for detection
using the data-dependent acquisition (DDA) method or the
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data-independent acquisition (DIA)
method. In contrast, targeted proteomics
only detects selected proteins of interest
using the multiple reaction monitor-
ing (MRM) method (also known as
selected reaction monitoring) or parallel
reaction monitoring (PRM) method.
With advancements of both LC and
MS technologies in recent years, large
volumes of MS/MS data have been gen-
erated. A typical DDA or DIA experiment
can produce hundreds of thousands
of MS/MS spectra. Sophisticated algo-
rithms and tools are required for raw
data processing, data quality control,
peptide and protein identification and
quantification, post-translational modifi-
cation (PTM) detection, and downstream
analyses. Due to these computational
requirements, machine learning meth-
ods have been widely used in many
aspects of proteomics data analysis.[1–3]

Deep learning is a sub-discipline of machine learning. It
has advanced rapidly during the last two decades and has
demonstrated superior performance in various fields including
computer vision, speech recognition, natural-language process-
ing, bioinformatics, andmedical image analysis. Deep learning is
based on artificial neural networks with representation learning
that aim to mimic the human brain. The key difference between
deep learning and traditional machine learning algorithms such
as support vector machine (SVM) and random forests (RF) is
that deep learning can automatically learn features and patterns
from data without handcrafted feature engineering. Therefore,
deep learning is particularly suited to scientific domains where
large, complex datasets are available.
Deep learning has already been applied to various aspects of

biological research, including analyses of medical image data,
gene expression data, DNA and protein sequence data.[4] A num-
ber of reviews have been published to provide an overview of deep
learning applications in biomedicine,[5] clinical diagnostics,[6]

bioinformatics,[7] and genomics.[8]

The aim of this paper is to provide the proteomics community
a comprehensive overview of deep learning applications for the
analysis of proteomics data. We first introduce fundamental
concepts in deep learning. We then present a survey of major
applications including retention time (RT) prediction, MS/MS
spectrum prediction, de novo peptide sequencing, PTM predic-
tion, major histocompatibility complex (MHC)-peptide binding
prediction, and protein structure prediction (Figure 1). Finally,
we discuss future directions and limitations of deep learning in
proteomics.
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Figure 1. Overview of the key components of deep learning and its applications in proteomics.

2. Basic Concepts in Deep Learning

Deep learning seeks to learn the representation of data through
a series of successive layers of increasing abstraction.[9] These
layered representations are learned via models called artificial
neural networks (ANNs). ANNs, where many simple units called
neurons are connected to each another with different weights,
simulate the mechanism of learning in the human brain. These
weights serve the same role as the indication of strengths be-
tween synaptic connections in biological organisms. Training

a neural network requires the following components: training
samples with input data (e.g., peptide sequences) and matching
targets (e.g., retention times of the peptides), a network model, a
loss function, and an optimization method. The network model,
with multiple layers connected together, maps the input data to
predictions. A loss function then computes a loss value which
measures how well the network’s predictions match the expected
outcomes by comparing these predictions with the targets. The
optimization method uses this loss value as a feedback signal
to incrementally adjust the weights of the network connections
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in order to optimize the model. This method of finding optimal
weights for the neural network is called backpropagation.[9] The
target variable can be categorical or continuous. Whereas the for-
mer corresponds to classification problems, the later corresponds
to regression problems.
One important aspect of deep learning, or machine learning

in general, is data preprocessing or input encoding to make raw
data, such as peptide or protein sequences, more amenable to the
models. Typically, all input and output variables are required to be
numeric. MS/MS spectra can be simply discretized to produce an
intensity vector.[10] For sequence-based data such as peptide and
protein sequences, the sequence is first segmented into tokens
(amino acids) and then each token is associated with a numeric
vector. There are multiple ways to associate a vector with a to-
ken (Figure 1). One of the simplest and most widely used meth-
ods is called one-hot encoding where each amino acid is repre-
sented by a unit binary vector of length n, containing a single one
and n-1 zeros (e.g., [1,0,0, …, 0] for one amino acid and [0,1,0, …,
0] for another amino acid). This solution treats all amino acids
equally without using any prior knowledge. Another approach is
to use the BLOcks SUbstitution Matrix (BLOSUM) for encoding,
representing each amino acid by its corresponding row in the
BLOSUMmatrix.[11] Instead of treating all amino acids indepen-
dently, the BLOSUMmatrix derived fromprotein sequence align-
ments keeps the evolutionary information about which pairs of
amino acids are easily interchangeable during evolution. This in-
formation may be useful in certain applications such as MHC-
peptide binding prediction. Another way to encode amino acid se-
quences is the use of dense numeric vectors, also called word em-
bedding, which is widely used in natural language processing.[12]

Unlike the sparse vectors obtained via one-hot encoding where
most elements are zero, these vectors could be learned from
large unlabeled protein datasets, such as all sequences pulled
from theUniProt database, in an unsupervisedmanner.[13] These
vectors could also be learned jointly with the main task (e.g.,
RT prediction or MHC-peptide binding prediction) in the same
way that the weights of the neural network of the main task are
learned.[14] This type of encodingmethod has been demonstrated
to be extremely useful in certain tasks.[12,14–16] Before encoding a
sequence as dense numeric vectors, the sequence is typically rep-
resented as an integer vector in which each token is represented
by a unique integer. The final method is to design handcrafted
features and then take these features as input for modeling. This
is the most common method used in traditional machine learn-
ing and is different from the previous three methods, in which
handcrafted feature engineering is typically not required.
The behavior of neural networks is largely shaped by its net-

work architecture. A network’s architecture can generally be char-
acterized by: 1) number of neurons in each layer, 2) number
of layers, and 3) types of connections between layers. The most
well-known architectures include: deep neural networks (DNNs),
convolutional neural networks (CNNs), and recurrent neural net-
works (RNNs) (Figure 1). In this review, DNNs refer to networks
that consist of an input layer, multiple hidden layers and an out-
put layer. Nodes from adjacent layers are fully connected with
each other. CNNsmainly consist of convolutional layers and pool-
ing layers, frequently followed by a number of fully connected
layers. One of the key processes of CNNs is to slide a filter over
the input (such as an image or a sequence), where different

filters can capture different patterns in the input data. CNNs have
been widely used in the analysis of medical image data and have
also been applied to DNA and protein sequence data.[4] Unlike
CNNs, RNNs process an input sequence one element at a time
step by using recurrent and cyclic connection units, and the out-
put for each step depends not only on the current element but
also on previous elements. RNNs can capture long-range interac-
tions within the sequence and are well-suited tomodel sequential
data such as DNA or protein sequences. For example, if an input
sequence is a peptide or protein sequence, each element could be
an amino acid.
Conventional RNNs typically suffer from what are called the

vanishing and exploding gradient problems when the sequence
is very long.[17] Although it is theoretically capable of retaining
the information about inputs seen many time steps earlier at
time step t, in practice, such long-term dependencies are diffi-
cult to learn. This happens when the gradients used to update
the weights become extremely small or large and do not con-
tribute to the learning process or render the model too unstable
for continued learning. In other words, the RNNs become un-
trainable. To overcome this, novel network architectures such as
long short-term memory units (LSTMs)[18] and gated recurrent
units (GRUs)[19] were proposed. They have internal mechanisms
called gates that can regulate the flow of information. These gates
can learn which data in a sequence is important to keep or dis-
card, thus preventing older signals from gradually vanishing or
exploding during processing. To allow RNNs to have both back-
ward and forward information about the sequence at every time
step, two independent RNNs can be used together to form a new
network called bidirectional RNN (BiRNN). The input sequence
is fed in normal order for one RNN, and in reverse order for the
other one. The outputs of the two RNNs are then concatenated
at each step. If LSTMs or GRUs are employed, it is then called
bidirectional long short-term memory (BiLSTM) or bidirectional
gated recurrent unit (BiGRU), respectively.
Other newer network architectures are being continuously

developed. For example, capsule networks (CapsNets)[20] group
neurons in each layer into multiple capsules, allowing better
modeling of hierarchical relationships inside a neural network. A
deep learning algorithm may also combine different types of ar-
chitectures in a network. For example, combining CNN and RNN
(LSTM or GRU) in one network could leverage the strengths of
both architectures to achieve better performance than just using
one of them.
Deep learning has already been used in a number of pro-

teomics applications (Figure 1), in which the overall workflow de-
scribed above is generally applicable. However, individual tasks
may require additional customization.

3. Deep Learning for Retention Time Prediction

In MS-based proteomics experiments, peptide mixtures are
typically separated via an LC system prior to analysis by MS. The
retention time of a peptide refers to the time point when the pep-
tide elutes from the LC column in an LC-MS/MS system, which
is recorded by the instrument. Retention time of a peptide is
determined by the degree of the peptide interaction with the sta-
tionary and mobile phases of the LC system. The retention time
of peptides is highly reproducible under the same LC conditions.
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Table 1. List of deep learning-based retention time prediction tools.

No. Software Framework Core network model Input encoding Usability
a)

Year Reference

1 DeepRT PyTorch CNN Word embedding O,C,P,T 2018 [44]

2 Prosit Keras/TensorFlow RNN Word embedding O,C,W,P,T 2019 [29]

3 DeepMass Keras/TensorFlow RNN One-hot - 2019 [45]

4 Guan et al. Keras/TensorFlow RNN One-hot O,C,P,T 2019 [46]

5 DeepDIA Keras/TensorFlow CNN+RNN One-hot O,C,P,T 2020 [30]

6 AutoRT Keras/TensorFlow CNN+RNN One-hot O,C,P,T 2020 [25]

7 DeepLC TensorFlow CNN One-hot, global features, amino/diamino acids composition O,G,C,P,T 2020 [47]

a)
O, open-source; G, graphical user interface; C, command line; P, provide trained model for prediction; W, web interface; T, provide option for model training. The link of

each tool could be found at https://github.com/bzhanglab/deep_learning_in_proteomics.

Accurately predicted retention times have several applications
in MS-based proteomics, including 1) improving sensitivity of
peptide identification in database searching,[21–24] 2) serving as
a quality evaluation metric for peptide identification,[25–28] 3)
building spectral libraries for DIA data analysis,[29–33] and 4)
facilitating targeted proteomics experiments.
Studies of peptide RT prediction can be tracked back to the

1980s[34,35] with studies continuing to focus on improving RT pre-
diction to this day.[21,25,29,36–39] Methods for peptide RT prediction
can be divided into two primary categories: index-basedmethods,
such as SSRCalc,[40,41] and machine learning-based methods.
Machine learning-based methods can be further divided into
two sub groups: traditional machine learning-based methods
including Elude[42,43] and GPTime,[38] and deep learning-based
methods including DeepRT,[44] Prosit,[29] DeepMass,[45] Guan
et al.,[46] DeepDIA,[30] AutoRT,[25] and DeepLC.[47] As shown
in Table 1, deep learning-based tools can be divided into three
groups based on the type of neural network architecture used:
RNN-based, CNN-based, and hybrid networks, with RNN as the
dominant architecture because it was developed for sequential
data modeling. Several of these tools also have a separate module
for MS/MS spectrum prediction (see next Section).
Prosit is a representative tool of the RNN-based group. In

Prosit, a peptide sequence is represented as a discrete integer
vector of length 30, with each non-zero integer mapping to one
amino acid and padded with zeros for sequences shorter than 30
amino acids. The padding operation forces all encoded peptides
to have the same length. The deep neural network for RT predic-
tion in Prosit consists of an encoder and a decoder. The encoder
encodes the input peptide sequence data into a latent representa-
tion, whereas the decoder decodes the representation to predict
RT. The peptide encoder consists of an embedding layer, a Bi-
GRU layer, a recurrent GRU layer, and an attention layer.[48] The
learned representation of the input peptides captures the intrin-
sic relations of different amino acids. The decoder connects the
latent representation learned from the encoder to a dense layer to
make predictions. Prosit was shown to outperform SSRCalc and
Elude for RT prediction in the original study.[29] The RT predic-
tion method proposed in DeepMass is also based on RNN archi-
tecture. DeepMass uses one-hot encoding for peptide sequence
representation, and the network includes a BiLSTM layer and an-
other LSTM layer followed by two dense layers. DeepMass was
compared to SSRCalc in the original study and showed supe-
rior performance.[45] The RT model proposed by Guan et al.[46] is

similar to DeepMass; however, it uses two BiLSTM layers, and a
masking layer is used to discard padding sequences during train-
ing and prediction.
Both DeepRT and DeepLC use CNN-based architectures, with

DeepRT specifically using a CapsNet which is a variant of CNN.
Similar to Prosit, DeepRT includes an embedding layer as the
first layer of the neural network. In contrast, DeepLC uses a stan-
dard CNN framework. A unique feature of DeepLC, compared
with all other tools in Table 1, is the ability to predict RT for pep-
tides with modifications that are not present in the training data.
This is mainly achieved by using a new peptide encoding based
on atomic composition. Specifically, each peptide is encoded as a
matrix with a dimension of 60 for the peptide sequence by 6 for
the atom counts (C, H, N, O, P, and S). For a peptide with a length
shorter than 60 amino acids, it will be padded with the charac-
ter “X” without atomic composition to make it the same length
of 60. For modified amino acids, the atomic composition of the
modification is added to the atomic composition of the unmodi-
fied residue. In addition to this encoding, a peptide is further en-
coded in three additional ways to capture other position-specific
information and global information. The four encoding results
are fed into the network through different paths. The last part of
the network consists of six connected dense layers, which take
as input the outputs from the previous paths. DeepLC showed
comparable performance to the state-of-the-art RT prediction al-
gorithms for unmodified peptides and achieved similar perfor-
mance for unseen modified peptides to that for the unmodified
peptides.[47]

Other RT prediction models, such as DeepDIA and a model
we developed called AutoRT, combine both CNN and RNN
in the same networks. In DeepDIA, one-hot encoded peptide
sequences are fed into a CNN network, which is followed by a
BiLSTM network. AutoRT uses a similar strategy to combine
CNN and RNN networks, but GRU rather than LSTM is used.
One unique feature of AutoRT is the use of a genetic algorithm to
enable automatic deep neural network architecture search (NAS),
through which the ten best-performing models are identified
and ensembled for RT prediction. NAS is a fast growing research
area. The architectures from NAS have been demonstrated to be
on par with or outperform hand-designed architectures in many
tasks.[49,50] Another feature of AutoRT is the use of transfer
learning. Specifically, base models are trained using a large pub-
lic dataset (>100 000 peptides), and then the trained base models
are fine-tuned using data from an experiment of interest to
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develop experiment-specific models. By leveraging large public
datasets, transfer learning makes it possible to obtain a highly
accurate model even with a small size of experiment-specific
training data (≈700 peptides). This is very useful because only a
few thousand peptides may be identified in a single run in many
experiments.[25]

Accurate RT predictions from deep learning models have
led to promising applications. For example, we used the dif-
ference (ΔRT) between AutoRT predicted RT and experimen-
tally observed RT for each identified peptide as an evalua-
tion metric for comparing different quality control strategies
for variant peptide identification.[25] The evaluation results pro-
vide insights and practical guidance on the selection of qual-
ity control strategies for variant peptide identification. Simi-
larly, Li et al.[51] used ΔRT derived from AutoRT prediction as
a feature to rescore peptide spectrum matches (PSMs) in the
analysis of immunopeptidomics data. Interestingly, rescoring
with AutoRT led to significantly improved sensitivity of pep-
tide identification, while rescoring with the ΔRT feature derived
from the traditional machine learning-based tool GPTime only
showed minor improvement.[51] Deep learning-based RT predic-
tion can also be used together with MS/MS spectrum predic-
tion to build an in silico spectral library for DIA data analysis,
as demonstrated in a few recent studies.[30–32] Deep learning-
based RT prediction has not been used in any published tar-
geted proteomics studies, but we expect this to change in the near
future.
Although significant improvement has been made for peptide

RT prediction using deep learning, RT prediction for peptides
with modifications remains a major challenge. Some existing
models consider a few common artifactual modifications, such
as oxidation of methionine.[25,46] In these models, modified and
unmodified amino acids are processed equally. These models
can be used to predict RT for peptides containing these modi-
fications, but the prediction errors are likely to be higher than
those for peptides without modification due to the relative low
frequency of modified amino acids in the training data. DeepLC
is the only model that can predict RT for peptides containing
modifications not present in the training data. However, the
performance of RT prediction for the modifications that are
chemically very different from anything encountered in the
training set, such as phosphorylation, is obviously lower than
others. Moreover, peptide encoding considering atomic com-
position cannot differentiate between isomeric structures that
are physicochemically different. RT prediction for peptides with
complicated modifications such as glycosylation is even more
difficult. There is no deep learning-based tool reported to predict
RTs for intact glycosylated peptides yet. Thus, new training
strategies or deep learning networks are needed to improve RT
prediction for peptides with modifications. Moreover, all existing
deep learning-based tools are developed for RT prediction of
linear peptides. They cannot be used for RT prediction for
cross-linked peptides generated using cross-linking mass spec-
trometry, in which two peptides are typically connected to form
a cross-linked peptide. RT prediction of cross-linked peptides
using deep learning will require the design of new frameworks
as well as new peptide encoding methods. Moreover, it may also
be difficult to generate enough cross-linked peptides for model
training.

4. Deep Learning for MS/MS Spectrum Prediction

In a typical MS/MS-based proteomics experiment, hundreds of
thousands of MS/MS spectra can be generated. Information
in an MS/MS spectrum generated from bottom-up proteomics
consists of mass-to-charge ratios (or m/z) and intensities of a
set of fragment ions generated from digested peptides using
methods like collision induced dissociation (CID), higher-energy
collisional dissociation (HCD) or electron-transfer dissociation
(ETD).[52] The patterns of an MS/MS spectrum for a peptide
(the m/z and intensities of fragment ions, and their types) are
mainly determined by a few key factors including: 1) The type of
MS instrument as well as the fragmentation method (e.g., CID,
HCD, or ETD) used to fragment peptides and its setting, such
as normalized collision energy (NCE), 2) peptide sequence, and
3) the precursor charge state of the peptide.[29,53] Peptide identi-
fication relies primarily on the patterns of these fragment ions.
Although the mechanism underlying peptide fragmentation is
complicated and still not well-understood, these patterns are re-
producible and, in general, predictable as demonstrated by many
studies.[54–57]

A number of tools have been developed to predict MS/MS
spectra from peptide sequences. These methods can be divided
into hypothesis-driven methods and data-driven methods. Sev-
eral hypothesis-driven algorithms have been developed based
on the mobile proton hypothesis, which is a widely accepted
hypothesis to study peptide fragmentation pathways in tan-
dem mass spectrometry.[58–61] MassAnalyzer is a popular tool
in this category.[58] Data-driven methods, or more generally
machine learning-based methods, include traditional machine
learning-based tools, such as PeptideART,[55,62] MS2PIP,[63–65]

MS2PBPI,[66] and other tools,[67,68] and deep learning-based
tools as shown in Table 2, such as pDeep,[57,69] Prosit,[29]

DeepMass:Prism,[45] MS2CNN,[70] DeepDIA,[30] Predfull[56] and
the model proposed in Guan et. al[46] (Figure 2). Deep learning
models have been demonstrated to outperform both traditional
machine learning models and hypothesis-driven methods. The
spectra predicted by deep learning models are highly similar to
the experimental spectra. Remarkably, the similarities between
deep learning predicted spectra and corresponding experimental
spectra are very close to the average similarities between repli-
cated experimental spectra for the same peptides.[56,57]

pDeep consists of two BiLSTM layers followed by a time-
distributed fully connected output layer, and it takes a one-hot
encoded peptide sequence and corresponding precursor charge
state of the peptide as inputs and outputs intensities of differ-
ent fragment ion types at each position along the input peptide
sequence[57] (Figure 2). pDeep was first developed based on built-
in static LSTMAPIs in Keras that only accept an input peptide se-
quence with a predefined fixed length (20 in the original paper).
When a peptide sequence is shorter than the predefined length,
“zeros” are padded into the sequence and masked by a masking
layer. On the other hand, peptides that are longer than the pre-
defined length will be discarded with no prediction. pDeep2 im-
proves the original version by using the dynamic BiLSTM API in
TensorFlow, which dynamically unrolls the recurrent cell based
on the length of the input sequences to overcome the length
limitation.[69] Dynamic LSTM can also avoid the calculation for
extra “zero” padded sequences, which potentially improves the
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Table 2. List of deep learning-basedMS/MS spectrum prediction tools. The fragment ion type supported by each tool is summarized based on its original
publication and available trained models.

No. Software Framework Core network
model

Fragment ion type Usability
a)

Year Reference

1 pDeep/pDeep2 Keras/TensorFlow RNN b/y; c/z O,C,P,T 2017/2019 [57, 69]

2 Prosit Keras/TensorFlow RNN b/y O,C,W,P,T 2019 [29]

3 DeepMass:Prism Keras/TensorFlow RNN b/y W 2019 [45]

4 Guan et al. Keras/TensorFlow RNN b/y O,C,P,T 2019 [46]

5 MS2CNN Keras/TensorFlow CNN b/y O,C,P 2019 [70]

6 DeepDIA Keras/TensorFlow CNN+RNN b/y O,C,P,T 2020 [30]

7 Predfull TensorFlow CNN All possible ions at
all m/z axises

O,C,W,P,T 2020 [56]

a)
O, open-source; C, command line; P, provide trained model for prediction; W, web interface; T, provide option for model training. The link of each tool could be found at

https://github.com/bzhanglab/deep_learning_in_proteomics.

prediction speed. In order to predict MS/MS spectrum for modi-
fied peptides without sufficient training data, pDeep2 uses trans-
fer learning to train PTMmodels on top of the base model devel-
oped for unmodified peptides. The prediction performance for
modified peptides is comparable to that for unmodified peptides.
In pDeep2, a modification is represented as a feature vector of
length eight based on its chemical composition (e.g., the chemi-
cal composition of phosphorylation which often occurs on serine
(S), threonine (T), or tyrosine (Y) is HPO3, thus it is encoded
as a feature vector [1,0,0,3,0,1,0,0]). This is similar to how mod-
ifications are encoded in DeepLC. With this encoding scheme,
pDeep2 models can be used to predict spectra for peptides with
modifications that are not present in the training data. However,
the prediction performance for those peptides is very low with-
out using transfer learning. In addition to one-hot encoded pep-
tide sequences, associated feature vectors of modifications, and
corresponding precursor charge states of the peptides, other as-
sociated metadata including the instrument type and the colli-
sion energy are also encoded as inputs. Including peptide asso-
ciated metadata in the modeling process allows the application
of the resulted models to different MS instruments and settings,
thus avoiding the need to train models for each combination of
MS experiment parameters. The model used by Guan et al.[46]

for MS/MS spectrum prediction is similar to pDeep except for
slightly different input and output structures.
Both Prosit and DeepMass:Prism are also BiRNN-based net-

works. Prosit uses a BiGRU network, whereas DeepMass:Prism
uses a BiLSTM network. Similar to pDeep2, peptide sequences
along with associated metadata are encoded as input. A pep-
tide sequence is encoded using one-hot encoding in Deep-
Mass:Prism, whereas it is represented as a discrete integer vector
for feeding into an embedding layer of the network in Prosit. Both
tools use a fixed length of peptide encoding. In other words, the
trained models from the two tools cannot make predictions for
any peptides with a length exceeding the longest peptide in the
training data.
MS2CNN is based on CNN rather than RNN (LSTM or GRU).

A single CNN model based on the network structure of LeNet-
5[71] is constructed to predict MS/MS spectra for peptides of
a specific length and precursor charge state. Unlike the above
models, MS2CNN uses handcrafted features of peptides as input
instead of learning peptide representation directly from peptide

sequences. The features used in MS2CNN include peptide com-
position (similar to amino acid composition), mass-to-charge
ratio (m/z), and peptide physicochemical properties such as
isoelectric point, instability index, aromaticity, secondary struc-
ture fraction, helicity, hydrophobicity, and basicity. Because
peptide associated metadata are not used in the modeling, the
models can only be applied to data generated under matched
experiment conditions.
DeepDIA uses a hybrid CNN and BiLSTMnetwork forMS/MS

spectra prediction. This model is similar to the one used for RT
prediction in DeepDIA. A peptide sequence is encoded using
one-hot encoding. Separate models are required to be trained for
different MS conditions and peptide precursor charge states.
All of the aforementioned methods aim to predict the intensi-

ties of expected backbone fragment ion types (e.g., b/y ions for
CID and HCD spectra, c/z ions for ETD spectra, as well as their
associated neutral losses). However, besides the backbone frag-
ment ions, MS/MS spectra could contain many additional frag-
ment ions that are derived from peptide fragmentation rather
than background noise.[56,72] These fragment ions are typically
ignored in spectra annotation and PSM scoring. A recent study
showed that these fragment ions could account for ≈30% of to-
tal ion intensities in HCD spectra.[56] Some of the ignored ions
with high intensity may be informative and thus can be used
to improve peptide identification. Predfull utilizes a generalized
sequence-to-sequence model based on the structure of the resid-
ual CNN and a multitask learning strategy to predict the intensi-
ties for all possiblem/z from peptide sequences without assump-
tions or expectations on which kind of ions to predict.[56] Each
MS/MS spectrum in the training data is represented as a sparse
1D vector by binning the m/z range between 180 and 2000 with
a given bin width so that all the peaks in an MS/MS spectrum
are used in the training. This is fundamentally different from
other tools in which only the annotated backbone ions are used
for training. In addition, a multitask learning strategy is used in
Predfull to improve the prediction accuracy for spectra with in-
sufficient training data (e.g., 1+ and 4+ HCD spectra and ETD
spectra of all charges). Predfull showed better performance than
the backbone-only spectrum predictors (pDeep, Prosit and Deep-
Mass:Prism).
Accurately predicted MS/MS spectra from peptide sequences

have promising applications. First, they can be used to improve
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Figure 2. Brief network architectures of the deep learning tools for MS/MS spectrum prediction. FC layer refers to the fully connected layer, BiLSTM
refers to bidirectional LSTM, and BiGRU refers to bidirectional GRU. For different models, metadata may include precursor charge state, precursor mass,
collision energy, instrument type, etc. “∼” is the cleavage site.

protein identification in DDA data analysis. For database search-
ing, the predicted MS/MS spectra can be used either in the
scoring of PSMs by a search engine[45] or in PSM rescoring
using post-processing tools such as Percolator.[29,51,73] For
spectral library searching, accurately predicted MS/MS spec-
tra can lead to comprehensive high quality spectra libraries.
For de novo peptide sequencing, deep learning-based MS/MS
spectrum prediction could be useful in ranking candidate
peptides.[74]

Next, predicted MS/MS spectra combined with RT prediction
can be used to build a spectral library in silico in DIA data

analysis or the method development in targeted proteomics
experiments (e.g., MRM or PRM experiments). A spectral library
mainly contains the peptide RT and peptide fragment ions and
their intensities, and both can be predicted accurately using deep
learning methods. Traditionally, such a spectral library is built
based on peptide identifications from conventional DDA exper-
iments, which often involve offline pre-fractionation of peptide
samples to improve the coverage of the library.[75–77] Therefore, it
requires extra instrument time and cost to generate such a library
forDIA data analysis because of the complexmixtures of peptides
in DIA MS2 scans. Moreover, such a library still suffers from the
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limitations of DDA experiments for peptide identification. In
addition, generating such a library for peptides with PTMs such
as phosphorylation is challenging. Recently, a few studies have
demonstrated the potential of deep learning-based MS/MS spec-
trum prediction in DIA library generation.[29-32,78] We expect in
silico spectral library generation using deep learning will become
increasingly popular in DIA data analysis. In targeted proteomics
experiments, the predicted spectral library is especially useful
to guide the method development (e.g., transition list design
in MRM assays) for detecting proteins with low abundance
or novel proteins that are typically difficult to detect in DDA
experiments.
Finally, deep learning-based MS/MS spectrum prediction can

enhance our understanding of the principles behind peptide frag-
mentation. For example, Tiwary et al.[45] reported that the out-
puts from DeepMass:Prism can indicate the fragmentation effi-
ciencies between different amino acid pairs. In addition, in order
to study the influence between each amino acid in the peptide
sequence and the predicted intensity of each peak, the method
of integrated gradients[79] was used to attribute predictions from
DeepMass:Prism to specific input amino acids. Zhou et al.[57]

showed that accurate prediction of a spectrum by deep learning
enables discrimination of isobaric amino acids, such as I versus
L, GG versus N, AG versus Q, KR versus RK, etc. Furthermore,
Guan et al.[46] showed that the discriminative power for isomeric
peptides is higher when isobaric amino acid-related local ion sim-
ilarities are considered.
Each tool has its own strengths and weaknesses. Compre-

hensive independent benchmarking of existing tools is essen-
tial to guide the selection of methods for real applications. Re-
cently, Xu et al.[80] benchmarked three deep learning-based tools
(Prosit, pDeep2 and Guan’s work46) and one traditional machine
learning-based tool (MS2PIP) for MS/MS spectra prediction. The
results showed that the deep learning-based tools outperform
MS2PIP and the performance of deep learning-based tools may
vary across different datasets and different peptide precursor
charge states.
Although significant improvements have been made for

MS/MS spectrum prediction using deep learning from peptide
sequences, there is still much room for improvement in the
prediction for peptides with modifications. Most of the current
MS/MS spectrum prediction models are mainly developed for
unmodified peptides, and most of the existing models cannot be
directly used to predict peptides with modifications not present
in the training data. Although some of the current tools can be
trained with peptides containing modifications of interest, spe-
cific training strategies such as transfer learning are required to
achieve satisfactory prediction performance because of the small
size of available training data with specific modifications. This
situation is similar to RT prediction for peptides with modifica-
tions. In pDeep2, Zeng et al.[69] have demonstrated that the trans-
fer learning strategy could significantly improve the prediction
for modified peptides with limited training examples. However,
transfer learning is only well supported in pDeep2. Furthermore,
for some PTMs like glycosylation, the prediction of MS/MS spec-
tra for intact glycopeptides would be more challenging due to
the complexity of intact glycopeptides and the lack of large exper-
imental high quality MS/MS spectra from intact glycopeptides.
In addition, all current deep learning-based tools are developed

for MS/MS spectrum prediction of single peptides in which a
predicted spectrum corresponds to a single linear peptide. As
with RT prediction, MS/MS spectra prediction for cross-linked
peptides will require new frameworks and new peptide encoding
methods.

5. Deep Learning for De Novo Peptide Sequencing

Another breakthrough application of deep learning in the field
of proteomics is de novo peptide sequencing, as demonstrated
in DeepNovo.[10] In de novo peptide sequencing, the peptide se-
quence is directly inferred from an MS/MS spectrum without
relying on a protein database. If we regard an MS/MS spec-
trum as an image and the peptide sequence as an image descrip-
tion, de novo peptide sequencing bears some similarity to deep
learning-based image captioning,[81,82] which is the task of gen-
erating a description in a specific language for a given image.
Encoder-decoder architecture is one of the widely used architec-
tures in deep learning-based image captioning, where an image-
CNN layer is typically used to encode the image into a hidden
representation, and an RNN (e.g., LSTM) layer is used to decode
and predict the words one by one to form sentences of a language
(Figure 3A). DeepNovo views the input spectrum as an image and
the output peptide sequence as a sentence of a protein language.
More specifically, DeepNovo first discretizes a spectrum into

an intensity vector with length 500 000 (high-resolution data,
0.01 Da per pixel/bin, up to 5000 Da) or 50 000 (low-resolution
data, 0.1Da per pixel/bin, up to 5000Da). It then uses a spectrum-
CNN as an encoder for the intensity vector, and an LSTM as
a decoder. In order to capture amino acid signals in the spec-
trum, the intensity vector is further processed using an amino
acid-mass shift operation before being fed into the spectrum-
CNN. The outputs of the spectrum-CNN are then passed into
the decoder. The LSTM model aims to predict the probabili-
ties of all considered amino acids at each position of a pep-
tide sequence. Specifically, at position t, LSTM takes the previ-
ously predicted amino acid and previous hidden state at posi-
tion t − 1 as input to predict the probabilities of the next amino
acids. In addition, an ion-CNN model is used to learn features
of fragment ions in a spectrum, and the outputs are combined
with the LSTM model and run step by step starting from an
empty sequence and ending with the full peptide sequence. Be-
cause the model has no way to restrict the mass of the predicted
peptide sequence within the tolerance window of the precursor
mass, DeepNovo uses the knapsack dynamic programming al-
gorithm to quickly filter out any “precursor-unreachable” amino
acid prediction at position t, and only considers “precursor-
reachable” predictions (informally, a prediction at any position is
“precursor-unreachable”, if the predicted subsequence can never
reach the precursor mass by considering any amino acid combi-
nations, otherwise it is “precursor-reachable”). After combining
the spectrum-CNN, LSTM, ion-CNN, and knapsack, DeepNovo
outperforms PEAKS,[83] Novor,[84] and PepNovo[85] in terms of
recall on both the peptide and amino acid levels, showing the
extraordinary ability of DeepNovo.
DeepNovo was later extended to DeepNovo-DIA to perform

de novo sequencing on DIA data.[86] The basic framework of
DeepNovo-DIA is similar to DeepNovo. In DIA data, there are
multiple MS/MS spectra associated with a given precursor ion,
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Figure 3. From image captioning to DeepNovo. A) A typical neural network architecture of image captioning. B) The neural network architectures of
DeepNovo and DeepNovo-DIA.

and eachMS/MS spectrum typically contains fragment ions from
multiple peptides. DeepNovo-DIA stacks these spectra along the
retention time dimension to form a 2D intensity vector. For a
given precursor ion, besides its associated MS/MS spectra, its
MS1 intensity profile is also encoded to feed into the network.
The correlation between the precursor and its fragment ions
could be learned in the ion-CNN module of DeepNovo-DIA. For
the traditional de novo sequencing algorithm, it is not an easy
task to redesign the algorithm to support DIA data analysis due
to the high complexity of DIA spectra. In contrast, data-driven
DeepNovo can perform DIA data analysis after only redesigning
the partial architecture to utilize the extra dimensionality of DIA
data (m/z and retention time). However, validating the results of
de novo sequencing fromDIA data is quite difficult and is still an
open problem.
Recently, Karunratanakul et al.[87] developed SMSNet to fur-

ther improve de novo peptide sequencing using deep learning.
The deep learning architecture of SMSNet is similar to that
used in DeepNovo. A key innovation in SMSNet is the use
of the multi-step Sequence-Mask-Search strategy. For tradi-
tional de novo sequencing algorithms, Muth et.al. showed that
most of incorrect peptide predictions are from locally incorrect
short subsequences.[88] Local incorrectness is also a problem
in deep learning-based de novo sequencing. The multi-step
Sequence-Mask-Search strategy addresses this problem. More
specifically, SMSNet further uses a rescoring network after
the encoder-decoder network to estimate the confidence score
of each amino acid of the predicted sequence. If unconfi-
dent local amino acids are detected, SMSNet corrects them

by querying a protein sequence database, resulting in higher
sequencing accuracies. It has been shown that this strategy
could effectively improve the accuracy of SMSNet. Since it
relies on the protein sequence database, the performance of
SMSNet may be limited by the quality and completeness of
the database provided. SMSNet outperforms DeepNovo on a
few different datasets and has shown promising application in
immunopeptidomics.[87]

The purely data-driven deep learning model is not the only
way to improve the performance of de novo peptide sequencing.
By considering the predicted spectra based on deep learn-
ing, pNovo3 re-ranks the peptide candidates generated by
pNovo+ (a spectrum-graph and dynamic programming based
algorithm[89]) using a learning-to-rank framework, leading to
higher accuracies than DeepNovo.[74] This example shows that
coupled with deep learning, traditional de novo sequencing can
be improved as well. In conclusion, deep learning has opened a
new perspective for de novo peptide sequencing.
Clear improvement has been achieved using deep learning

compared with previous de novo peptide sequencing methods.
This has led to a few promising applications using de novo
peptide sequencing including complete de novo sequencing of
antibody sequences and discovery of new the human leukocyte
antigen (HLA) antigens.[10,87,90] However, there is still a huge
gap between de novo peptide sequencing and database search
based peptide identification methods in terms of accuracy of
peptide identification, thus resulting in its limited applications
in proteomics studies. Further improvement could be achieved
from, but not limited to, the following aspects. First, training
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using larger datasets may further improve the models.[91] The
second aspect is training species-specific models using transfer
learning by leveraging large datasets from other species. Since
the protein sequences from different species may have different
patterns, the deep learning models trained using MS/MS data
from one species may not generalize well to another species,
but the patterns and rules learned from other species with large
datasets could benefit the training for a specific species with a
relatively small dataset. The third aspect is extensively optimizing
the current deep learning architectures using hyperparameter
tuning methods or designing more efficient architectures using
neural architecture search algorithms.

6. Deep Learning for Post-Translational
Modification Prediction

Over 300 types of PTMs are known to occur physiologically
across different proteins.[92] PTMs tremendously increase the
complexity of cellular proteomes, diversify protein functions,
and play important roles in many biological processes.[93,94]

PTMs can be experimentally identified in both low-throughput
experiments and high-throughput MS-based experiments.[95] In
addition, computational algorithms can also be used to predict
PTM sites. Machine learning is the primary approach used for
PTM prediction because of its flexibility and performance. The
prediction of a specific type of PTM site, such as phosphory-
lation, can be formulated as two classification tasks. The first,
referred to as general site prediction, is to predict whether a
given site can be modified, such as by being phosphorylated.
The second is to predict whether a given site can be modified by
a specific enzyme, such as a specific kinase for phosphorylation,
referred to as enzyme-specific prediction.
Deep learning has been used in the prediction of PTM sites for

phosphorylation,[96–100] ubiquitination,[101,102] acetylation,[103–106]

glycosylation,[107] malonylation,[108,109] succinylation,[110,111]

glycation,[112] nitration/nitrosylation,[113] crotonylation[114] and
other modifications[115-117,224] as shown in Table 3. MusiteDeep,
the first deep learning-based PTM prediction tool, provides both
general phosphosite prediction and kinase-specific phosphosite
prediction for five kinase families, each with more than 100
known substrates.[96] MusiteDeep uses one-hot encoding of a
33-amino acid sequence centered at the prediction site (i.e., 16
amino acids flanking on each side of the site) as input where
phosphorylation sites on S, T, or Y annotated by UniProt/Swiss-
Prot are used as positive data, whereas the same amino acid
excluding annotated phosphorylation sites from the same pro-
teins are regarded as negative data. The input data are fed into
a multi-layer CNN for classification. For kinase-specific site
prediction, transfer learning from the base general phosphosite
model is used to train models for each kinase. The kinase-
specific models make use of the general feature representations
learned from the model developed on general phosphorylation
data. This approach could also reduce possible overfitting caused
by the limited numbers of kinase-specific substrates. In the
original study, MusiteDeep was shown to outperform a few non-
deep learning-based tools for general site prediction, including
Musite,[118] NetPhos 3.1,[119] ModPred,[120] and PhosPred-RF.[121]

It also outperformed Musite, NetPhos 3.1, GPS 2.0,[122] and GPS
3.0[123] for kinase-specific prediction in most cases. Another

phosphosite prediction tool, DeepPhos, uses densely connected
CNN blocks including both intra block concatenation layers
and inter block concatenation layers to make final phosphory-
lation predictions.[97] This network architecture aims to capture
multiple representations of sequences. Similar to MusiteDeep,
DeepPhos also utilizes the transfer learning strategy to perform
kinase-specific prediction. DeepPhos was shown to outperform
MusiteDeep in both general site and kinase-specific predictions.
In contrast to MusiteDeep and DeepPhos in which a model is
trained for each kinase independently, in a more recent tool, EM-
BER, a single unifiedmulti-label classificationmodel was trained
to predict phosphosites for multiple kinase families using deep
learning.[99] In EMBER, a 15-amino acid sequence centered
at the prediction site is first encoded as input not only using
one-hot encoding but also using embedding based on a Siamese
neural network.[124] The Siamese network, which comprises of
two identical LSTM networks with identical hyperparameters as
well as learned weights, is used to learn a semantically meaning-
ful vector representation for each sequence. Each LSTM network
takes a different peptide as input and the two networks are joined
at the final layer. The two types of encoded sequences are then
fed into respective CNNs, which have identical hyperparameters.
The CNNs are concatenated in the final layer, followed by a
series of fully connected layers. The output is an eight-element
vector, in which each value corresponds to the probability of the
input site being phosphorylated by a kinase family. In order to
leverage evolutionary relationships between kinase families in
the modeling, a kinase phylogenetic metric is calculated and
used via a kinase phylogeny-based loss function.
A common limitation of MusiteDeep, DeepPhos, and EMBER

is that they only predict phosphorylation sites for a limited num-
ber of kinases with sufficient numbers of known substrate phos-
phosites. However, among over 500 protein kinases described in
the human proteome, only a small fraction have more than 30
annotated substrate phosphosites,[98,100,125] andmore than 95%of
the known phosphosites have no knownupstreamkinases.[125,126]

In order to address this limitation, a few deep learning meth-
ods have been developed to enable the prediction of phosphoryla-
tion sites for kinases characterized by limited or no experimental
data.[98,100] Inspired by the pan-specific method for MHC-peptide
binding prediction (see next Section), Fenoy et al.[98] proposed a
CNN framework, NetPhosPan, to develop a pan-kinase-specific
prediction model to enable kinase-specific predictions for any ki-
nase with a known protein sequence. In addition to requiring
peptide sequences with the amino acids S, T, or Y in the cen-
ter as input, NetPhosPan also requires kinase domain sequences
to train a single model for kinase-specific predictions. Both pep-
tide sequences and kinase domain sequences are encoded using
the BLOSUM matrix. In this way, the model can leverage infor-
mation between different kinases to enable the predictions for
kinases without known sites and improve the predictions for ki-
nases with few known sites.
DeepKinZero[100] is the first zero-shot learning (ZSL) tool to

predict the kinase which can phosphorylate a given site for ki-
nases without known substrates or unseen kinases in train-
ing. Zero-shot learning is a type of machine learning method
that can deal with recognition tasks for classes without training
examples.[127] The key idea underlying DeepKinZero is to rec-
ognize a target site of a kinase without any known site through
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transferring knowledge from kinases with many known sites to
this kinase by establishing a relationship between the kinases
using relevant auxiliary information such as functional and se-
quence characteristics of the kinases. Similar to NetPhosPan,
both substrate sequences and kinase sequences are required as
input, and they are encoded and fed into the zero-shot learning
framework for training. The kinases are encoded using a few dif-
ferent methods including kinase taxonomy and distributed rep-
resentation of their kinase domain sequences using ProtVec,[12]

which is different from the BLOSUM matrix encoding used in
NetPhosPan.
Although phosphorylation is the most widely studied PTM,

deep learning has also been applied to other PTMs as shown in
Table 3. Most of the tools for the other PTMs are general PTM
site prediction tools rather than enzyme-specific tools. A major
advantage of deep learning is to learn representation efficiently
from peptide sequences without handcrafted features for PTM
site prediction. However, handcrafted features can also be fed
into deep neural networks just as for traditional machine learn-
ing algorithms for classification. For example, He et al.[102] pro-
posed a multimodal deep architecture in which one-hot encod-
ing of peptide sequences as well as physicochemical properties
and sequence profiles were fed into a deep neural network for ly-
sine ubiquitination prediction. The authors showed that themul-
timodal model outperformed the model using one-hot encoding
of peptide sequences alone as input. Additionally, Chen et al.[108]

found that combining a word-embedded LSTM-based classifier
with a traditional RF model encoding the amino acid frequency
improved the prediction of malonylation sites. Most of the tools
shown in Table 3 are developed for the prediction of one type of
PTM site. A few tools are developed for the prediction of multi-
ple types of PTM sites. One is CapsNet_PTM which uses a Cap-
sNet for seven types of PTMs prediction.[117] Most recently,Musit-
eDeep has been extended to incorporate the CapsNet with ensem-
ble techniques for the prediction of more types of PTM sites.[128]

The tool could be easily extended to predict more PTMs given
enough number of known sites for training.
Advances in MS-based PTM profiling have enabled the identi-

fication and quantification of PTMs at the proteome scale,[95,129]

and PTM profiling datasets are growing rapidly.[130] The large
number of sites identified in these studies will eventually lead
to accurate general site prediction models for many PTM types.
The accuracy of these models relies on high-quality site identi-
fications in these high-throughput experiments, an area for fu-
ture development. Moreover, MS-based profiling cannot provide
direct evidence for enzyme-substrate relationships for PTMs. It
remains a big challenge to experimentally generate a large num-
ber of high-quality enzyme-substrate relationships for different
types of PTMs to facilitate the training and evaluation of enzyme-
specific prediction models.

7. Deep Learning for MHC-Binding Peptide
Prediction

MHC (called human leukocyte antigen, orHLA, in humans) class
I and class II genes encode cell surface proteins that present self
and foreign peptides for inspection by T cells and thus play a
critical role in generating immune responses.[131] Peptides de-
rived from intracellular proteins are predominantly presented by

MHC class I molecules, whereas peptides presented by MHC
class II molecules are usually of extracellular origin.[132] MHC
genes are highly polymorphic, and it is important to know which
peptides can be presented by a specific MHC allele. There are
two types of experimental assays for identifying MHC-binding
peptides, in vitro peptide binding assays and MS/MS analysis
ofMHC-bound peptides (immunopeptidomics).[133] The primary
database for in vitro binding assay data is the Immune Epitope
Database (IEDB),[134] and immunopeptidomics data can be found
in IEDB, SysteMHC Atlas,[135,136] or new publications describing
large multi-allelic or single-allelic datasets.[137–139] Based on these
data, many computational methods have been developed to pre-
dict MHC-binding peptides.[140]

Computational methods for MHC-peptide binding prediction
can be grouped into allele-specific and pan-specific methods. Be-
cause biological samples used for immunopeptidomics analysis
typically carry multiple MHC alleles, allele-specific models are
typically trained with in vitro peptide binding assay data, and one
prediction model is constructed for each MHC allele separately.
Allele-specific models usually perform well for common MHC
alleles for which a large amount of experimental data is available
for model training; however, models for alleles with limited ex-
perimental data are less reliable. To address this data scarcity is-
sue, pan-specific methods have been proposed. Typically, a single
pan-specific model is trained using data from all alleles, and the
trained model can be applied to alleles with few training samples
and even alleles not included in the training data. Allele-specific
models aremore accurate when restricted to certain alleles with a
large number of training samples, while pan-specific models de-
liver more stable and better overall performances when applied
to MHC alleles with limited or no in vitro peptide binding assay
data.[141]

During the past few years, a number of deep learning-
based methods have been developed that outperform tradi-
tional machine learning methods, including shallow neural
networks, for peptide-MHC binding prediction (Table 4).
Among these algorithms, 14 (ConvMHC,[142] HLA-
CNN,[143] DeepMHC,[144] DeepSeqPan,[145] MHCSeqNet,[146]

MHCflurry,[147] DeepHLApan,[148] ACME,[149] EDGE,[137] CNN-
NF,[150] DeepNeo,[151] DeepLigand,[152] MHCherryPan,[153] and
DeepAttentionPan[141]) are specific for MHC class I bind-
ing prediction, three (DeepSeqPanII,[154] MARIA,[138] and
NeonMHC2[139]) are specific for MHC class II binding predic-
tion, and four (AI-MHC,[155] MHCnuggets,[156] PUFFIN,[157] and
USMPep[158]) can make predictions for both classes. All four
types of peptide encoding approaches illustrated in Figure 1 are
used in these tools, with one-hot encoding and BLOSUMmatrix
encoding being the most frequently used methods (Table 4).
In terms of the neural network architecture, 13 out of the 21

tools use CNN, five use RNN, two use both CNN and RNN, and
one uses DNN. Remarkably, 13 out of the 21 make pan-specific
predictions, in which both the peptide and MHC protein se-
quence (either the pseudo sequence or the full sequence) are fed
into the neural networks simultaneously for modeling. The in-
teraction specificity between the peptide and the MHC molecule
is thus learned during the training process.
As shown in Table 4, most of the effort in the field has focused

on using in vitro binding assay data to predict binding affinity
between an MHCmolecule and a given peptide sequence. There
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Table 4. List of deep learning-based MHC-peptide binding prediction tools.

No. Software MHC Type Core network
model

Framework Group Data Typea) Input encoding Usability
b)

Year Reference

1 ConvMHC MHC Class I CNN Keras Pan-specific BA Handcrafted features W,P 2017 [142]

2 HLA-CNN MHC Class I CNN keras/Theano Allele-specific BA Word embedding O,C,T 2017 [143]

3 DeepMHC MHC Class I CNN - Allele-specific BA One-hot - 2017 [144]

4 DeepSeqPan MHC Class I CNN Keras/Tensorflow Pan-specific BA One-hot O,C,P,T 2019 [145]

5 AI-MHC MHC Class I/II CNN TensorFlow Pan-specific BA Word embedding W,P 2018 [155]

6 DeepSeqPanII MHC Class II CNN+RNN PyTorch Pan-specific BA One-hot + BLOSUM O,C,P,T 2019 [154]

7 MHCSeqNet MHC Class I RNN Keras/Tensorflow Pan-specific BA Word embedding O,C,P,T 2019 [146]

8 MARIA MHC Class II RNN Keras/Tensorflow Pan-specific BA +MS One-hot W,P 2019 [138]

9 MHCflurry MHC Class I CNN Keras/Tensorflow Allele-specific BA +MS BLOSUM O,C,P,T 2018 [147]

10 DeepHLApan MHC Class I RNN Keras/Tensorflow Pan-specific BA +MS Word embedding O,C,W,P 2019 [148]

11 ACME MHC Class I CNN Keras/Tensorflow Pan-specific BA BLOSUM O,C,P,T 2019 [149]

12 EDGE MHC Class I DNN Keras/Theano Allele-specific MS One-hot O 2019 [137]

13 CNN-NF MHC Class I CNN MXNet Allele-specific BA +MS Handcrafted features O 2019 [150]

14 MHCnuggets MHC Class I/II RNN Keras/Tensorflow Allele-specific BA +MS One-hot O,C,P,T 2019 [156]

15 DeepNeo MHC Class I CNN Theano Pan-specific BA 2D interaction map - 2020 [151]

16 DeepLigand MHC Class I CNN PyTorch Pan-specific BA +MS Word embedding +
BLOSUM + One-hot

O,C,P,T 2019 [152]

17 PUFFIN MHC Class I/II CNN PyTorch Pan-specific BA One-hot + BLOSUM O,C,P,T 2019 [157]

18 NeonMHC2 MHC Class II CNN Keras/Tensorflow Allele-specific MS Handcrafted features O,C,W,P,T 2019 [139]

19 USMPep MHC Class I/II RNN PyTorch Allele-specific BA Word embedding O,T 2020 [158]

20 MHCherryPan MHC Class I CNN+RNN Keras/Tensorflow Pan-specific BA BLOSUM - 2019 [153]

21 DeepAttentionPan MHC Class I CNN PyTorch Pan-specific BA BLOSUM O,C,P,T 2019 [141]

a)
BA, binding assay data; MS, eluted ligand data from mass spectrometry experiments;

b)
O, open-source; C, command line; P, provide trained model for prediction; W, web

interface; T, provide option for model training. The link of each tool could be found at https://github.com/bzhanglab/deep_learning_in_proteomics.

are multiple upstream biological processes involved in the gener-
ation of these peptides. For example, cytosolic proteins need to be
degraded by the 26S proteasome to create peptide fragments of
an appropriate size. Only a subset of these peptides can be trans-
ported into the endoplasmic reticulum through transporter asso-
ciated with antigen processing proteins, where they may be fur-
ther trimmed by the aminopeptidases ERAP1 and ERAP2 before
loading ontoMHC class Imolecules.[159] Therefore, even if a pep-
tide has strongMHC binding affinity in an in vitro binding assay,
it may be not presentable without appropriate upstream config-
urations. Immunopeptidomics addresses this limitation by ana-
lyzing the naturally presentedMHC binding peptides (also called
eluted ligands). Here we focus on the tools that leverage im-
munopeptidomics data for predictive modeling.
Six of these tools use immunopeptidomics data in com-

bination with binding assay data. In MHCflurry,[147] MHC-I
immunopeptidomics data are used in either model selection
(MHCflurry 1.2) or as training data in combination with binding
assay data (MHCflurry train-MS). In MARIA,[138] binding affin-
ity data are used to train a pan-specific RNN model to generate
peptide-MHC binding affinity scores, and immunopeptidomics
data are used to train a DNN model to estimate peptide cleavage
scores. The fullMARIAmodel is then trained using immunopep-
tidomics data combined with gene expression data as well as
the two types of scores for predicting the likelihood of antigen
presentation in the context of specific MHC-II alleles. In CNN-
NF,[150] binding affinity data are converted to binary data first and

then combined with immunopeptidomics data for training us-
ing a CNN network. In DeepHLApan,148 both types of data are
used in a similar way to CNN-NF. In MHCnuggets,[156] an LSTM
model is first trained using binding affinity data for each MHC
allele. A new network initiated with weights transferred from the
first step is further trained with immunopeptidomics data when
available. In DeepLigand,152 two modules are combined to pre-
dict MHC-I peptide presentation rather than binding affinity pre-
diction. The first module is a pan-specific binding affinity predic-
tion module based on a deep residual network while the second
one is a peptide embedding module based on a deep language
model (ELMo[160]). The peptide embedding module is trained us-
ing immunopeptidomics data separately to capture the features
of eluted ligands. The outputs from the two modules are con-
catenated and then fed into a fully connected layer. Finally the
affinity module and the fully connected layer are jointly trained
using both binding affinity data and immunopeptidomics data to
predict MHC-I peptide presentation.
The other two tools use immunopeptidomics data alone.

EDGE[137] is trained on eluted ligand data bound to HLA class I
molecules fromMS experiments onmulti-allelic cancer samples.
The algorithm also incorporates other information including
gene expression levels, proteasome cleavage preferences (flank-
ing sequences), protein and sample information. EDGE does
not require explicit eluted ligand-MHC allele paired data. More
specifically, a peptide associated with multiple MHC alleles
from a given biological sample is taken as a sample during the
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training. For the tool NeonMHC2,[139] allele-specific models
based on CNN are trained using eluted ligand data from individ-
ual MHC alleles for more than 40 HLA-II alleles. The authors
specifically generated mono-allelic data for model training and
showed that the models trained on the mono-allelic data are
superior to allele-specific binding predictors on deconvoluted
multi-allelic MS data and NetMHCIIpan.[139]

Superior performance has been shown for each of the pub-
lishedMHC-binding peptide prediction tools in the original stud-
ies. However, because each of these tools has its own strengths
and weaknesses, a systematic evaluation of these tools is urgently
needed to guide method selection for real applications. As it
has been demonstrated that incorporating immunopeptidomics
data could significantly improve the performance of MHC pep-
tide binding prediction, we expect that model performance will
be further improved with rapidly growing immunopeptidomics
data. For example, applying deep learning to a recently published
large MHC-I peptidome dataset from 95 HLA-A, -B, -C, and
-G mono-allelic cell lines[161] may enable accurate allele-specific
predictions for many MHC alleles. However, most of the public
immunopeptidomics data are from samples with multiple MHC
alleles. How to make full use of this type of data in the training
of allele-specific MHC peptide binding prediction models is an
interesting, yet not well studied question. Besides increasing the
size of training examples for individual MHC alleles, it has been
shown that both source gene expression and cleavage preference
information of antigen peptides are useful inMHC peptide bind-
ing prediction.[137,138,161] We expect these information will be uti-
lized in more tools in the future.

8. Deep Learning for Protein Structure Prediction

Protein structures largely determine their functions. Predicting
spatial structure from amino acid sequence has significant appli-
cations in protein design and drug screening, among others.[162]

Structural genomics/proteomics projects were initiated to exper-
imentally solve 3D structures of proteins on a large scale, and
aimed to increase the coverage of structure space by targeting
unrepresented families.[163] Although over 13 500 structures have
been deposited in ProteinData Bank (PDB) from themulti-center
joint effort, it is still a time-consuming process. In silico protein
structure prediction has the potential to fill the gap and we will
focus on the application of deep learning in the prediction of pro-
tein secondary and tertiary structures here.
Secondary structure refers to the regular local structure pat-

terns that can usually be defined in three types, namely alpha he-
lix, beta strand, and coiled coil. They can be further divided into a
more detailed classification of 8 types.[164] Secondary structure
prediction is a residue-level prediction problem and is usually
aided by alignment of homologous sequences. The application
of deep learning in secondary structure prediction has been re-
viewed recently.[165] Use of a sliding window is a popular method
to extract short to intermediate non-local interactions, but ar-
chitectures like CNN and BiLSTM can learn long-range inter-
actions through hierarchical representations. Applying different
deep neural network architectures including hybrid networks has
pushed the boundary of accuracy to around 85% for 3-state (Q3)
secondary structure prediction on the commonly used CB513
benchmark dataset.[166–168] Recent research efforts focusmore on

8-state prediction (Q8), and most methods achieved overall ac-
curacy above 70% on the CB513 dataset, with the maximum re-
ported Q8 accuracy of 74% using ensembles.[166,169–171] It is worth
pointing out that the performance in terms of accuracy and recall
differs drastically for different secondary states.[166] As expected,
the most common alpha helix and beta strand states perform
much better than others, while pi helices essentially cannot be
predicted as the sample size is too small in training datasets. Fu-
ture research is needed for improving the prediction accuracy of
less common secondary structure states. Although the growing
data in the PDBmay help to alleviate the problem, bettermethods
to handle the data imbalance are required.
Tertiary structure prediction commonly has two different

approaches. For proteins whose homologs have known struc-
tures, they can be used as a template to jump-start structure
modeling since proteins with high sequence similarity also tend
to show structure similarity (the same fold). Folding a protein
in silico from scratch with physics or empirical energy potential
assumes that a folded protein is at its native state with the lowest
free energy. This is challenging because the search space is
enormously large.[162] Approaches like fragment assembly take
advantage of existing peptides from PDB to help conformational
sampling.[172] Current state-of-the-art methods to predict protein
structures mostly utilize evolutionary information from a mul-
tiple sequence alignment (MSA), and ab initio folding with the
first principles still seems far-fetched.
Tertiary structure prediction has recently shown success in

large protein families with co-evolution methods.[173,174] Deep
learning has further exploited co-evolutionary information and
significantly improved the prediction performance of protein
structures without known homologous structures (free mod-
eling or FM), which is highlighted in the breakthroughs in
the latest round of Critical Assessment of protein Structure
Prediction (CASP).[175] CASP performance has entered a new
era since CASP11, when residue-residue contact predictions
were introduced to assist structure modeling as constraints.[176]

Initially inferred from MSA by global statistics models,[177–179]

contact prediction has been found to be a suitable task for deep
learning, especially CNN.[180–182] CASP12 and the latest CASP13
have witnessed remarkable improvements, and the prominent
success of AlphaFold last year raised considerable interest even
from the general public.[183] A major advancement in CASP13
is to predict distances in finer bins instead of binary contact,
and highly accurate structure models were generated for a few
targets from different groups.[175]

At the core of AlphaFold is a highly complex dilated residual
neural network (ResNet) with 220 blocks to predict the C𝛽 dis-
tances of residue pairs given the amino acid sequence and many
MSA-derived features.[184] AlphaFold tried the more conven-
tional fragment assembly approach to generate structure models
initially in CASP13, but later found using gradient descent
directly on the predicted protein-specific potentials can produce
similar results.[185] The distance potential was first normalized
with a universal reference distribution and then combined with
backbone torsion angle distributions predicted with a similar
neural network and also with potentials from Rosetta to prevent
steric clashes.[172,186] Iterative optimization of the torsion angles
based on the combined potential converged quickly to gener-
ate the backbone structure. Removing the reference potential
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Figure 4. Workflow and network architectures of common protein structure prediction methods. A) Schematic summary of contact-guided structure
prediction methods. Different methods may use different kinds of features and network architectures, but co-evolutionary information is essential for
good contact prediction. Contact or distance between residue pairs and other predicted geometry constraints are fed into various methods for structure
modelling or converted to protein-specific potentials for direct optimization. SS, secondary structure; SASA, solvent accessible surface area. B) End-to-
end recurrent geometric network predicts structure without co-evolutionary information. First two BiLSTM layers predict backbone torsion angles and
second a geometric layer adds residues one by one to construct the structure using torsion angles and atoms in the last residue.

subtraction or other terms slightly affected the performance, and
further refining the structure model with a Rosetta relaxation
protocol improved the accuracy slightly.[184]

AlphaFold ranked at the top overall, but for some targets, other
groups were able to get the best models.[175] The RaptorX soft-
ware suite also predicts distances independently.[187] The entry
for contact and FM predictions, RaptorX-Contact, ranked first
in the contact prediction category of CASP13.[188] Although Al-
phaFold did not submit contact predictions, it was reported to
perform similarly.[187] RaptorX-Contact also used residual neural
networks consisting of a 1D ResNet followed by a 2D ResNet,
although the number of layers is much smaller compared to Al-
phaFold. Anothermajor difference is in the folding pipeline, only
the most likely distances are converted to constraints for Crys-
tallography and NMR System (CNS) to fold the protein, which
is a software for experimentally solving structures.[189] Other
top groups all seem to benefit from contact prediction via deep
learning and used ResNet to predict the contact map from se-
quence, profile, and co-evolutional information like the covari-
ance matrix.[190,191] For example, Zhang’s group ranked 1st, 3rd

and 5th in template-based modeling, for which targets are eas-
ier to predict and have homologs with known structure.[192] They
continued to improve their I-TASSER and QUARK pipelines by
carefully constructing MSA, integrating multiple contact predic-
tion methods, and designing a new contact energy potential.[190]

The mainstream direction in the field of structure prediction
now usually includes steps of MSA selection, contact/distance
prediction, and structure modeling. The common workflow of
popular methods is summarized in Figure 4.[184,187,190,191,193–196]

Using metagenomics databases and careful selection of deep
MSA built from different algorithms and parameters help to ob-
tain enough information to start.[196,197] Prediction of residue to
residue geometry from co-evolution by deep learning has proven
to be crucial to limit the conformation search space. The latest
advancement from Baker’s group highlighted that predicting
residue-residue orientation together with distance in amulti-task
ResNet and integrating them in the Rosetta pipeline (trRosetta)
outperformed top groups in CASP13.[196] MSA selection and
data augmentation via MSA sampling were shown to greatly
contribute to the improvement as well. Finally, converting good
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geometry predictions to a good model is an important factor,
and there are various approaches available (Figure 4A). For
example, it was shown that when feeding predicted distances
by Raptor-Contact in CASP13 to trRosetta, the model accuracy
increased significantly compared to CNS.[196]

Co-evolution dependent methods dominated recent CASP ex-
periments, partly due to the rapid growth of sequence databases.
Although deep learning performs better on shallow MSA, very
shallow MSA still poses a challenge for co-evolution dependent
methods.[175] It is arguable that co-evolution methods learn and
construct a family average structure, which may have a resolu-
tion limit for functional insights.[198] Recurrent geometric net-
work (RGN) is a complementary method that just relies on pri-
mary sequence and position-specific scoring matrices (PSSM)
(evolutionary but not co-evolutionary information) and uses RNN
to build an end-to-end deep learning framework (Figure 4B).[199]

However, the local structure of predictedmodelsmay not be good
enough and its performance in CASP13 is lower than the top
groups. Another CNN-based end-to-end method, NEMO, also
only uses sequence and PSSM inputs and interestingly applies
deep learning to the folding process.[200] Ideally, the primary pro-
tein sequence should have all the information to fold a protein.
Interestingly, structure predictions of designed proteins from
one single sequence by trRosetta actually exhibited higher accu-
racy than naturally occurring proteins of similar sizes.[196] The
authors suggested that de novo proteins are ideal versions of
natural proteins and the neural network can learn the general
principle of protein structure. Structure prediction from very
shallow MSA and even a single amino acid sequence remains
a fundamental challenge, and the quality of models for larger
proteins and proteins of multiple domains still has room for
improvement.

9. Other Applications of Deep Learning in
Proteomics

Besides the applications of deep learning described in the above
sections, deep learning has also been used in many other se-
quence related applications in proteomics, including protein
subcellular localization prediction,[201,202] protein-protein inter-
action prediction,[203,204] protein function prediction,[205,206] pep-
tide charge state distribution prediction,[46] peptide detectability
prediction,[30,210] and mutation impact on protein stability, func-
tion, and protein-protein interaction.[16,207–209] Among these pre-
dictions, for example, charge state distribution prediction[46] and
peptide detectability prediction[30,210] have achieved highly accu-
rate results using deep learning-based methods with peptide se-
quences.
In addition to predicting peptide or protein properties using

sequence data, deep learning has also been used to classify bi-
ological samples based on MS measurements in clinical pro-
teomics. Kim et al.[211] proposed a deep neural network-based
model to classify patients with pancreatic cancer using MRM-
MS data. The deep learning-basedmodel outperformed five tradi-
tional machine learning methods including RF and SVM. Dong
et al.[212] developed a CNN-based model to discriminate tumor
from normal samples. The model uses precursors and their ex-
tracted ion chromatograms from rawDDAMS/MS data as input.

Because this method does not require peptide or protein identifi-
cation and quantification, many precursors that may not be iden-
tified in a typical protein identification workflow could be used
in the modeling and thereby contribute to the classification. The
performance of this model was shown to be superior to four tra-
ditional machine learning methods including SVM, RF, and gra-
dient boosting decision tree on three large-scale public datasets.
More recently, Zhang et al.[213] proposed an MS data representa-
tion method called DIA tensor and developed a deep neural net-
work (ResNet) to work with DIA tensor for phenotype prediction
on DIA-MS data. Similar to the Dong et al. study,[212] this method
does not require protein identification and quantification either.
The performance of this method was demonstrated on two large
scale DIA datasets. Despite these exciting developments, appli-
cation of deep learning to biological sample classification is typi-
cally limited by the sample size of clinical cohorts.Moreover, such
application has a higher requirement on model interpretability
than other applications described in the paper.

10. Conclusion and Perspectives

Deep learning has great potential in many areas of proteomics
research. With continuous improvements to deep learning tech-
niques and generation of high-quality proteomics data, we expect
deep learning will have a profound impact in the application ar-
eas reviewed in this study and beyond. It may revolutionize how
we analyze proteomics data in the near future.
Although deep learning has been highly successful in predict-

ing many peptide or protein properties, some properties are still
difficult to predict. Predicting RT and MS/MS spectrum for pep-
tides with complicated modifications like glycosylation remains
challenging. There is clearly room for improvement for deep
learning-based peptide de novo sequencing. For cross linked pep-
tides, there is no published deep learning-based tool for either
RT or MS/MS spectrum prediction. For PTMs with limited or
no known sites, deep learning-based prediction is almost impos-
sible. For many MHC class I and II alleles with limited num-
bers of known binding peptides, there is still large room for
improvement. Another interesting topic without any published
deep learning-based tools is the relationship prediction between
actual peptide amount and peptide intensity in mass spectrom-
etry experiments. Because the signal response in MS for differ-
ent peptides is different, the abundance levels generated using
MS for different peptides are not directly comparable. Thus, it
is almost impossible to directly estimate absolute quantification
for proteins from MS data with similar accuracy to RNA-Seq for
gene quantification. However, if sufficient numbers of proteins
with known actual amount and their abundance data from mass
spectrometry are available, it may be possible to train a model
for proteome wide absolute protein quantification with high ac-
curacy. This may open the door to a lot of applications.
The generalizability of models is an important consideration

in model development and application. Both the RT and MS/MS
spectrum of a peptide are highly associated with experiment
conditions. The RT and MS/MS spectrum prediction are typi-
cally associated with a specific experiment setting. For example,
a small change to the LC conditions (e.g., pore size, column
material, column setup, dead volume, sample loading, etc.) may
lead to a drastic change of the RT of a peptide. Therefore, an
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RT model trained using the data from one experiment may have
large prediction error when applied to another experiment with
different LC conditions. Therefore, it would be difficult to develop
a generic predictor that could be applied to multiple experiments
with different LC settings. One solution for deriving a generic
model is to use data based on indexed retention time (iRT)[214];
however, this requires adding iRT peptides in all experiments.
MS/MS spectrum prediction is less affected by experimental
settings compared to RT prediction. In general, only the type of
MS instrument, peptide fragmentation method, and collision
energy require consideration in MS/MS spectrum prediction. A
generic model could be developed by considering these factors in
the model training as implemented in pDeep2. Because changes
in any of these conditions may alter the spectrum pattern of
a peptide, these conditions also need to be considered in deep
learning-based de novo peptide sequencing during both model
training and application. In addition, peptide sequence patterns
could be learned during model training in deep learning-based
de novo peptide sequencing, but different species may have
different sequence patterns. Thus, species is another factor for
consideration inmodel training and application. A genericmodel
may be trained by considering all these factors in an efficient way.
Other predictions, including PTM site prediction, MHC-binding
prediction, and protein structure prediction, are typically not
associated with a specific experiment. These predictors tend to be
generalizable. Public data repositories[135,215,216] are valuable re-
sources of training data formost of these predictors. Comprehen-
sive meta data for these pubic data sets is critical for data reuse.
In general, evaluation accompanies each tool to demonstrate

its performance by comparing with other similar tools. In many
studies, pre-trained models from previous studies were used for
comparison. This type of comparison is likely to be biased de-
pending on the training data. Sometimes it is difficult to train the
models using the same training data from scratch due to a vari-
ety of reasons. In many cases the tool cannot be retrained due to
the availability of source code or lack enough documentation in
the original publications for researchers to reproduce the train-
ingmethod using user provided data. Even so, independent com-
prehensive evaluation of the performance of these deep learning
tools is critical to provide guidance to users for method selection
since one tool may have significantly different performance on
different datasets or using different evaluation metrics. Rigorous
documentation of methods for training in addition to functions
for retrainingmodels when tools are published would benefit the
independent evaluation process.
Some applications are limited by the size of training data.

A close collaboration between data scientists and experimen-
talists could help generate appropriate experimental datasets
for model training. Technically, transfer learning and semi-
supervised learning can also be used to partially overcome the
problem of small training data. In addition, both proteomics data
and the outcome variables may be noisy for some applications.
Designing deep learning models that are robust to noise in the
training data would be particularly useful.
An active research direction focuses on novel representation

methods for protein sequence data. Recent studies show that
models based on natural language processing inspired tech-
niques such as Transformer,[217] BERT,[218] and GPT-2[219] can
learn features from a large corpus of protein sequences in a

self-supervised fashion, with applications in a variety of down-
stream tasks.[220,221] Besides a linear sequence of amino acids,
proteins can also bemodeled as a graph to capture both structure
and sequence information. Graph neural networks[222] are pow-
erful deep learning architectures for learning representations of
nodes and edges from such data.[223]

Another promising direction is the use of NAS to aid the de-
sign of deep learning models. Developing a high performing
deep neural network requires significant architecture engineer-
ing including the selection of a basic neural network architecture
(such as CNN, RNN, or combination of them) and hyperparam-
eter tuning. However, due to the huge search space, without us-
ing carefully designed neural architecture search algorithms, it is
generally very time-consuming and inefficient and also requires
extensive knowledge about deep learning to manually design a
high performance model. NAS has been demonstrated to be a
powerful approach to the design of neural architectures in many
other research areas.[49,50] We expect this technique will have a
broader application in proteomics in the future.
Despite superior performance, deep learning models are typi-

cally considered to be black-boxes because how the models make
the prediction and what the models learn from the input data are
largely unknown. Interpretability in deep learning is still a big
challenge. Different algorithms and tools have been developed
to tackle this challenge, such as algorithms including integrated
gradients[79] and tools including Captum (https://captum.ai/).
However, few of them have been applied to deep learning appli-
cations in proteomics. Adoption of these algorithms will help re-
searchers better understand how the deep learning models work
and will provide new insights into the mechanisms underlying
the proteomic problems under investigation.
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