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Abstract

With capabilities of sequencing ancient DNA to high coverage often limited by sample quality or cost, imputation of missing genotypes
presents a possibility to increase the power of inference as well as cost-effectiveness for the analysis of ancient data. However, the high de-
gree of uncertainty often associated with ancient DNA poses several methodological challenges, and performance of imputation methods
in this context has not been fully explored. To gain further insights, we performed a systematic evaluation of imputation of ancient data us-
ing Beagle v4.0 and reference data from phase 3 of the 1000 Genomes project, investigating the effects of coverage, phased reference,
and study sample size. Making use of five ancient individuals with high-coverage data available, we evaluated imputed data for accuracy,
reference bias, and genetic affinities as captured by principal component analysis. We obtained genotype concordance levels of over 99%
for data with 1� coverage, and similar levels of accuracy and reference bias at levels as low as 0.75�. Our findings suggest that using im-
puted data can be a realistic option for various population genetic analyses even for data in coverage ranges below 1�. We also show that
a large and varied phased reference panel as well as the inclusion of low- to moderate-coverage ancient individuals in the study sample
can increase imputation performance, particularly for rare alleles. In-depth analysis of imputed data with respect to genetic variants and al-
lele frequencies gave further insight into the nature of errors arising during imputation, and can provide practical guidelines for postpro-
cessing and validation prior to downstream analysis.
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Introduction
The possibility to sequence ancient DNA (aDNA) has increased
capabilities to study archaeological remains and provided new
insights into various aspects of human evolutionary history.
Notable findings such as the detection of genetic introgression
between anatomically modern humans and other hominins, con-
firmation of the African origin of modern humans, and an in-
creased understanding of the spread of agriculture into Europe
have been achieved through population genetic analyses of an-
cient and contemporary genomes (Nielsen et al. 2017).

Due to the age and varying preservation conditions that an-
cient samples may have been exposed to, aDNA has unique prop-
erties that pose methodological and computational challenges
not present when working with data from present-day humans.
Contamination of DNA from microbes and other nontarget sour-
ces can result in low proportions of endogenous DNA (Pääbo et al.
2004; Prüfer et al. 2010), leading to limitations in sample availabil-
ity that can cause sequencing to high coverage depth to be im-
possible or prohibitively expensive. Contamination also leads to
issues regarding data authenticity. In addition, the DNA molecule
is subject to degradation over time, which can cause errors in the
sequencing pipeline (Brotherton et al. 2007; Sánchez-Quinto et al.
2012).

Although the identification of patterns of damage unique to
aDNA has allowed for methods of data authentication and im-
proved the process of reconstructing ancient genomes (Stiller
et al. 2006; Briggs et al. 2007; Krause et al. 2010; Sawyer et al. 2012),
these characteristics nonetheless cause biases in sequencing and
mapping that can impact variant calling and other forms of
downstream analysis (Prüfer et al. 2010; Ginolhac et al. 2011; Parks
and Lambert 2015). Consequently, studies of aDNA samples are
often limited to low- to moderate-coverage data with higher
degrees of uncertainty than modern samples typically exhibit.

Genotype imputation is a powerful tool that can increase the
information content in a sample by inferring unobserved geno-
types. Imputation has been widely applied in various scenarios
analyzing modern data, e.g. to increase power of inference in
genome-wide association studies and to conform samples from
different studies for merged analysis (Zeggini et al. 2008; Spencer
et al. 2009; Marchini and Howie 2010). For aDNA, the possibility to
increase information content of sparse and noisy data can poten-
tially improve the quality of results as well as expand the range
of analyses that are possible to perform.

Many common imputation methods for unrelated samples
rely on sequential probabilistic models in which missing geno-
types are inferred based on similarity to other individuals. The
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estimation is founded on an assumption of the presence of short
stretches of shared haplotypes that have been passed down from
a distant common ancestor. Given the individual’s genotypes, its
haplotype phase is inferred, allowing missing variants to be pre-
dicted based on similarity to other samples. Many methods are
able to leverage the information in the study sample as well as
an additional panel of phased reference haplotypes when per-
forming the phase estimation.

Many widely employed tools, such as MACH (Li et al. 2010),
IMPUTE2 (Howie et al. 2009), and PHASE (Stephens et al. 2001;
Stephens and Scheet 2005), are based on variants of the “the
product of approximate conditionals” (PAC) framework (Li and
Stephens 2003). This model represents the sample sequence as
an imperfect mosaic of the reference haplotypes, generally con-
sidering all possible transitions over the state space, with explicit
modeling of mutation and recombination. A haploid version of
this framework is used in the software GLIMPSE (Rubinacci et al.
2021). A slightly different method is implemented in the software
Beagle (Browning and Browning 2007), which is based on a model
of local haplotype clusters based on similarity of the reference
haplotypes at nearby markers. This results in a smaller state
space with not all possible transitions considered at every posi-
tion, reducing the computational burden. The effects of mutation
and recombination are not explicitly modeled, but the change of
cluster membership along the sequence can be seen as implicitly
representing these biological processes.

The accuracy of genotype imputation depends on several fac-
tors, mainly related to the quality of the sample data and the
properties of the phased reference panel. A larger sample size, as
well as increased marker density and genotype accuracy gener-
ally results in better performance (Browning and Browning 2011).
For data with high levels of uncertainty, imputation based on a
probabilistic framework using genotype likelihoods rather than
called genotypes may be beneficial (Browning and Yu 2009;
Browning and Browning 2011; Nielsen et al. 2011), an option that
is supported by some software tools, including Beagle v4.0. In Hui
et al. (2020), a 2-step approach is introduced, in which genotype
likelihood data is first used to obtain genotype probabilities based
on a reference panel, and missing genotypes are subsequently
imputed based on a subset of these which were able to be confi-
dently called. They evaluate different pipelines on low coverage
data below 1� and show that applying the 2-step method using
Beagle v4.1 or GLIMPSE for calling genotypes and Beagle v5 for
imputation gave similar overall accuracy as using the single-step
methods Beagle v4.0 or GLIMPSE, but that the 2-step method
gave more nuanced posterior genotype probabilities which
allowed for a more informed postimputation filtering procedure.

Studies comparing different phased reference panels have
yielded varying results, with some finding that highest perfor-
mance is gained by using population-specific panels (Pistis et al.
2015; Mitt et al. 2017) and others indicating the benefits of a large
reference with a high level of diversity, particularly for admixed
populations with no clearly matching reference (Huang et al.
2009; Howie et al. 2011; Jostins et al. 2011). Using a phased genome
reference panel from present-day individuals is currently the
only option for ancient data, introducing a possible source of bias
as it means that only variants that exist in the population today
can be reproduced. Leveraging information in other ancient indi-
viduals by increasing study sample size may be a way to mitigate
reference divergence, particularly as more sequenced ancient
genomes become available, but benefits may be diminished in
the context of sparse and uncertain data. The behavior of geno-
type likelihood-based imputation methods on data that exhibits

the characteristic properties of aDNA discussed above has not
been fully explored, particularly in combination with low
coverage levels below 1�.

Genotype imputation has previously been performed on an-
cient human data in e.g. Gamba et al. (2014), Jones et al. (2015),
Martiniano et al. (2017), Antonio et al. (2019), and Cassidy et al.
(2020). In these studies, imputation was mainly performed using
Beagle v4.0 and used to maximize the information content of an-
cient samples and allow for analyses such as Runs of
Homozygosity (RoH) that require dense, diploid genotypes.
Performance evaluation was mainly done by comparison of geno-
types imputed from masked data to corresponding high-coverage
calls, and showed satisfactory concordance to motivate the use
of imputed data for downstream population-genetic analyses.
The goal of this study is to complement and extend previous
work by performing a systematic evaluation of a commonly used
genotype likelihood-based imputation pipeline on ancient data.
We investigate how the particular issues of sample quality and
reference divergence associated with aDNA affect imputation, fo-
cusing on practical considerations regarding methodology and
performance evaluation.

Materials and methods
Data description and preprocessing
Ancient data
The ancient genome data used in this study consisted of five indi-
viduals for which high-coverage data between 19� and 57� was
available (ans17, LBK, Loschbour, sf12, and ne1), as well as a set
of 61 individuals with low- to moderate-coverage ranging from
0.1� to 16�. See Supplementary Tables 1 and 2 for sample specif-
ics and references to source publications.

The Genome Analysis Toolkit (GATK) v3.5.0 (McKenna et al.
2010) tool UnifiedGenotyper was used to generate genotype likeli-
hoods from alignment data for each of the ancient samples indi-
vidually. The allele callset used was that of the 1000 Genomes
phase 3 panel (Auton et al. 2015), filtered to keep only autosomal,
biallelic SNPs, resulting in a total of 77,818,182 markers. To avoid
introducing a possible bias from nucleotide misincorporations
due to postmortem damage, the generated VCF files were filtered
to exclude all sites where the most likely genotype could have
been inferred from a deaminated allele. For C! T deaminations,
this was done by removing sites where the SNP was a C $ T
transition and the most likely genotype contained a T allele. The
corresponding treatment was performed for G! A deaminations.
The software bcftools v1.6 (Li et al. 2009) was used for filtering.

As in previous studies considering aDNA, assessment of impu-
tation performance was done by comparison of imputation
results to corresponding high-quality (HQ) genotypes. For this,
the five individuals for which high-coverage data were available
were used. The HQ genotypes considered as gold standard were
called from the original high-coverage data, following the same
pipeline as described in their respective publications
(Supplementary Table 1). The called genotypes were filtered to
keep only biallelic SNPs with a minimum depth of 15 and a QUAL
score of at least 50. Heterozygote sites were further filtered for
both alleles having a minimum allele depth of 25% of the total
depth. Low-coverage data for each evaluation individual was gen-
erated by downsampling reads using Picard version 2.0.1 (Broad
Institute 2019), after which estimation of genotype likelihoods
and filtering were performed in an identical manner to the
method described above for the low- to moderate-coverage
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individuals. The sparse data was used as input for imputation,
and the resulting genotypes were compared to HQ data.

Reference panels
The reference material used for imputation was the 1000
Genomes phase 3 v5a panel of phased haplotypes and the
GRCh37 genetic maps provided along with the Beagle software.
The reference panel was filtered to only include biallelic SNPs,
resulting in 27,904,756 markers over chromosomes 1–22. To
evaluate the effects of the reference on imputation, two panels
were considered: the entire data set of 2,504 samples, and a
smaller one of 254 samples from European populations only.
The two panels are denoted as “FULL” and “EUR,” respectively.
The former was also used to estimate minor allele frequency
(MAF) of SNPs when analysis of imputed data over the allele fre-
quency spectrum was performed.

Imputation methodology
Imputation was performed using Beagle v4.0, with sample data
split into segments of 50,000 markers with an overlap of 25,000,
using genotype likelihoods as input. Version 4.0 was selected as
the goal was to evaluate imputation based on probabilistic input
in the context of extremely low coverages, and this is the latest
version of the software that allows imputation to be performed
based on genotype likelihoods. Further, as Beagle v4.0 uses a
haplotype model that is constructed from both the phased refer-
ence panel as well as current estimates of the haplotypes of the
study sample (Browning 2008), we also wanted to assess the
effects of including other ancient individuals in the study
sample, allowing the imputation to be informed by other low-
coverage ancient data within the same probabilistic framework.
The effects of including multiple ancient individuals in the
imputation study sample were evaluated by performing
imputation jointly as well as separately. In the first case, all 61
low-to-moderate coverage individuals as well as the five evalua-
tion individuals were included in the study sample to impute. In
the second case, imputation was performed separately per
study individual, meaning only the phased reference haplotypes
were used in the genotype estimation.

Performance evaluation metrics
Genotype concordance
The main metric employed for assessing imputation accuracy
was genotype concordance/discordance, defined as the fraction
of genotypes that were imputed correctly/incorrectly. This was
measured separately for each of the five evaluation individuals
by comparison to the HQ genotypes derived from dense data. For
each of the five evaluation individuals, we extracted the imputed
markers for which there were corresponding HQ genotypes avail-
able, and divided them into two disjoint sets denoted as
“overlapping” and “nonoverlapping,” based on whether or not the
corresponding downsampled individual data had overlapping
reads for the site or not. Supplementary Table 3 shows the sizes
of these sets for each evaluation individual and coverage level.

Reference affinity
To assess whether imputed genotypes show a systematic bias to-
ward the reference panel, the degree to which a sample showed
an affinity toward the reference was compared between imputed
and HQ genotypes. Here, reference affinity was measured as the
fraction of markers that have the same genotype as the most fre-
quently occurring one in the reference panel.

Principal component analysis
Principal component analysis (PCA) is a method of projecting
data onto a basis that maximizes the variance of the data, possi-
bly revealing previously unseen patterns or features. PCA can be
used to reduce the dimensionality of data, e.g. for visualization
purposes, and in the field of aDNA it is commonly used to show
ancient samples in the context of modern variation. Here, it was
used as a means of illustrating the difference between imputed
and corresponding high-coverage genotypes.

PCA was performed on diploid genotypes, with a modern panel
consisting of 429 European samples from the Human Origins
data set of Patterson et al. (2012), filtered to remove variants with
MAF under 1% or missing call rates exceeding 10%. To handle the
fact that the ancient samples did not have observed genotypes
for all sites used in the PCA, we used the method of known data
regression (KDR) (Arteaga and Ferrer 2002). A reference PCA
based on the modern panel was initially defined. Estimation of
scores for each ancient sample based on this model proceeded by
considering the data of the reference samples corresponding to
observed ancient genotypes, and fitting a linear regression model
to their original PCA scores in the reference model. The software
SMARTPCA from EIGENSOFT 7.2.1 was used to define the refer-
ence PCA, and the Python library scikit-learn was used for solving
linear least-squares problems.

Results
Effects of reference panel and study sample size
Imputation performance was assessed for three combinations of
reference panel and study sample size, denoted as imputation
configurations and shown in Table 1. In the first configuration,
imputation was performed individually per evaluation individual,
using the EUR phased reference panel. For configurations 2 and 3,
all ancient individuals were included in the imputation study
sample, using the EUR and FULL reference panels, respectively.
All results in this section are for imputation performed on sample
data with 1� coverage, and to perform a comprehensive evalua-
tion of the effect of imputation configuration, no posterior filter
was imposed on the imputed genotypes. Results are shown for
each of the five evaluation individuals, with results split into
overlapping and nonoverlapping marker sets.

Figure 1 shows genotype concordance for the three imputation
configurations. Overall, concordance rates were similar between
individuals and reached 0.99 in all cases. The results indicate
that the larger reference panel as well as the inclusion of ancient
individuals in the imputation study sample improved perfor-
mance. For overlapping markers, concordance rates increased
slightly from just under 0.997 to somewhat above. Concordance
was lower among the nonoverlapping markers in general, and it
was also among these that the effects of varying imputation
configurations were the most pronounced.

To investigate imputation performance over the allele fre-
quency range, the imputed markers were binned according to
MAF, and the average genotype discordance was assessed per
bin. Because there is a high risk of chance agreement between

Table 1. Imputation configurations.

Configuration Reference Study sample

1 EUR Single
2 EUR All ancient
3 FULL All ancient
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homozygous genotypes and the reference majority in the case of
low MAF markers, only sites at which the HQ data were heterozy-
gous were considered, thus measuring the ability of the imputa-
tion to recover heterozygotes. Results for imputation
configurations 1–3 are shown in Fig. 2, and again indicate that us-
ing a larger phased reference panel and study sample size
increases performance. The effects were particularly visible
among nonoverlapping markers and in the low MAF ranges,
where heterozygotes are the most difficult to recover.

Effects of coverage
Next, we assessed the effects of coverage on imputation. For ev-
ery level C 2f0.10, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00g, an
imputation run was performed using the five evaluation individ-
uals downsampled to Cx. Imputation configuration 2 was used
for all runs, and as in the previous section, no posterior filter was
imposed on the resulting genotypes.

Figure 3 shows the concordance between imputed and HQ
genotypes for all markers (A) and for heterozygotes (B), separated
into overlapping and nonoverlapping marker sets for every evalu-
ation sample and coverage level. A total concordance rate of 0.99
was reached around 0.25� for most individuals, with a planing
out visible at 1� where levels around 0.9975 and 0.995 were
obtained for overlapping and nonoverlapping sites, respectively.
For heterozygote sites, concordance levels were below 0.975
throughout, reaching 0.95 at 1� and as low as 0.825 for the lowest
coverage level of 0.1�.

To assess the level of systematic bias toward the variant that
is most common in the reference, we compared the level of refer-
ence affinity of the imputed data to that of the corresponding HQ
genotypes, considering these as a baseline for the similarity be-
tween the true genotypes and the reference. Figure 4 shows the
difference in measured affinities between the HQ and imputed
data for the nine coverage levels, over the allele frequency spec-
trum, averaged over the five evaluation individuals.

The negative values in the lower MAF ranges indicate that the
imputed data shows a larger affinity toward the reference. While
the extremely low coverages showed significantly higher levels of
bias, the rates decreased and showed little variation for coverages
0.75� and higher. The results indicate a reduction in bias toward
the reference with increasing MAF, showing little differences
around MAF 0.3 for most coverage levels. A possible explanation
for the positive difference at higher MAF values is that at these

markers, imputation errors do not tend toward the reference ma-
jority as strongly as in the lower MAF ranges. Overall concor-
dance is also lower at high MAF due to higher frequency of
heterozygotes.

In-depth performance analysis
In this section, we present further evaluation of imputed geno-
types to assess properties relevant to downstream analysis. We
considered results of imputation configuration 3 on data with 1�
coverage, and imposed a filter of minimum posterior genotype
probability of 0.99 on the imputed data. First, performance for
different genotypes was evaluated. Figure 5 shows concordance
of sites split according to genotype in the high-coverage data.
Although performance remained poorer for heterozygote sites,
the filtered data showed improved levels of over 0.99 throughout.
The filtered results also showed little difference between overlap-
ping and nonoverlapping marker sets at homozygote sites, while
larger differences remained for heterozygotes. Inspection of per-
formance for heterozygote sites across the allele frequency spec-
trum showed that discordance levels below 0.01 were reached
around MAF 0.1, with over 85% of sites retained postfilter (Fig. 6).

Finally, PCA was used to visualize and compare genetic affini-
ties of imputed and high-coverage data. Figure 7 shows that,
within the variation represented by the first two principal compo-
nents, scores of imputed genotypes map closely to those of the
HQ data, particularly for the individuals ans17, LBK, and ne1. As
illustrated in e.g. Günther and Jakobsson (2019), considering sub-
sets of SNPs introduces noise in the PCA projection, resulting in
less accurate projections with higher degree of uncertainty com-
pared to using all available data. In Fig. 7, this is visualized by the
distance between low-coverage and HQ data points for each indi-
vidual. For each of the five individuals, relative distances to the
HQ data are smaller for the imputed genotypes than the low-
coverage data, indicating that information lost by the downsam-
pling process has been retained by imputation.

Discussion
This study provides a systematic investigation of the applica-
tion of imputation to human aDNA. We have corroborated
results from similar experiments showing that overall geno-
type concordance levels of over 0.99 can be reached for data
with 1� coverage, and provided an in-depth analysis of the
qualities of imputed genotypes. Investigation of performance
at coverage levels tending to the ultra-low indicated that the
quality of imputed genotypes began to plateau around 0.75–1�,
and that common variants were more robust to different refer-
ence panels as well as less prone to reference bias overall. The
results suggest a MAF threshold of around 0.1 for minimizing
genotype discordance of heterozygote calls, and that in cases
where rare alleles are of interest, an increased diversity and
size of the phased reference as well as the imputation study
sample are particularly beneficial. The fact that information
from ancient individuals can be leveraged to improve imputa-
tion, along with the genotype concordance levels shown, may
in some cases motivate the sequencing of more ancient sam-
ples to lower coverage as a cost-effective alternative to that of
fewer samples to higher coverage.

The presented work provides a framework of practical consid-
erations for performing imputation, as well as a basis for further
investigations. A systematic evaluation of different imputation
methods and adaptation of the statistical models to the context
of sparse and uncertain data may increase performance for

Fig. 1. Concordance of imputed genotypes for the three configurations in
Table 1. Imputation was performed on data in which the five evaluation
individuals were downsampled to 1� coverage, and the evaluation was
based on unfiltered results, with fully colored bars showing results for
sites at which the downsampled data had overlapping reads, and shaded
bars for nonoverlapping markers, i.e. sites at which all overlapping reads
were removed by the downsampling process.
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ancient samples. Further insights may also be gained by assess-
ment of imputed data by means of different population genetic
analyses, considering e.g. haplotype-based methods such as RoH
as well as those based on allele frequencies.

For the five evaluation individuals considered, in-depth perfor-
mance analysis showed lower performance for the hunter-gath-
erer genomes sf12 and Loschbour, both in terms of genotype
concordance and similarity in PCA-space to HQ data. A possible
explanation is that the reference panel of present-day individuals

Fig. 3. Genotype concordance of imputed data for different levels of coverage of the input data, for (A) all markers and (B) markers at which the HQ
genotype was heterozygote. Results are shown for the five evaluation individuals, with solid and dashed lines indicating SNPs with and without
overlapping reads in the downsampled data, respectively. Imputation was performed using configuration 2 (Table 1), with no filter on posterior genotype
probability imposed on the imputed genotypes.
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Fig. 4. Comparison of levels of reference bias for different coverage
levels. Input data for imputation in which the evaluation individuals
were downsampled to coverages ranging between 0.1 and 2.0� was
generated (displayed in different colors), and the difference in reference
affinity between HQ and resulting imputed genotypes estimated, with
negative values indicating increased reference affinity of the imputed
genotypes compared to the HQ genotypes. Imputation was performed
using configuration 2 (Table 1), with no filter on posterior genotype
probability imposed on the imputed genotypes. Results are shown for all
markers, aggregated into 50 MAF bins, and averaged over the evaluation
individuals.

Fig. 2. Log–log plots displaying discordance of heterozygote genotypes for the five evaluation individuals. The subplots show results obtained using
imputation configurations 1–3 described in Table 1, averaged over markers in 50 MAF bins. Results are shown for unfiltered imputed genotypes of data
downsampled to 1� coverage, with solid lines indicating overlapping markers, and dashed lines markers at which the downsampled data had no
overlapping reads.

Fig. 5. Concordance of imputed genotypes, split according to genotype in
the HQ data. Imputation was performed on data in which the five
evaluation individuals were downsampled to 1� coverage, using
imputation configuration 3 (Table 1), and the resulting data was filtered
for minimum genotype probability of 0.99. Fully colored bars indicate
markers that had overlapping reads in the downsampled data, and
shaded bars indicate sites that did not.
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used for imputation does not contain individuals with a genetic
composition that is similar to these individuals. As discussed in
e.g. Skoglund et al. (2014) and Günther and Jakobsson (2016),
hunter-gatherer individuals have shown a particular genetic pro-
file that is not represented in the genetic variation of modern-day

people. The individuals LBK, ne1, and ans17, in contrast, are from

early farming cultures, for which there are present-day European

individuals who share a similar genetic make-up. Further investi-

gations of the effects of sample ancestry and reference diver-

gence will be required to customize imputation pipelines to

individuals of varying genetic composition. As more sequenced

ancient data becomes available, both imputation accuracy as

well as the ability to assess various aspects of performance will

be improved.
A possible source of bias in the evaluation of imputation per-

formance is reference bias introduced by alignment and variant

calling procedures on ancient sequence data. This can lead to al-

ternate alleles being missed and heterozygous sites to be called

as homozygous for the reference allele (Günther and Nettelblad

2019), causing ancient individuals to appear artificially similar to

the modern reference genome. As imputation is expected to per-

form better for samples that are genetically close to the phased

reference panel used, this could cause overestimated measures

of accuracy. A possible means to mitigate this effect is the use of

genotype callers that are tailored for aDNA such as snpAD (Prüfer

2018) and ATLAS (Link et al. 2017). As these callers also account

for postmortem damage, the inclusion of transition-type poly-

morphisms in future imputation studies may also be motivated.
In this study, we have focused on a probabilistic imputation

framework based on Beagle v4.0 that has been frequently used in

the aDNA community. Other imputation pipelines have shown to

give qualitatively similar results for imputing genotypes from an-

cient sequence data, and also indicated some performance trade-

offs such as imputation accuracy at different parts of the allele

frequency spectrum (Hui et al. 2020). Another relevant point is

that more recent software for phasing and imputation such as

GLIMPSE and Beagle v5 have increased focus on scalability to

larger reference panels. Sample size, availability of computa-

tional resources and the type of downstream analysis intended

are thus factors to consider in the selection of methodology for

imputation of aDNA.

Data availability
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article and in its online supplementary material.
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Fig. 7. PCA comparing HQ, imputed, and low-coverage data for the five
evaluation individuals. A reference PCA was defined based on genotypes
of modern European samples from the Human Origins (Patterson et al.
2012) data set, after which the KDR method was used to estimate scores
of ancient individuals. Modern individuals are indicated by gray dots and
ancient individuals colored according to the legend. Not all modern
individuals are visible in the plot, see Supplementary Fig. 1 for a view of
the full data set. The low-coverage data points correspond to the
genotypes that have been downsampled to 1�, filtered, and used as
input to imputation, which was performed using configuration 3
(Table 1), with a posterior filter of minimum genotype probability of 0.99
applied.

Fig. 6. Log–log plot of genotype discordance at heterozygote sites,
averaged over 50 bins in the allele frequency spectrum and smoothed
using a moving average using 3 points. Input data for imputation was
downsampled to 1� and configuration 3 (Table 1) was used, after which
a posterior filter of minimum genotype probability of 0.99 was applied.
The fraction of markers retained after the filter, averaged over the five
evaluation individuals, is shown in blue, with shaded regions indicating
minimum and maximum. Solid and dashed lines indicate SNPs with and
without overlapping reads in the downsampled data, respectively.
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