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Abstract: Non-orthogonal multiple access schemes with grant free access have been recently high-
lighted as a prominent solution to meet the stringent requirements of massive machine-type com-
munications (mMTCs). In particular, the multi-user shared access (MUSA) scheme has shown great
potential to grant free access to the available resources. For the sake of simplicity, MUSA is generally
conducted with the successive interference cancellation (SIC) receiver, which offers a low decoding
complexity. However, this family of receivers requires sufficiently diversified received user powers
in order to ensure the best performance and avoid the error propagation phenomenon. The power
allocation has been considered as a complicated issue especially for a decentralized decision with a
minimum signaling overhead. In this paper, we propose a novel algorithm for an autonomous power
decision with a minimal overhead based on a tight approximation of the bit error probability (BEP)
while considering the error propagation phenomenon. We investigate the efficiency of multi-armed
bandit (MAB) approaches for this problem in two different reward scenarios: (i) in Scenario 1, each
user reward only informs about whether its own packet was successfully transmitted or not; (ii) in
Scenario 2, each user reward may carry information about the other interfering user packets. The
performances of the proposed algorithm and the MAB techniques are compared in terms of the
successful transmission rate. The simulation results prove that the MAB algorithms show a better
performance in the second scenario compared to the first one. However, in both scenarios, the
proposed algorithm outperforms the MAB techniques with a lower complexity at user equipment.

Keywords: non-orthogonal multiple access (NOMA); multi-user shared access (MUSA); succes-
sive interference cancellation (SIC); grant free access; bit error probability (BEP); power allocation;
multi-armed bandit (MAB) algorithms

1. Introduction

The future radio access network of the fifth-generation is expected to support a variety
of applications with different qualities of service (QoSs). These services are classified
by the International Telecommunications Union and the Third-Generation Partnership
Project into three main use cases with different stringent requirements, namely enhanced
mobile broadband (eMBB), ultra reliable and low latency communications (uRLLC), and
massive machine-type communications (mMTCs). The latter is also known as massive
IoT as it is designed to mainly deal with a massive number of connected devices [1],
i.e., one million connected devices per km2. The mMTC use case is characterized by short
packet communications, i.e., on the order of a few bytes, low system complexity, and
low energy consumption, which leads to a battery life on the order of ten years. The
conventional orthogonal multiple access (OMA) schemes are limited by the restricted
number of available orthogonal resources, and thereby, they may not be suitable to handle
the huge number of devices to be connected in the mMTC scenario. However, the non-
orthogonal multiple access (NOMA) schemes have been underlined as a prominent solution

Sensors 2021, 21, 116. https://dx.doi.org/10.3390/s21010116 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://dx.doi.org/10.3390/s21010116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/s21010116
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/1/116?type=check_update&version=2


Sensors 2021, 21, 116 2 of 18

to address the connectivity issue [2]. In fact, they allow multiple users to simultaneously
and non-orthogonally share the same resources, which increases the system overload.

In the existing technologies, users used to go through a contention-based random
access protocol for data transmission. For the LTE/LTE-A network, the eNB initially
broadcasts information about the available physical random access channel (PRACH) to
all users. Then, each user launches a coordination process over the PRACH to ensure its
alignment with the eNB. After that, for each transmission attempt, each user should send
a grant acquisition request to the eNB to reserve its resource. The coordination random
access channel (RACH) process is performed through four handshake steps [3]: (1) the
preamble transmission; (2) the random access response; (3) the radio resource control (RRC)
connection request; and (4) the RRC connection setup. However, the RACH and resource
allocation processes may be very expensive in terms of signaling overhead, especially for
mMTC devices.

According to [4], the transmission of 100 bytes of useful data in the uplink while
going through the RACH process, security procedures, and connection release generates
a signaling overhead of 59 bytes on the uplink and 136 bytes on the downlink. This
induces an excessive waste of resource, a high energy consumption, and thus, a shorter
battery life for the transmission of small packets. Moreover, the very high number of
devices may lead to unacceptable high latency for certain mMTC applications. In fact, a
large number of simultaneous connections may imply the overuse of the resources and
increase the decoding error probability. For instance, under ideal system conditions, the
RACH process induces a latency of 9.5 ms, which would increase significantly in the case
of collision [3]. As a consequence, the random radio resource access strategy may be a
performance bottleneck in some mMTC scenarios.

In this context, NOMA with the grant free access option has gained much interest,
and it has been promoted by the scientific community as a promising solution to support
mMTC scenarios with a minimum signaling overhead, which ensures a low energy con-
sumption. The authors in [5] presented the evolution steps towards the uplink NOMA
schemes combined with the grant free access. They suggested two possible communication
scenarios for grant free access in the uplink. Users can either go with RACH-based with
grant free transmission or RACH-less with grant free transmission. In the first scenario,
the RACH process allows one to establish a connection with the base station and ensure
user synchronizations. Then, each user transmits its data without waiting for the allocated
resources from the base station. This option has never been possible for OMA schemes
since granting free access may yield a severe system congestion when users transmit on the
same resources. In the second scenario, users transmit their data without any beforehand
communication with the base station, which significantly minimizes the signaling over-
head, but at the cost of non-synchronized communications. Therefore, robust multi-user
detection (MUD) receivers are required for signal detection.

Since the announcement of the advent of 5G, several NOMA schemes have emerged
during the last few years, namely power domain NOMA (PD-NOMA) [6], sparse code
multiple access (SCMA) [7], multi-user shared access (MUSA) [8], and pattern division
multiple access (PDMA) [9], to cite a few. These schemes are different multiplexing
techniques based on different keys such as the user codebook, power, or multiple domains.
The authors in [10] aimed at handling the critical transmission latency issue for vehicle-
to-vehicle services through a grant free access option with NOMA schemes. Two novel
algorithms known as hyper-fraction and genetic algorithms were proposed to respectively
reduce the system latency and improve the system throughput while guaranteeing a rate
fairness between users. In [11], the authors dealt with asynchronous transmissions due to
granting free access. In order to improve the decoding process, multiple copies of the same
message are transmitted and then used at the receiver with the successive interference
cancellation (SIC) technique as a kind of user diversity. The authors proposed closed-form
expressions of the successful transmission probability, the battery lifetime, and the energy
efficiency. The proposed approach may be useful for short packet communications, but at
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the cost of a complex decoding process. In addition, one problem of grant free access is the
estimation of the number of active users. This issue was addressed in [12] by proposing
a deep learning algorithm, which uses the recorded user activities at the base station to
predict their future behavior. This prediction is given as an input to a modified orthogonal
matching pursuit algorithm to improve the multi-user detection and reduce the error
probability. In [13], a sinusoidal code was proposed for the signals’ separation in the
context of the mMTC scenario with grant free access. The proposed spreading sequences
permit using non-iterative algorithms for multi-user detection without prior knowledge of
the channel state information and the number of active users. The authors in [14] dealt with
the problem of packet collisions in a grant free access context without a re-transmission
opportunity. A novel grant free access framework was proposed where the non-decoded
users considered the collisions occurring as interference. Moreover, the system performance
was evaluated analytically, and the authors provided simplified expressions of the outage
probability and the system throughput.

SCMA has particularly been studied with grant free access protocols. For instance,
in [15], the authors studied the application of SCMA with a faster than Nyquist signaling,
which improved the spectral efficiency, but at the expanse of a higher inter-symbol and
inter-user interference. Therefore, a novel algorithm based on the expectation propagation
was proposed for the channel estimation, the detection of user activities, and the signal
decoding. The work in [16] investigated an iterative message passing algorithm for grant
free access SCMA, based on the belief propagation. The proposed algorithm permits jointly
estimating the channel coefficients, identifying the number of active users, and detecting
the transmitted data while improving the bit error rate compared to the other techniques.

Regarding the system design, MUSA has the potential to enable grant free access
with minimum signaling overhead in the context of mMTC applications. Unlike the
SCMA scheme, which requires the assignment of the codebook beforehand, in MUSA,
each user randomly and autonomously selects a spreading sequence within a predefined
constellation. In other words, users can transmit their data at any moment without going
through a resource allocation process with the base station, which minimizes the amount of
signaling overhead. The MUSA scheme is typically used with a SIC receiver for multi-user
detection, which provides a low decoding complexity. However, the SIC technique may
suffer from the error propagation phenomenon when the received powers are similar [17].
The power allocation process is usually performed in a centralized manner [18,19] where
the base station knows the channel state information of all users. For grant free access, each
user performs a blind transmission with no information about its propagation environment
and interfering users, which makes the power determination more complex.

The autonomous power decision for NOMA schemes with the grant free access
strategy has recently been investigated in several works. An interesting solution is to use
multi-armed bandit (MAB) algorithms, which belong to the global reinforcement learning
paradigm [20,21]. MAB techniques can be applied to the problem of dynamic resource
allocation by balancing between the exploration and exploitation phases. At each time,
each agent selects an arm, i.e., representing the physical resource to be shared, among
a set according to a predefined policy in order to maximize its cumulative reward and
hence minimize its regret. The MAB algorithms have been used in several applications
such as marketing, advertising, and cellular communications. For instance, the authors
in [22] applied the MAB algorithms to the autonomous power decision problem in order
to maximize the user rates for the PD-NOMA scheme. The user rewards are their rates.
However, these may be carried on many bits, which increases the signaling overhead;
hence, it may not really be adapted for mMTC scenarios. MAB was also merged with
NOMA schemes in [23] where the authors proposed a distributed NOMA-based MAB
approach to handle the channel access problem in cognitive radio networks. Moreover,
the authors in [24] performed the MAB algorithms in the LTE cellular network for an
autonomous subcarrier allocation in a dense network while taking into consideration the
dynamic resource occupation in each surrounding cell.
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To the best of our knowledge, no work has investigated the problem of autonomous
power decision for grant free access with MUSA scheme. The characteristics of spreading
sequences and the principle of the SIC receiver make the power decision more complex.
Therefore, in this paper, we deal with this issue with minimum signaling overhead to
address the mMTC requirements. The goal is to improve the system performance mea-
sured with the successful transmission rate in order to achieve the performance of an
optimal centralized power allocation. The latter is quite difficult to obtain, especially for
SIC receivers with the error propagation problem. To do so, we start by proposing an
approximated expression for the bit error probability (BEP) while considering the inter-user
interference and the effect of error propagation. The optimal power value of users is ob-
tained as the solution of the minimization of the global average BEP. Based on the derived
BEP expression, we propose a novel algorithm for power selection for the MUSA scheme
with a reduced signaling overhead. The proposed algorithm is compared with known
index-based MAB algorithms adapted to the power selection by each user. In this part, we
propose to investigate two scenarios for selecting the best arm by each MAB algorithm: a
scenario where the arm index computation by a user is only based on the decoding status
of its own packet, i.e., success or failure, and another scenario where it depends on the
decoding status of the other users’ packets in addition to its own packet decoding status.

This paper is organized as follows. The system model and the fundamentals of MUSA
are introduced in Section 2. The SIC receiver is revisited in Section 3, while a closed-form
expression for users’ bit error probability is derived in Section 4. Then, the proposed
algorithm for autonomous power decision is described in Section 5. The multi-armed
bandit algorithms and the studied scenarios are introduced in Section 6. A comparison of
all power decision approaches is provided in Section 7. Numerical results and performance
analysis are conducted in Section 8, and conclusions are drawn in Section 9.

Notations: Vectors and matrices are denoted in lowercase and uppercase, respectively,
and in bold font, while scalars use a normal font weight. The complex and real number sets
are denoted by C and R, respectively. Moreover, (.)T and (.)H stand for the transpose and
Hermitian operations. diag(a) represents the diagonal matrix created with the elements of
vector a in the main diagonal.

2. System Model

An uplink communication system of J users transmitting over K orthogonal sub-
carriers is considered. The active users share the available resources using the MUSA
scheme with grant free access. Each user’s bits are mapped to a series of symbols through
an M-ary modulation block. Then, the modulated symbols are multiplied by the users
spreading sequences and spread over the available subcarriers, as illustrated in Figure 1.
User sequences sj, ∀j ∈ {1, · · · , J} are such that sj ∈ {a + jb}K, where (a, b) ∈ {−1, 0, 1}2.
The received signal on subcarrier k of each OFDM symbol is:

yk =
J

∑
j=1

√
pjhkjskjxj + nk (1)

where hkj and skj are the k-th component of the j-th user channel vector and spreading
sequence, i.e., hj and sj, respectively. Moreover xj, pj are the transmitted symbol and the
transmission power of the j-th user, respectively, and nk is the additive white Gaussian
noise component on the k-th subcarrier with n ∼ CN (0, σ2IK), where IK is the K-by-K
identity matrix. The multiplexed received signals on all subcarriers can be written as:

y = GP
1
2 x + n (2)
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where P = diag(p1, p2, ..., pJ) ∈ RJ×J
+ is the transmission power matrix, x =

[
x1, x2, ..., xJ

]T

is the transmitted users’ symbols with E[xxH ] = IJ , and G is the equivalent channel matrix
including the spreading sequences such that:

G = H� S (3)

where H =
[
h1, · · · , hJ

]
, S =

[
s1, · · · , sJ

]
, and� is the Hadamard product, i.e., gkj = hkjskj.

Figure 1. MUSA scheme system for J = 6 and K = 4.

3. Multi-User Detection

The SIC receiver offers a low decoding complexity compared to other MUD algorithms,
namely the message passing algorithm or maximum a posteriori algorithm [25]. However,
SIC’s performance depends on the user received powers, and the receiver performs better
when the received powers are sufficiently different. MUSA is typically used with ordered-
SIC jointly with a linear detection receiver such as the minimum mean squared error
(MMSE). The MMSE matrix is calculated as in [26]:

WH = (P
1
2 GHGP

1
2 + σ2 I)−1P

1
2 GH . (4)

The main principle of the ordered-SIC technique is to successively estimate the user
symbol, reconstruct the generated interference, and then, subtract it from the received
signal. User symbols are decoded in a descending order of their SINRs. Assume that the
received signal at the j-th iteration is:

yj =
√

pjgjxj +
J

∑
i=j+1

√
pigixi + nj, (5)

where gj is the j-th column of the matrix G. Then, the SINR of the user j picked to be
decoded is:

β j(p) =
pj|wH

j gj|2

∑J
i=j+1 pi|wH

j gi|2 + σ2‖wH
j ‖2

, (6)

where wj is the j-th column of the MMSE matrix W. After that, the user symbol is estimated
by multiplying the row vector wH

j by the received column signal as follows:

x̂j = wH
j y. (7)

The interference generated by the j-th user is reconstructed and then subtracted from
the received signal, which is updated as follows:

y = y− gj x̂j. (8)

After each iteration, the j-th column of the matrix G, corresponding to the decoded
user j, is removed, and the MMSE matrix is recalculated as in (4). This process is repeated
until all users are decoded.
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4. BEP Analysis

The error propagation is one of the critical issue of SIC receivers, which significantly
deteriorates the system performance and makes the derivation of the BEP expression more
complicated. For a Gray mapping, two adjacent symbols are different in only one single bit.
Hence, assuming the inter-user interference as noise, the erroneous detection often leads
to the detection of an adjacent symbol with only one wrong bit compared to the correct
symbol [27]. Therefore, the average system BEP is well approximated as:

Pb,MMSE-SIC ≈
1

J log2(M)

J

∑
j=1

Pej (9)

where Pej is the symbol error probability (SEP) of the j-th user. In the following, we investi-
gate the BEP of the MMSE-SIC receiver with two different hypotheses: (i) perfect SIC with
no error propagation (NEP); (ii) imperfect SIC with error propagation (EP).

4.1. Perfect SIC without Error Propagation

In this case, since there is no error propagation in the receiver, the BEP is calculated
similarly as for the MMSE receiver while updating the MMSE matrix at each iteration, and
the SINRs are calculated as in (6). For a QPSK modulation and assuming the inter-user
interference as noise [28], the j-th user SEP is approximated as [27]:

Pej ≈ 2Q
(√

βNEP
j (p)

)(
1− 0.5Q

(√
βNEP

j (p)
))

. (10)

4.2. Imperfect SIC with Error Propagation

In that case, the BEP of each user depends on the previously decoded users. In this
paper, we were inspired by the proposed approach in [28], and thereby, the SEP of the j-th
user is calculated as:

Pε j =

Nj−1

∑
i=0

P
{

ε j|b
j
i

}
P
{

bj
i

}
, (11)

where Nj = 2j−1 is the number of possible (j − 1)-dimensional binary sequences and

bj
i =

(
bj

i,1, bj
i,2, · · · , bj

i,j−1

)
∀i ∈

{
0, · · · , Nj − 1

}
and j ∈ {1, · · · , J}, with bj

i,k = 0 if the
symbol of the k-th decoded user is correctly detected and one otherwise. Each sequence
refers to the state, correctly decoded or not, of all the previously (j− 1) decoded users.
The event ε j indicates an erroneous detection of the j-th user symbol. Hence, P

{
ε j|b

j
i

}
is

the error probability of the j-th user symbol conditioned on the sequence bj
i. Considering

an eventual error propagation occurrence, the received signal at the j-th SIC iteration is
represented as:

yj =
√

pjgjxj +
J

∑
i=j+1

√
pigixi +

j−1

∑
k=1

√
pkgk(xk − x̂k) + nj, (12)

where x̂k is the faulty estimation of xk. The additional term compared to (5) is gener-
ated by the erroneous detection of the previous users. This may significantly affect the
system performance. Therefore, the experienced noise and the new interference term
can be combined in neq = ∑

j−1
k=1
√

pkgk(xk − x̂k) + nj. The resulting term is approxi-

mated as a centered Gaussian random variable, where E
{

neq
}

= 0 and E
{

neqnH
eq

}
=

(∑
j−1
k=1 pk‖gk‖2E

{
‖xk − x̂k‖2}+ σ2)I = (∑

j−1
k=1 pk‖gk‖2δkd + σ2)I. We define d as the square

of the euclidean distance between the neighboring symbols and δk = 1 if xk 6= x̂k and zero
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otherwise. As a consequence, the SINR of the j-th user, corresponding to the detection
combination bj

i , is calculated as follows:

βEP
j,i (p) =

pj|wH
j gj|2

J
∑

i=j+1
pi|wH

j gi|2 + (
j−1
∑

k=1
pk‖gk‖2δkd + σ2)‖wH

j ‖2

(13)

Two main terms should be calculated to obtain the user SEP. Starting by the conditional
probability, which is calculated according to (10) and (13), we have:

P
{

ε j| b
j
i

}
= 2Q

(√
βEP

j,i (p)
)(

1− 0.5Q
(√

βEP
j,i (p)

))
. (14)

However, the probability of the combination bj
i is readily calculated as:

P
{

bj
i

}
= P

{
∩j−1

n=1bj
i,n

}
=

j−1

∏
n=1

P
{

bj
i,n| ∩

n−1
m=1 bj

i,m

}
, (15)

where P
{

bj
i,n| ∩

n−1
m=1 bj

i,m

}
is the probability that the n-th symbol is correctly decoded or not,

i.e., bj
i,n = 0 or bj

i,n = 1, conditioned on the estimation of the previously decoded (n− 1)
symbols. It is calculated as:

P
{

bj
i,n| ∩

n−1
m=1 bj

i,m

}
= (16) 1− 2Q

(√
βEP

n,i (p)
)(

1− 0.5Q
(√

βEP
n,i (p)

))
if bj

i,n = 0

2Q
(√

βEP
n,i (p)

)(
1− 0.5Q

(√
βEP

n,i (p)
))

otherwise.
(17)

For an uplink transmission, devices are restricted by a maximum transmission power,
pU , imposed by the regulation authorities and the equipment design restrictions. Therefore,
an optimal centralized power allocation popt that minimizes the global average error
probability can be obtained by solving the following problem:

OP1


min

p

1
J log2(M)

J

∑
j=1

Nj−1

∑
i=0

P
{

ε j|b
j
i

}
P
{

bj
i

}
pj ≤ pU ∀j ∈ J

(18a)

(18b)

where J = {1, 2, · · · , J} is the set of active users. The derived expression of the user
SEP is quite complicated to analyze theoretically with the Karush–Kuhn–Tucker (KKT)
conditions. Therefore, we use an advanced optimization algorithm, i.e., particle swarm
optimization [29], to solve the power allocation problem above. This algorithm is known
to be efficient for complex problems [30].

5. Proposed Autonomous Power Decision Algorithm

Each user has to decide its transmission power autonomously with no information
about the propagation environment and the interference. In this section, we aim at propos-
ing an autonomous power decision algorithm for uplink communication. This allows
each user to select an adequate power value close to the optimal one, popt, obtained by
solving OP1.

The key idea is to perform an iterative algorithm that takes advantage of the natural
base station acknowledgment (ACK). Each user gradually updates its transmitted power
from the received ACK in order to converge toward the nearest power level from popt.
For example, the j-th user initially transmits its data with a randomly selected power pj
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within the interval [pj
min, pj

max], where pj
min and pj

max are respectively the initial minimum
and maximum power values memorized in the j-th user equipment (UE). Then, the base
station detects the user signal and compares its transmission power with pj,opt, which the
base station has computed on its own. An acknowledgment will be sent back to each user
to adjust its power. In order to minimize the signaling overhead, the acknowledgment
is carried on two bits and can hence encode four possible states: (1) ACK = 3 if the
user should simply transmit with its maximum authorized power pU ; this case may be
gainful for the cell edge users that experience bad propagation conditions; (2) ACK = 2 if
pj > pj,opt; (3) ACK = 1 if pj < pj,opt; and (4) ACK = 0 if pj = pj,opt. Each user updates
its interval by shifting the pj

min and pj
max values. After that, it picks up another random

value in the new power interval for the next packet transmission until it arrives at the
appropriate power value. However, the channel conditions may change along the way.
Hence, the algorithm must take this into consideration in order to ensure its convergence
and assure the best performance. For that reason, the base station may, sometimes, send
another extra bit “Stat” to notify the user of this occurrence. In this case, the UE will try to
initialize its power interval while taking advantage of the previously sent packets. This
process is described in detail in Algorithm 1.

Algorithm 1: Autonomous power decision.

Require: pj
max = pU , pj

min > 0 ∀j = 1, 2, · · · , J;

Ensure: p

1: Each user picks up its spreading sequences.

2: Each user selects a random power level pj ∈ [pj
min, pj

max].

3: The BS detects user signals.

4: The BS calculates the optimal power pj,opt.

5: The BS compares each user power pj with the nearest power level from pj,opt.

6: The BS sends an acknowledgment to each user:

(a) If pj,opt = pu ⇒ ACK = 3

(b) If pj > pj,opt ⇒ ACK = 2

(c) If pj < pj,opt ⇒ ACK = 1

(d) If pj = pj,opt ⇒ ACK = 0

7: If the propagation environment is changed, the BS sends a one bit ACK: Stat = 1.

8: Each user updates its pj
min or pj

max:

(a) If ACK = 3⇒ pj = pu > 0

(b) If ACK = 2⇒ pj
max = pj ≤ pU

• If Stat = 1⇒ pj
min = 0

(c) If ACK = 1⇒ pj
min = pj > 0

• If Stat = 1⇒ pj
max = pU

(d) If ACK = 0⇒ no update

9: Return to Step 2

The channel should not change too fast in order to allow the convergence of the
algorithm. However, as will be seen in the simulation results, the proposed algorithm
converges to the near-optimal power value quite quickly. In addition, users’ transmission
powers must be known at the BS to perform the proposed algorithm. However, these
power values are obviously needed in order to apply the SIC receiver properly. Therefore,
a calibration phase between the BS and the UE should always be established.
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6. Power Allocation with Multi-Armed Bandits

In this section, we revisit three known MAB algorithms, i.e., ε-greedy, upper confi-
dence bound (UCB1), and Thompson sampling (THS), that we apply to our autonomous
power selection problem. An MAB is a model with N resources, called arms, each of them
being associated with a reward following a specific probability distribution. At each time
slot t, each agent j plays an arm aj according to its policy. Then, it receives the correspond-
ing reward rt

j(aj). Based on this and the number of times each arm has been played so far,
nt

j(aj), each agent chooses the appropriate arm for the next time slot t + 1, according to the
calculated index that depends on each algorithm policy. Over time, these techniques will
prioritize the arms showing the best performance and exclude the worst ones.

All MAB algorithms search for the maximization of the cumulative rewards of each
agent over the time horizon T, i.e., ∑T

t=1 rt
j(aj) and thereby the minimization of its regret Rj

defined as the difference between the rewards obtained using the chosen policy and the
expected reward we would obtain if the best arm were always played, i.e., r∗j . The j-th user
regret during a maximum period of T slots is calculated as follows:

Rj = Tr∗j −
T

∑
t=1

E{rt
j(aj)} (19)

In our case, we consider a multi-agent system where the agent refers to the UE and the
arms represent the power levels. At the t-th iteration, the successful transmission rate of
the j-th user is defined as the ratio between the cumulative number of its correctly received
packets during t time slots and the total number of plays so far. The MAB algorithms are
investigated in two different scenarios detailed hereafter.

(a) Scenario 1:

The base station acknowledgment at the t-th iteration is carried on 1 bit representing
the corresponding user reward, i.e., rt

j ∈ {0, 1}. At each time slot t, rt
j(aj) = 1 if the packet

of the j-th user is successfully decoded and rt
j(aj) = 0 otherwise. Therefore, the successful

transmission rate of the j-th user at the t-th iteration is calculated as Qt
j =

∑t
i=1 ri

j(aj)

t . In this
scenario, the reward of each user only depends on the decoding status of its own packet
without any consideration of the other users. However, the successful decoding event of
one packet depends on the successful decoding of the others, because of the SIC receiver.
Hence, every user has interest in good power selection for the other users and not only for
itself. Scenario 2, we propose hereafter, takes into account this fact.

(b) Scenario 2:

The base station acknowledgment at the t-th iteration is now carried on two bits
{bt

2,jb
t
1,j}. The first bit informs whether all users are correctly decoded, bt

1,j = 1, or, at
least, one packet is erroneously detected, bt

1,j = 0. The second bit notifies each user
whether its own packet is correctly received, bt

2,j = 1, or not, bt
2,j = 0. For a picked

power pj by user j, there are three possible states for the j-th user acknowledgment

{bt
2,jb

t
1,j} ∈ {11, 10, 00} = {3, 2, 0}. The case where

{
bt

2,jb
t
1,j

}
= 01 is not possible because

b1,j = 1 means that all packets have been correctly decoded, including the j-th user packet,
and hence, b2,j is automatically equal to one. In order to meet the conditions of the con-
vergence theorems derived in [31], the rewards should be supported in [0, 1]. Therefore,
user rewards are defined as a normalization of the associated acknowledgments, i.e.,
rt

j ∈ {1, 2
3 , 0}. The successful transmission rate, at the t-th iteration, of the j-th user is

then calculated based only on the second bit bt
2,j, i.e., Qt

j =
∑t

i=1 bi
2,j

t . In this scenario, the
inter-user dependence is involved in the associated rewards.
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6.1. UCB1

UCB1 was inspired by the Agrawal’s index-based policy [31]. This algorithm has a
uniformly logarithmic regret over time. Generally, the UCB family of algorithms relies to a
confidence interval on the average reward of each arm [32]. the UCB1 index gathers two
functions; the average reward and the exploration term. This index refers to an estimation
of the upper bound of the true expectation of the arm reward. It is an upper bound because
the square root term is an estimation of the variance of the expected return when playing
the arm aj and is defined as follows, at time slot t:

1
nt

j(aj)

t

∑
i=1

ri
j(aj) +

√
θ log(t)
nt

j(aj)
(20)

where θ > 0 is the exploration parameter. Originally, UCB1 was proposed with θ = 2;
however, the authors in [32] mentioned that θ = 0.5 performs better empirically although
θ > 0.5 is strongly recommended for the theoretical analysis.

At the initialization phase, UCB1 explores each arm once in order to have an estimation
of the reward of each arm. Then, at each iteration, each user selects the arm with the highest
index, as illustrated in Algorithm 2. The calculated index (20) ensures the balance between
the exploration of the most uncertain arms and the exploitation of the best arm so far. UCB1
prescribes the principle of “optimism in the face of uncertainty”, which means that the less
visited arm seems more uncertain, and thereby, it may optimistically be the best arm to play.

Algorithm 2: UCB1 algorithm.
Require: θ and N

Each user plays all the arms once during N plays:
for t = N + 1 : T do
for j = 1 : J do

Select the arm: argmax
aj

mt−1
j (aj) +

√
θ log(t−1)
nt−1

j (aj)

Update the following variables;

(a) nt
j(aj) = nt−1

j (aj) + 1

(b) mt
j(aj) =

1
nt

j(aj)
∑t

i=1 ri
j(aj)

end
end

6.2. ε-Greedy

This algorithm deals with the exploration and the exploitation dilemma randomly.
At each iteration, each user either explores arbitrarily a new arm with probability ε or it
plays the best arm corresponding to the highest average reward so far with a probability of
1− ε. However, for a constant exploration parameter ε, the system regret evolves linearly
overtime instead of being logarithmic. On the one hand, for a high ε value, i.e., ε ≈ 1,
the user will continue to only explore random arms even if it came out with the best
arm, and on the other hand, for a low ε value, i.e., ε << 1, the algorithm will tend to
exploit all the time even if it has not sufficiently explored the other arms. In both cases,
an important performance loss will be experienced. Therefore, the ε value is a critical
parameter. A revised version called ε-decreasing greedy has been proposed, where the
exploration probability is decreasing toward zero over time with a rate of 1

t . This allows
one to essentially explore at the beginning of the learning and mostly to exploit the best
arm found so far after a certain amount of time. The new exploration probability is defined
as [22,31]:

ε(t) = min
{

1,
CN
d2t

}
4
= min

{
1,

LN
t

}
. (21)
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where L > 0 is the exploration parameter. However, the main challenge of this policy is
how to properly set the value of L. The ε-decreasing greedy algorithm is described in detail
in Algorithm 3.

Algorithm 3: ε-decreasing greedy algorithm.
Require: L and N

for t = 1 : T do
for j = 1 : J do

Select a random arm with probability ε(t) = min
{

1, LN
t

}
Select with probability 1− ε(t) the best arm: argmax

aj

mt−1
j (aj)

Update the following variables:

(a) nt
j(aj) = nt−1

j (aj) + 1

(b) mt
j(aj) =

1
nt

j(aj)
∑t

i=1 ri
j(aj)

end
end

6.3. Thompson Sampling Algorithm

This approach shows a robust performance for stochastic problems and sometimes
outperforms other MAB algorithms. The THS algorithm belongs to the Bayesian MAB
family. The j-th user starts by a uniform prior beta distribution β(αj,k, γj,k) for all arms with
initial values αj,k = γj,k = 2 ∀j ∈ {1, · · · , J} and ∀k ∈ {1, · · · , N}, where k refers to the arm
index among N power levels. Then, inspired by the case where rewards follow a binomial
distribution [33] and based on the observed reward, the parameters of the posterior beta
distribution are updated such that αj,k = αj,k + 3rt

j and γj,k = γj,k + 3(1− rt
j).

At the next time slot, each user draws a sampled index from the updated beta dis-
tribution for each arm, i.e., ij,k ∼ β(αj,k, γj,k) ∀k ∈ 1, · · · , N and ∀j ∈ 1, · · · , J. The arm
with the highest index, i.e., îj,k = maxk∈N (ij,k) ∀j ∈ 1, · · · , J, is hence elected for this
transmission attempt. Through time, Thompson sampling prioritizes the arm with the
highest probability of being the optimal one and avoids other arms that have demonstrated
poor performance so far. This algorithm is described in detail in Algorithm 4.

Algorithm 4: Thompson sampling algorithm.
Require: N and αj,k = γj,k = 2 ∀k = 1...N and ∀j = 1...J

for t = 1 : T do
for j = 1 : J do

Select a sampled index from the beta distribution of each arm
ij,k ∼ β(αj,k, γj,k) ∀k = 1, · · · , N
Play the arm aj with the highest index îj,q = maxk∈N (ij,k)
Update the following variables:

(a) nt
j(aj) = nt−1

j (aj) + 1

(b) mt
j(aj) =

1
nt

j(aj)
∑t

i=1 ri
j(aj)

(c) αj,k = αj,k + 3rt
j(aj)

(d) γj,k = γj,k + 3(1− rt
j(aj))

end
end

7. Complexity and Overhead Analysis

A quantitative comparison of all the examined techniques in the context of the mMTC
scenario is summarized in Table 1. The random power selection and the centralized
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allocation are taken as reference scenarios. The centralized allocation is the reference in
terms of performance, and the random selection is the simplest one.

The centralized power allocation algorithm computes, at the base station, the power
to allocate to the users at each transmission attempt, based on the users’ received SINRs.
All the complexity is located at the base station, and users have to set their transmitting
power at the values sent back from the BS; hence, the algorithm complexity at the user
side is O(1). The signaling overhead of this scheme cannot be assessed precisely since it
strongly depends on the downlink control information (DCI) format. However, the power
computed is quantized over k bits, which would likely be much larger than one or two bits,
for each user. Hence, for a large number of users, the signaling would be at least in O(J · k).
Thus, it may be very expensive in terms of energy consumption, leading to a significant
reduction of the battery lifetime.

The random power selection does not manifest any algorithmic complexity since
the power selection is realized randomly. Therefore, the generated signaling overhead is
minimal, i.e., 1 bit, as it only relies on the acknowledgment sent by the BS for each user’s
packet, whether it is successfully received or not.

Table 1. Quantitative comparison of the signaling overhead and the complexity at user equipment in each iteration for all algorithms.
DCI, downlink control information; UCB1, upper confidence bound.

Signaling Overhead Complexity at UE Power Decision

Centralized allocation O(J · k) if k bits (depends on
DCI) O(1) Attributed by the BS

Random selection 1 bit O(1) Random

Proposed algorithm 2 or 3 bits O(1) Iterative decision

ε-decreasing greedy
Scenario 1: 1 bit

O(N) Random with ε probability
Scenario 2: 2 bits

UCB1
Scenario 1: 1 bit

O(N) Index-based
Scenario 2: 2 bits

Thompson sampling
Scenario 1: 1 bit

O(N) Bayesian distribution
Scenario 2: 2 bits

The proposed autonomous power decision algorithm is based on four acknowledg-
ment levels, used to update the power at the user side, which can be carried with two bits.
Moreover, one may add one additional bit if the BS detects a channel variation in order to
notify the corresponding user of this event. The generated complexity is on the order of
O(1) as no computation is required at the UE during this process.

All the MAB techniques have the same signaling overhead and algorithmic complexity
for each transmission attempt. UCB1, ε-decreasing greedy, and Thompson sampling can
be seen as index-based policies. Hence, the algorithmic complexity consists of sorting N
indexes, representing the rating of the arms w.r.t. the objective of the agent, and taking
the arm that corresponds to the highest index. Therefore, their complexity is on the order
of O(N). Furthermore, the generated signaling overhead depends particularly on the
applied learning scenario. In Scenario 1, the index update by an agent is only based on
the processing output of its own packet using a given power, i.e., either the packet is
successfully received or not, and hence, it takes 1 bit. In Scenario 2, the update of an agent
index is made by taking into account the decoding status of the other users’ transmissions,
in addition to that of its own packet, which is carried out with two bits. It is worth noting
that the computational complexity is not considered here. Moreover, the complexity of
calculating a sampled index from the beta function for each arm with the Thompson
sampling algorithm is higher than that of the UCB1 and ε-decreasing greedy indexes.
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8. Numerical Results and Analysis

We consider an uplink system with 150% of overload, where J = 12 and K = 8. Users
are uniformly scattered in the cell while experiencing an AWGN channel with different
path losses. Each user can pick its transmission power over a set of N = 10 possible power
levels in the interest of selecting the appropriate value ensuring the best performance in
both Scenarios 1 and 2. The user spreading sequences are normalized to unitary energy.
The algorithms are investigated in term of the successful transmission rate, i.e., the total
number of correctly decoded packets over the total number of sent packets. Simulations are
averaged over 150 network realizations, i.e., the successful transmission rate is averaged
over the path losses and the spreading sequences. Regarding the UCB1 algorithm, the
exploration of new power values is conducted by the parameter θ. As mentioned above,
this parameter was originally set to two, but in the literature, θ = 0.5 is admitted empirically
as it provides better performance. In order to choose the optimal value of θ, the average
transmission rate achieved by UCB1 was investigated w.r.t. θ, and the value θ = 0.5 is the
one that allows achieving the best transmission rate. The figure is not reported here so as
not to clutter the exposure. The other simulation parameters are given in Table 2.

Table 2. Simulation settings.

Channel AWGN with Path Losses

Users J = 12

Subcarriers K = 8

Maximum individual power 20 dBm

N 10 levels

Noise power σ2 = −14 dBm

T 1000 slots

θ 0.5

Figure 2 compares the simulated average BER, i.e., averaged over the spreading se-
quences and positions, and the analytical average BEP obtained by the proposed expression
in (9) for an AWGN channel and uniformly distributed users over the cell w.r.t. the global
received SNR. We remark that the expression that takes into account the error propagation
phenomenon almost matches the simulated BER. However, removing the error propagation
effect induces a wide gap in the performance because it is too optimistic. In addition, we
notice that, for high SNR values, the BEP with EPgets closer to the simulated BER. This can
be explained by the fact that the QPSK approximation in (10) is more robust for high SNR.

0 5 10 15 20 25 30

Received SNR (dB)

10-3

10-2
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100

A
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e
ra

g
e
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E
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Simulated BER

BEP with EP

BEP with NEP

Figure 2. Performance comparison of the simulated BER and the analytical BEP for an AWGN
channel with different users’ path loss and equal transmission powers.
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The performance of the ε-decreasing greedy algorithm depends on the ε value, which
in turn depends on the coefficient L. It is important to choose the coefficient that allows the
algorithm to achieve its best performance. Therefore, the main challenge of the ε-decreasing
greedy approach is to handle the exploration and the exploitation dilemma by properly
setting the value of L in (21). Figure 3 investigates the performance of this algorithm for
different L in Scenario 1 after T = 1000 iterations. We note that L = 0.1 gives the best
performance in terms of the average transmission rate and hence it is kept for the rest of
the simulations. The same behavior is observed in Scenario 2, but not reported here to limit
the redundancy.
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Figure 3. Performance comparison of ε-decreasing greedy for different L values after T = 1000
iterations in Scenario 1.

Figures 4 and 5 compare the successful transmission rate of the algorithms under
study, i.e., the centralized power allocation, the proposed algorithm, the MAB algorithms
(ε-decreasing greedy, UCB1, and THS), and the random power selection in Scenarios 1
and 2, respectively. The proposed algorithm outperforms all the MAB techniques with a
faster convergence to the optimal power in both scenarios. We also remark in Figure 4 that
the ε-decreasing greedy algorithm converges faster than the THS and UCB1 algorithms.
This can be explained by the optimal selection of the L value, which ensures a trade-off
between the exploration and the exploitation phases in order to achieve the best perfor-
mance. The ε-decreasing greedy and THS algorithms converge to the same successful
transmission rate after 400 iterations. However, the gap between ε-decreasing greedy and
THS is less important in Scenario 2 in Figure 5. In fact, after T = 100 iterations, THS is
slightly better than ε-decreasing greedy. THS seems to take advantage of the additional
information carried by the feedback whether there is a decoding error among the users
or not. However, both algorithms, i.e., ε-decreasing greedy and THS, are far better than
UCB1 in both scenarios. UCB1 takes more time to explore suboptimal powers, which
slows down its convergence to the optimal power values and thereby induces more packet
losses. The random power allocation presents the lowest performance bound in both
scenarios since no strategy is applied for an adequate power selection, which induces error
propagation and hence packet losses.

For a given number of iterations T, the figures represent the average successful
transmission rate achieved after averaging over the network realizations and the spreading
sequences, i.e., 150 realizations, T being the number of packets sent, also known as the
number of iterations in each algorithm. The performance achieved by the algorithms under
fast variations of the propagation environment is directly obtained from Figures 4 and 5 by
shortening them to the desired value of T. In other words, if one would want to obtain the
achievable successful rate of the different algorithms when the environment changes every
100 packets, then one should collect the points at T = 100 in each figure above. Moreover,
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Figure 4. Successful transmission rate comparison for all algorithms in Scenario 1.

a fading channel could have been considered also; however, this would only affect the
absolute performance, as the statistic of the rewards would have been changed, but not the
relative behaviors of the algorithms. Therefore, in this paper and for the sake of simplicity,
we consider only an AWGN channel with different path losses among users, and we show
the behavior of the investigated techniques as the number of iterations increases averaged
over several network realizations.
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Figure 5. Successful transmission rate comparison for all algorithms in Scenario 2.

Figure 6 shows the performance comparison of all algorithms in Scenarios 1 and 2 for
30 ≤ T ≤ 300. One can remark that all MAB techniques achieve better performances in
Scenario 2 compared to Scenario 1. For instance, after T = 50 iterations, the Thompson
sampling algorithm achieves a successful transmission rate of ≈0.94 in Scenario 2, whereas,
in Scenario 1, it attains the value of 0.91. This may be explained by the fact that Scenario 2
conveys more information compared to Scenario 1 to select the best set of powers. In other
words, the reward a user gets in Scenario 2 is not only a function of the successful decoding
of its own packet, but also whether all other users succeeded in their transmissions or not.
This strategy allows each user to take into account a kind of global interest in the selection
of its power. In addition, the successful transmission rate achieved with the proposed
algorithm converges to the one obtained with the optimal centralized solution after a
few iterations compared to the MAB techniques. For example, after T = 30 iterations,
the proposed algorithm achieves a rate of 0.99 of correctly received packets, whereas the
ε-decreasing greedy has a rate of 0.93. It should be noted that, after a large number of



Sensors 2021, 21, 116 16 of 18

iterations, the performances of the MAB algorithms in Scenario 1 converge to those in
Scenario 2.
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Figure 6. Successful transmission rate comparison for all algorithms in Scenarios 1 and 2.

9. Conclusions

The autonomous power decision for NOMA schemes with a grant free access strategy
has been an issue to satisfy the mMTC requirements. To the best of our knowledge, no
work has been done on this problem for the MUSA scheme in order to enhance user
performance with a minimal signaling overhead. In this paper, we address this issue by
proposing a novel algorithm for autonomous power decision based on the proposed BEP
approximation and the base station acknowledgments. Moreover, we study the efficiency
of some MAB algorithms for the power allocation with two different implementation
scenarios, i.e., one where the rewards of a user are only dependent on the decoding output
status of its own packet and another one where they depend also on whether all users
have successfully transmitted their packets or not. The proposed algorithm converges very
fast to the obtained solution with a centralized resource allocation that is considered as
a baseline. Moreover, the MAB algorithms have an acceptable performance, but at the
cost of a larger convergence time and a higher UE complexity compared to the proposed
algorithm. The latter shows the best performance with a faster convergence rate, but also
with a slightly higher signaling overhead compared to the MAB algorithms, particularly
for a variant propagation environment.
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