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Abstract

Interest in gene drive technology has continued to grow as promising new drive systems

have been developed in the lab and discussions are moving towards implementing field tri-

als. The prospect of field trials requires models that incorporate a significant degree of eco-

logical detail, including parameters that change over time in response to environmental data

such as temperature and rainfall, leading to seasonal patterns in mosquito population den-

sity. Epidemiological outcomes are also of growing importance, as: i) the suitability of a

gene drive construct for release will depend on its expected impact on disease transmission,

and ii) initial field trials are expected to have a measured entomological outcome and a mod-

eled epidemiological outcome. We present MGDrivE 2 (Mosquito Gene Drive Explorer 2): a

significant development from the MGDrivE 1 simulation framework that investigates the

population dynamics of a variety of gene drive architectures and their spread through spa-

tially-explicit mosquito populations. Key strengths and fundamental improvements of the

MGDrivE 2 framework are: i) the ability of parameters to vary with time and induce seasonal

population dynamics, ii) an epidemiological module accommodating reciprocal pathogen

transmission between humans and mosquitoes, and iii) an implementation framework

based on stochastic Petri nets that enables efficient model formulation and flexible imple-

mentation. Example MGDrivE 2 simulations are presented to demonstrate the application of

the framework to a CRISPR-based split gene drive system intended to drive a disease-

refractory gene into a population in a confinable and reversible manner, incorporating time-

varying temperature and rainfall data. The simulations also evaluate impact on human dis-

ease incidence and prevalence. Further documentation and use examples are provided in

vignettes at the project’s CRAN repository. MGDrivE 2 is freely available as an open-source

R package on CRAN (https://CRAN.R-project.org/package=MGDrivE2). We intend the

package to provide a flexible tool capable of modeling gene drive constructs as they move

closer to field application and to infer their expected impact on disease transmission.
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Author summary

Malaria, dengue and other mosquito-borne diseases continue to pose a major global

health burden through much of the world. Currently available tools, such as insecticides

and antimalarial drugs, are not expected to be sufficient to eliminate these diseases from

highly-endemic areas, hence there is interest in novel strategies including genetics-based

approaches. In recent years, the advent of CRISPR-based gene-editing has greatly

expanded the range of genetic control tools available, and MGDrivE 1 (Mosquito Gene

Drive Explorer 1) was proposed to simulate the dynamics of these systems through spa-

tially-structured mosquito populations. As the technology has advanced and potential

field trials are being discussed, models are now needed that incorporate additional details,

such as life history parameters that respond to daily and seasonal environmental fluctua-

tions, and transmission of pathogens between mosquito and vertebrate hosts. Here, we

present MGDrivE 2, a gene drive simulation framework that significantly improves upon

MGDrivE 1 by addressing these modeling needs. MGDrivE 2 has also been reformulated

as a stochastic Petri net, enabling model specification to be decoupled from simulation,

making it easier to adapt the model for application to other insect and mammalian

species.

This is a PLOS Computational Biology Software paper.

1. Introduction

Interest in gene drive technology has continued to grow in recent years as a range of promising

new constructs have been developed in the lab and discussions have moved towards imple-

menting field trials in some cases. Recently developed systems include a CRISPR-based hom-

ing system intended for population suppression targeting the doublesex gene in Anopheles
gambiae, the main African malaria vector [1], a split gene drive system intended for confine-

able and transient population replacement in Aedes aegypti, the main vector of dengue, chi-

kungunya and Zika viruses [2], and CRISPR-based homing systems intended for population

replacement in An. gambiae [3] and Anopheles stephensi, the main malaria vector in urban

India [4].

As the technology advances and potential field trials are discussed [5], models are needed

that incorporate additional ecological detail, including parameters that change over time in

response to environmental variables such as temperature and rainfall, as well as models linking

entomological and epidemiological outcomes [6]. Many insects, including mosquitoes, display

a high degree of seasonality in their population dynamics, as development time from one life

stage to another, and mortality rates associated with each life stage, vary with temperature and

other environmental variables [7]. For An. gambiae and several other mosquito disease vectors,

population size varies largely in response to recent rainfall, which creates pools of standing

water and hence enhanced carrying capacity of the environment for mosquito larvae [8]. Sea-

sonal changes in temperature and rainfall thus lead to seasonal changes in mosquito popula-

tion density and consequent disease transmission, which must be accounted for in disease

control strategies.

Models of disease transmission are also becoming increasingly relevant to models of gene

drive dynamics, as: i) the readiness of a gene drive system for field trials will be determined in
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part by its expected (i.e. modeled) epidemiological impact, and ii) initial field trials are

expected to have a measured entomological outcome alongside a modeled epidemiological

outcome [5]. Given the potential for a non-localized gene drive system to spread broadly, it

has been acknowledged that such constructs at the trial stage should be expected to cause a sig-

nificant reduction in disease transmission, as even a confined trial could lead to wide-scale

spread for an effective system [5]. Therefore, readiness for field trials should be determined by

alignment with a target product profile (TPP) and/or list of preferred product characteristics

(PPCs) that include expected impact on disease transmission [6]. Models that incorporate

both gene drive and epidemiological dynamics can account for local malaria or arboviral trans-

mission dynamics and specify gene drive construct parameters that achieve the desired level of

epidemiological control.

Previously, we developed the MGDrivE 1 modeling framework to model the population

dynamics of a variety of genetics-based and biological control systems and their spread

through spatially-explicit populations of mosquitoes, or insects having a similar life history

[9]. Here, we present MGDrivE 2, which significantly improves upon the capabilities of

MGDrivE 1 by addressing the above-mentioned considerations, namely: i) the ability of

parameter values to change over time, and hence to model seasonal population dynamics,

and ii) the incorporation of an epidemiology module that can accommodate pathogen

transmission between humans and mosquitoes. Minor additional improvements have been

made to the inheritance, life history and landscape modules of the framework to reflect

advances in these fields; for instance, a more resolved understanding of maternal deposition

of Cas protein for CRISPR-based gene drive systems has been incorporated [10]. Models in

MGDrivE 2 are represented as a stochastic Petri net (SPN), which has both computational

and architectural benefits: model specification is separate from simulation, models can be

efficiently stored and updated in memory, and a wealth of fast simulation algorithms from

other fields can be used [11].

In this paper, we describe the key developments implemented in MGDrivE 2. We then

demonstrate the application of the framework to the disease control impact of a CRISPR-

based split gene drive system intended to drive a disease-refractory gene into a population in a

confinable and reversible manner, and conclude with a discussion of future needs and applica-

tions for simulation packages in the field of gene drive modeling.

2. Design and implementation

MGDrivE 2 is a significant extension of and development from MGDrivE 1, a model for the

spread of gene drive systems through spatially-explicit mosquito populations. The MGDrivE 2

model incorporates: i) an “inheritance module” that describes the distribution of offspring

genotypes for given maternal and paternal genotypes, ii) a “life history module” that describes

the development of mosquitoes from egg to larva to pupa to adult, iii) a “landscape module”

that describes the distribution and movement of mosquitoes through a metapopulation, and

iv) an “epidemiology module” that describes pathogen transmission between mosquitoes and

humans (Fig 1). The framework is formulated as a SPN that can be mapped to a continuous-

time Markov process in which model parameters may vary over time. It can also be imple-

mented as a deterministic model via mean-field approximation of the stochastic model [12].

The core framework is developed in R (https://www.r-project.org/). The SPN framework

enables separation of model components, allowing users to modify code on a component-by-

component basis as needed for model specification or computational speed. We now describe

the model extensions and developments from MGDrivE 1 to 2 in more detail. Full details of

the MGDrivE 2 model framework are provided in the S1 Text.
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2.1. Time-dependent parameters and seasonality

The incorporation of time-dependent parameters represents a significant improvement of the

MGDrivE 2 modeling framework. In MGDrivE 1, the mosquito life history module follows the

lumped age-class model of Hancock and Godfray as adapted by Deredec et al. [13], which

describes development from egg to larva to pupa to adult using delay-difference equations.

The delay framework allows development times to be modeled as fixed rather than exponen-

tially-distributed; however, it is not compatible with time-varying parameters as these could

vary during the delay. In MGDrivE 2, the discrete-time, fixed-delay framework of MGDrivE 1

is replaced by a continuous-time implementation in which each life stage is divided into a

series of substages. For a single substage, the development time is exponentially-distributed;

but as the number of substages increases, the distribution of development times becomes con-

centrated around the mean. Specifically, if a life stage with a mean development time of 1/d is

Fig 1. Modules in the MGDrivE 2 framework. (A) Genetic inheritance is embodied by a three-dimensional tensor

referred to as an “inheritance cube.” Maternal and paternal genotypes are depicted on the x and y-axes and offspring

genotypes on the z-axis. (B) Mosquito life history is modeled according to an egg-larva-pupa-adult (female and male)

life cycle in which density dependence occurs at the larval stage, and life cycle parameters may vary as a function of

environmental variables over time. Genotypes are tracked across all life stages, and females obtain a composite

genotype upon mating—their own and that of the male they mate with. Egg genotypes are determined by the

inheritance cube. (C) The landscape represents a metapopulation in which mosquitoes are distributed across

population nodes and move between them according to a dispersal kernel. Population sizes and movement rates may

vary as a function of environmental variables. (D) The epidemiology module describes reciprocal transmission of a

vector-borne pathogen between mosquitoes and humans. This requires modeling human as well as mosquito

populations, and the number of individuals having each infectious state. Epidemiological parameters may vary as a

function of environmental variables.

https://doi.org/10.1371/journal.pcbi.1009030.g001
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divided into a series of n substages, the new development times are Erlang-distributed with

mean, 1/d, and variance, 1/(dn2), or equivalently, with shape parameter, n, and rate parameter,

d/n. The development time, d(t), may also vary over time, t; however the number of substages,

n, and hence the mean-variance relationship for development times, must remain constant

within a simulation.

Most importantly, the new model implementation allows any model parameter to vary with

time, enabling the framework to account for seasonal variation in development times and

mortality rates due to environmental dependencies. Temperature is known to strongly influ-

ence development times for juvenile mosquito stages, and mortality rates for all mosquito life

stages [7,14], and rainfall is known to influence the carrying capacity of the environment for

larvae, and therefore density-dependent larval mortality rates [8,15]. The new model formula-

tion allows these parameters to vary in continuous time in response to environmental data,

and hence for seasonal variations in temperature and rainfall to drive seasonal variations in

mosquito population density.

Parameters defining other modules of the model—inheritance, landscape and epidemiol-

ogy—are also able to vary over time within the new model formulation. For instance, gene

drive systems under the control of temperature-dependent promoters [16,17] may have time-

varying homing efficiencies, mosquito movement rates may vary seasonally in response to

temperature and other environmental factors [18], and epidemiological parameters such as the

extrinsic incubation period (EIP) and pathogen transmission probabilities from human-to-

mosquito and mosquito-to-human are all known to display seasonal variation through tem-

perature dependence [7,14].

2.2. Epidemiology module

The epidemiology module describes reciprocal transmission of a vector-borne pathogen

between mosquitoes and humans. This requires modeling of both vector and human popula-

tions, as well as an attribute describing the number of individuals in the vector and human

populations having each infectious state (Fig 2). To model malaria, the Ross-Macdonald

model is included, which has susceptible (SV), exposed/latently infected (EV), and infectious

(IV) states for mosquitoes, and susceptible (SH), and infected/infectious (IH) states for humans

[19,20]. Malaria infection in humans is described by an SIS model, in which humans become

infected at a per-capita rate equal to the “force of infection” in humans, λH, and recover at a

rate, r. Malaria infection in mosquitoes is described by an SEI model, in which adult mosqui-

toes emerge from pupae in the susceptible state, become exposed and latently infected at a per-

capita rate equal to the force of infection in mosquitoes, λV, and progress to infectiousness at a

rate equal to γV. The force of infection in humans, λH, is proportional to the number of mos-

quitoes that are infectious, IV and the force of infection in mosquitoes, λV, is proportional to

the fraction of humans that are infectious, IH/NH, where NH is the human population size.

Since an exponentially-distributed EIP leads to some mosquitoes having unrealistically brief

incubation periods, we divide the EV state into a series of n sub-states, as described in section

2.1, leading to the EIP being Erlang-distributed with shape parameter, n, and rate parameter,

γV/n [21]. Finally, transmission parameters may be tied to specific mosquito genotypes—for

instance, an antimalarial effector gene may be associated with a human-to-mosquito or mos-

quito-to-human transmission probability of zero.

To model arboviruses such as chikungunya, Zika and single serotypes of dengue virus, we

include an SEIR model for human transmission, in which the human states are: susceptible

(SH), exposed/latently infected (EH), infectious (IH), and removed/recovered (RH) [22,23]. The

EH and RH states are included because arboviruses are generally thought to be immunizing,
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and have latent periods that tend to be on a similar timescale to the duration of infectiousness.

Humans become latently infected at a per-capita rate equal to λH, progress to infectiousness at

rate, γH, and recover at rate, r. For mosquito transmission, the SEI model with an Erlang-dis-

tributed EIP is used again. Further details of the mathematical formulation of both the malaria

and arbovirus models are provided in the S1 Text. The extensibility of the SPN framework

means that more complex epidemiological models can be developed and implemented by users.

Modeling vector-borne disease transmission within a metapopulation framework generally

requires each population node in the network to have both a defined mosquito and human

Fig 2. Epidemiology module. MGDrivE 2 includes two basic models for reciprocal pathogen transmission between

mosquitoes and humans—one for malaria (A), and one for arboviruses (B). In both cases, female mosquitoes emerge

from pupae at a rate equal to dP/2 as susceptible adults (SV), become exposed/latently infected (EV,1) at a rate equal to

the force of infection in mosquitoes, λV, and progress to infectiousness (IV) through the extrinsic incubation period

(EIP = 1/γV), which is divided into n bins to give an Erlang-distributed dwell time. The mortality rate, μF, is the same

for female mosquitoes in each of these states. For malaria (A), susceptible humans (SH) become infected/infectious (IH)

at a rate equal to the force of infection in humans, λH, and recover at rate r, becoming susceptible again. For

arboviruses (B), susceptible humans (SH) become exposed/latently infected (EH) at a rate equal to λH, progress to

infectiousness (IH) at rate equal to γH, and recover (RH) at rate, r. Infection dynamics couple the mosquito and human

systems via the force of infection terms; λV is a function of IH, and λH is a function of IV, shown via red edges.

https://doi.org/10.1371/journal.pcbi.1009030.g002

PLOS COMPUTATIONAL BIOLOGY MGDrivE 2: A gene drive model incorporating seasonality and epidemiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009030 May 21, 2021 6 / 16

https://doi.org/10.1371/journal.pcbi.1009030.g002
https://doi.org/10.1371/journal.pcbi.1009030


population size. Since the mosquito vectors we are interested in are anthropophilic, they tend

to coexist with humans, so human population sizes and state distributions can be attributed to

the same nodes at which mosquito populations are defined; however, MGDrivE 2 also includes

the possibility of human-only and mosquito-only nodes. Mosquito-only nodes could represent

sites with only non-human vertebrates from which mosquitoes bloodfeed, while human-only

nodes could represent locations unsuitable for mosquitoes. As mosquitoes are able to move

between nodes in the metapopulation, so can humans. This is an important factor to include,

as human movement has been shown to drive the spatial transmission of mosquito-borne dis-

eases such as dengue virus [24].

2.3. Other extensions to inheritance, life history and landscape modules

Additional functionality has been included in the inheritance and life history modules of the

MGDrivE framework since publication of version 1.0. The inheritance module is unchanged,

and inheritance “cubes,” describing the distribution of offspring genotypes given maternal and

paternal genotypes for a given genetic element, are usable in both versions. Several new inheri-

tance cubes have been made available, including: a) homing-based remediation systems,

including ERACR (Element for Reversing the Autocatalytic Chain Reaction) and e-CHACR

(Erasing Construct Hitchhiking on the Autocatalytic Chain Reaction) [25,26], and b) newly

proposed drive systems capable of regional population replacement, including CleaveR (Cleave

and Rescue) [27] and TARE (Toxin-Antidote Recessive Embryo) drive [28].

In the life history module, we have provided two alternative parameterizations of a qua-

dratic density-dependent larval mortality rate function corresponding to logistic and Lotka-

Volterra ecological models. For mosquito vectors such as Ae. aegypti and An. gambiae, den-

sity-dependence is thought to act at the larval stage due to increased resource competition at

higher larval densities [8,15]. The adult population size, N, is used to determine the value of K,

the larval density at which the larval mortality rate is twice the density-independent mortality

rate at a given patch, which produces the appropriate equilibrium population size. For the

logistic model, the per-capita larval mortality rate is given by μL (1 + L(t)/K), where μL is the

density-independent larval mortality rate, and L(t) is the total larval population size for the

patch at time t. For the Lotka-Volterra model, the per-capita larval mortality rate is given by μL
+ α L(t), where α is the density-dependent term. While related by the expression, α = μL/K,

these two models provide an example of how different functional forms can be used for rates

in MGDrivE 2, and may serve as a template for incorporating more elaborate density-depen-

dent functions.

In the landscape module, movement through the network of population nodes is again

determined by a dispersal kernel; however, due to the continuous-time nature of MGDrivE 2,

movement between patches is described by a rate rather than a probability. MGDrivE 2 pro-

vides functions to map transition probability matrices from MGDrivE 1, such as the zero-

inflated exponential or lognormal dispersal kernels, to continuous-time transition rate matri-

ces for MGDrivE 2. These mapping functions may also be applied to transition probability

matrices derived from empirical or simulated data. The mathematical mapping between the

rate matrix of MGDrivE 2 and the transition probability matrix of MGDrivE 1 is provided in

the S1 Text.

2.4. Stochastic Petri net formulation

The most fundamental change from MGDrivE 1 to 2 is restructuring the model as a SPN [29].

Adopting a SPN framework has several benefits. First, SPNs allow the mathematical specifica-

tion of a model to be decoupled from its algorithmic implementation, allowing users to
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leverage extensive sampling algorithms from the physical and chemical simulation communi-

ties for efficient computation [11,30]. Second, SPNs have a well-established and consistent for-

malism, allowing them to be readily understood and modified by anyone familiar with this

[31]. And third, SPNs are isomorphic to continuous-time Markov chains (CTMCs), meaning

that model parameters can be time-varying, including Erlang-distributed aquatic stage dura-

tions and the pathogen’s EIP.

A Petri net is a bipartite graph consisting of a set of places, P, and a set of transitions, T.

Directed edges or “arcs” lead from places to transitions (input arcs) and from transitions to

places (output arcs). The set of arcs that connect places to transitions and transitions to places

can be denoted by two matrices whose entries are non-negative integers describing the weight

of each arc. The places define the allowable state space of the model; however, in order to

describe any particular state of the model, the Petri net must be given a marking,M, which is

defined by associating each place with a non-negative integer number of tokens. In the lan-

guage of CTMCs,M is referred to as a “state.” When a transition occurs, it induces a state

change by “consuming” tokens inM given by the set of input arcs, and “producing” tokens in

M according to the set of output arcs [32]. Each transition has a “clock process,” parameterized

by a “hazard function” which defines that event’s current rate of occurrence. In MGDrivE 2,

tokens represent an integer number of mosquitoes or humans, and the distribution of tokens

(mosquitoes or humans) across states at time t defines a marking,M(t). A graphical represen-

tation of a Petri net for the mosquito life history module of MGDrivE 2 is depicted in Fig 3A,

with a full description of the mathematical formalism provided in the S1 Text.

The code that generates the Petri net is independent of the code that simulates trajectories

from it. Once the Petri net is stored as a set of sparse matrices, it is passed to a simulation appli-

cation program interface (API) which allows trajectories to be simulated as ordinary differen-

tial equations (ODEs), stochastic differential equations (SDEs), or CTMCs (Fig 3B). Each of

Fig 3. Stochastic Petri net (SPN) implementation of MGDrivE 2. (A) Petri net representation of the life history module. The set of purple circles corresponds to places,

P, and red rectangles to transitions, T. This Petri net shows a model in which development times for the egg stage are Erlang-distributed with shape parameter n = 2, and

for the larval stage are Erlang-distributed with shape parameter n = 3. Population dynamics are derived directly from this graph. E.g. The transition corresponding to

oviposition has one edge beginning at F, meaning at least one female mosquito must be present for oviposition to occur. When oviposition occurs, a token is added to E1

(new eggs are laid) and a token is returned to F. (B) Conceptual representation of the SPN software architecture showing the separation between the model

representation (blue circles) and set of sampling algorithms (red rectangles). These two components of the codebase meet at the simulation API, enabling users to match

models and simulation algorithms interchangeably. Output may be returned as an array in R for exploratory work, or written to CSV files for large simulations.

https://doi.org/10.1371/journal.pcbi.1009030.g003
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these are referred to as “step” functions, but are not limited to discrete time steps; these func-

tions are responsible for updating the model between time points where the user requests out-

put to be recorded. The ODE step function provides a deterministic approximation and

interfaces with the numerical routines provided in the “deSolve” R package [33]. Three sto-

chastic numerical routines are provided that treat the model as a continuous-time Markov

process and provide different levels of approximation. The most straightforward method to

sample trajectories is Gillespie’s direct method, which samples each event individually [34].

While statistically exact, this is prohibitively slow for medium-to-large population sizes. Two

approximate stochastic methods are provided that have been widely used in the chemical phys-

ics literature: i) a second order continuous SDE approximation known as the chemical Lange-

vin equation [35], and ii) a fixed-step tau-leaping method [36]. Both methods achieve

substantial gains in computational speed at the expense of statistical accuracy. While the SDE

approximation is often faster, tau-leaping retains the discrete character of the process it

approximates and is usually the preferred technique. A full description of each of the numeri-

cal routines is provided in the S1 Text. In addition, we demonstrate how a user can write a cus-

tom simulation algorithm and incorporate it within the MGDrivE 2 codebase in the

“Advanced Topics” vignette available at https://marshalllab.github.io/MGDrivE/docs_v2/

articles/advanced_topics.html.

3. Results

To demonstrate how the MGDrivE 2 framework can be used to initialize and run a simulation

of the spread of a gene drive system through a metapopulation with time-varying model

parameters, including its implications for vector-borne pathogen transmission, we have pro-

vided vignettes with the package, available via installation from CRAN at https://CRAN.R-

project.org/package=MGDrivE2 and additional examples and information on GitHub at

https://marshalllab.github.io/MGDrivE/docs_v2/index.html. The vignettes provide extensive

examples of how to use the software, including advanced features such as implementing cus-

tom time-varying rates and numerical simulation algorithms. They consist of a set of five

“core” manuals that describe how to simulate population genetics and dynamics for a mos-

quito-only population and metapopulation, then how to incorporate SEI-SIS Ross-Macdonald

malaria transmission dynamics in a population with humans included, and finally how to

incorporate SEI-SEIR arbovirus transmission dynamics. Following these are three “advanced”

manuals that introduce: i) how to process and analyze output from simulations that write to

CSV files, ii) how users can write custom time-varying hazard functions, and iii) how a user

might implement their own numerical simulation routine, using an explicit Euler method for

ODEs as an example.

Here, we describe the application of the package to model the release of a split gene drive

system designed to drive a malaria-refractory gene into an An. gambiaemosquito population

with seasonal population dynamics and transmission intensity calibrated to a setting resem-

bling the island of Grand Comore, Union of the Comoros. The split gene drive system resem-

bles one engineered in Ae. aegypti [2], which was chosen as the only published split drive

system in a mosquito vector to date. Split drive designs are well-suited to initial field trials of

gene drive systems as they display transient drive activity before being eliminated by virtue of

a fitness cost. The spatial spread of these systems is limited by the distance the host organism

disperses while the drive system persists. In the split drive system explored here, two compo-

nents—the Cas9 and guide RNA (gRNA)—are present at separate, unlinked loci, and a dis-

ease-refractory gene is linked to the gRNA. We assume that only one copy of the disease-

refractory allele is required for it to block pathogen transmission. Four alleles are considered at
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the gRNA locus: an intact gRNA/refractory allele (denoted by “H”), a wild-type allele (denoted

by “W”), a functional, cost-free resistant allele (denoted by “R”), and a non-functional or oth-

erwise costly resistant allele (denoted by “B”). At the Cas9 locus, two alleles are considered: an

intact Cas9 allele (denoted by “C”), and a wild-type allele (denoted by “W”). Full details of the

inheritance dynamics are provided in Li et al. [2] and model parameters are summarized in

S1 Table.

The life history module is parameterized with typical bionomic parameter values for An.

gambiae (S1 Table), including mean-variance relationships describing the development times

of juvenile life stages [37]. The carrying capacity of the environment for larvae is a function of

recent rainfall, and the adult mortality rate is a function of temperature. Remotely sensed rain-

fall data for Grand Comore was obtained from the ERA5 dataset (https://www.ecmwf.int/en/

forecasts/datasets/reanalysis-datasets/era5), and a mathematical relationship adapted from

White et al. [8] was used to translate this to larval carrying capacity, assuming that half of the

island’s carrying capacity was provided by permanent breeding sites (e.g. large cisterns) and

half was provided by recent rainfall. Temperature data for Grand Comore was also obtained

from the ERA5 dataset, and adult mortality was derived using methods described by Mordecai

et al. [7]. Both climatological time series covered the six-year period beginning January 1,

2010. For the purpose of this demonstration, Grand Comore was treated as a single randomly

mixing population, although simulations involving a more detailed landscape module are

included in the vignettes.

The epidemiology module is parameterized with typical parameter values for Plasmodium
falciparum transmission (S1 Table), human population size and life expectancy parameters

from the National Institute of Statistics and Demographic Studies, Comoros [38], and is cali-

brated to local malaria prevalence estimates from the Malaria Atlas Project [39]. This calibra-

tion was achieved by multiplying the carrying capacity time series by a constant such that the

average adult female mosquito population over a year sustained malaria transmission in the

human population at the estimated local prevalence. Finally, we caution that these simulations

are merely intended to demonstrate the software’s capabilities and that, while the simulations

are parameterized with data from Grand Comore, they are not intended to provide an accurate

forecast of local gene drive mosquito dynamics, or to imply approval of the intervention by the

local population and regulatory agencies.

3.1. Simulation workflow

The code for this simulation is available at https://github.com/MarshallLab/MGDrivE/tree/

master/Examples/SoftwarePaper2. We begin by loading the MGDrivE 2 package in R, as well

as the package for the original MGDrivE simulation, which provides the inheritance cubes

required for simulation of genetically-stratified mosquito populations. Next, we define model

parameters, including the bionomic parameters of An. gambiae s.l., and demographic and epi-

demiological parameters specific to Grande Comore. To parameterize time-varying adult mos-

quito mortality (hourly) and larval carrying capacity (daily), we load CSV files containing

those data as time series for the ten-year simulation period. We then use the base “stepFun()”

function in R to create an interpolating function of those time-series data that will return a

value for any time within the simulation period, which is required for calculation of hazard

functions. More sophisticated interpolating functions, such as splines, may also be used. We

also specify the inheritance cube at this point, as the number of modeled genotypes and distri-

bution of offspring genotypes for given parental genotypes will be used to build the Petri net.

Next, we use functions from MGDrivE 2 to create the “places” and “transitions” of the Petri

net, which are stored as lists in R and then converted into a sparse matrix representation used

PLOS COMPUTATIONAL BIOLOGY MGDrivE 2: A gene drive model incorporating seasonality and epidemiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009030 May 21, 2021 10 / 16

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://github.com/MarshallLab/MGDrivE/tree/master/Examples/SoftwarePaper2
https://github.com/MarshallLab/MGDrivE/tree/master/Examples/SoftwarePaper2
https://doi.org/10.1371/journal.pcbi.1009030


in the simulation code. Epidemiological dynamics and states are coded automatically by call-

ing the functions that create the Petri net. In this case, “spn_P_epiSIS_node()” and “spn_T_e-

piSIS_node()” will generate the places and transitions for a single node model with SEI-SIS

mosquito and human malaria transmission dynamics. Each transition has a tag that specifies

the hazard function it requires. Following that, we write custom time-varying hazard functions

for adult mosquito mortality and larval mortality (a function of carrying capacity). We provide

a guided walkthrough of how a new user might write their own time-varying hazard function

in the vignette “Simulation of Time-inhomogeneous Stochastic Processes.” Once the vector of

hazard functions has been stored (as a list), we create the data frame that stores the times,

genotypes, sex, and size of each release event.

With the construction of all model components necessary for the simulation, we call the

simulation API which handles the details of simulating trajectories from the model. In this

case, we chose the tau-leaping algorithm to sample stochastic trajectories, and to record output

on a daily basis. MGDrivE 2 allows users to choose how model output is reported back—for

exploratory or smaller simulations, users may return output directly to R as an array; however

for larger simulations, it is often preferable to write directly to CSV files due to memory con-

siderations, and MGDrivE 2 has sophisticated functions to both specify CSV output and pro-

cess completed simulations.

3.2. Entomological population dynamics

In Fig 4, we display a potential visualization scheme produced in Python for the simulations

described above. The code to produce this visualization is available at https://github.com/

Chipdelmal/MoNeT/tree/master/DataAnalysis/v2 (note that MGDrivE 2 code does not

depend on Python). Fig 4A displays the climatological time-series data—temperature in

magenta and rainfall in blue—which were used to calculate time-varying adult mosquito mor-

tality rate and larval carrying capacity, respectively. The total adult female population size aver-

aged over 100 stochastic runs is shown in green. This is relatively consistent throughout the

year due to moderate seasonal changes in temperature in the tropical climate of the Comoros

and the presence of permanent breeding sites such as cisterns throughout the island; however

population spikes are observed after significant rainfall. Fig 4B displays allele frequencies for

adult female mosquitoes over the simulation period. After eight consecutive weekly releases of

50,000 male mosquitoes homozygous for both the Cas9 (C) and gRNA/refractory (H) alleles

three years into the simulation, we see the C and H alleles accumulate to high post-release fre-

quencies, and the H allele continue to spread to a higher frequency over the subsequent ~6

months while the H and C alleles regularly co-occur enabling drive to occur at the gRNA

locus. The wild-type allele (W) at the gRNA locus is almost completely lost over this period,

and both in-frame and out-of-frame resistant alleles (R and B, respectively) accumulate to a

small yet significant extent. The C allele slowly declines in frequency following the releases due

to a fitness cost; and beginning ~1 year after the releases, the H allele gradually declines in fre-

quency as its fitness cost begins to outweigh its inheritance bias. The declines in C and H allele

frequencies continue beyond the simulated timeframe, although not before the H allele has a

chance to interfere with disease transmission.

3.3. Epidemiological dynamics

The split drive system we consider includes a malaria-refractory gene that results in complete

inability of mosquitoes to become infected with the malaria parasite, whether present in either

one or two allele copies. In Fig 4C, we depict the spread of the malaria-refractory trait through

the female mosquito population, and the consequences this has for mosquito and human
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infection status. Prior to the release, we see that infection prevalence in humans (P. falciparum
parasite rate, PfPR) is mildly seasonal, with the proportion of infected humans (solid green line)

waxing and waning in response to the fluctuating mosquito population size (green line in

Fig 4A). The proportion of infectious female mosquitoes (dotted light blue line) oscillates in

synchrony with the proportion of infected humans; but at a much lower proportion due to the

short mosquito lifespan and the fact that most mosquitoes die before the parasite completes its

EIP. Following releases of the split drive system and refractory gene at year three, the proportion

of refractory female mosquitoes (red line) increases and, consequently, the proportion of infec-

tious mosquitoes declines. As humans recover from infection and less develop new infections,

the PfPR declines until it reaches near undetectable levels by year five. Lastly, Fig 4D depicts

human malaria incidence, measured as the number of new infections per 1,000 humans per

day. Stochastic variation in this model output is more pronounced due to the small number of

incident cases relative to the total population. Incidence is halted by the beginning of year four,

but PfPR takes almost a year longer to approach zero as infected humans clear parasites.

4. Availability and future directions

MGDrivE 2 is available at https://CRAN.R-project.org/package=MGDrivE2. The source code

is under the GPL3 License and is free for other groups to modify and extend as needed.

Fig 4. Example MGDrivE 2 simulations for a split gene drive system designed to drive a malaria-refractory gene in a confinable and reversible manner into an

An. gambiae s.l. mosquito population with seasonal population dynamics and transmission intensity calibrated to a setting resembling the island of Grand

Comore, Union of the Comoros. The split drive system resembles one recently engineered in Ae. aegypti [2]–the only split drive system in a mosquito vector to date. In

the modeled system, two components–the Cas9 and guide RNA (gRNA)–are present at separate, unlinked loci, and a disease-refractory gene is linked to the gRNA.

Four alleles are considered at the gRNA locus: an intact gRNA/refractory allele (denoted by “H”), a wild-type allele (denoted by “W”), a functional, cost-free resistant

allele (denoted by “R”), and a non-functional or otherwise costly resistant allele (denoted by “B”). At the Cas9 locus, two alleles are considered: an intact Cas9 allele

(denoted by “C”), and a wild-type allele (denoted by “W”). Model parameters describing the construct, mosquito bionomics and malaria transmission are summarized

in S1 Table. (A) Climatological time-series data—temperature in red and rainfall in blue—that were used to calculate time-varying adult mosquito mortality rate and

larval carrying capacity, respectively. The resulting adult female population size is shown in green. (B) Allele frequencies for adult female mosquitoes over the

simulation period. Grey vertical bars beginning at year three denote eight consecutive weekly releases of 50,000 male mosquitoes homozygous for both the gRNA and

Cas9 alleles (H and C, respectively). (C) Spread of the malaria-refractory trait through the female mosquito population, and consequences for mosquito and human

infection status. Following releases of the drive system at year three, the proportion of refractory female mosquitoes (solid red line) increases and the proportion of

infectious mosquitoes (dotted light blue line) declines. As humans recover from infection and less develop new infections, the P. falciparum parasite rate (solid green

line) declines until it reaches near undetectable levels by year five. (D) Human malaria incidence is halted by the beginning of year four.

https://doi.org/10.1371/journal.pcbi.1009030.g004
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Mathematical details of the model formulation are available in the S1 Text, and documentation

for all MGDrivE 2 functions, including vignettes, are available at the project’s website at

https://marshalllab.github.io/MGDrivE/docs_v2/index.html. To run the software, we recom-

mend using R version 2.10 or higher.

We are continuing development of the MGDrivE 2 software package and welcome suggestions

and requests from the research community regarding future directions. The field of gene drive

research is moving quickly, and we intend the MGDrivE 2 framework to serve as a flexible tool to

address exploratory, logistical and operational questions regarding genetics-based control systems

for mosquito disease vectors. This includes exploratory modeling of novel genetic constructs,

assessment of candidate constructs against TPPs and PPCs, and field trial planning as constructs

progress through the development pipeline. Current functionality presents a new opportunity to

explore modeling-based research topics such as the invasiveness of threshold-dependent drive sys-

tems in the presence of climate fluctuations, seasonal source-sink dynamics and evolution towards

smaller fitness costs. Future functionality that we are planning includes: i) modeling of mosquito

traps to address questions related to monitoring and surveillance, and ii) more detailed epidemio-

logical models addressing phenomena important to malaria and arbovirus transmission—for

instance, dengue models that incorporate multiple serotypes with temporary cross-protective

immunity and complications related to antibody-dependent enhancement [40], and malaria mod-

els that incorporate age-structure, immunity, asymptomatic infection and superinfection [41].

Additionally, we are exploring numerical sampling algorithms that can increase computa-

tional efficiency and speed, facilitated by separation of model specification and simulation in

the software. The complexity of models that can be developed in MGDrivE 2 means that sensi-

tivity analyses can become extremely computationally intensive, and the ability of the SPN

framework to leverage efficient algorithms in these circumstances will be highly valuable. We

also continue to be interested in developing a corresponding individual-based model capable

of efficient modeling when the number of possible states exceeds the number of individuals in

the population—for instance, for multi-locus systems such as daisy-drive [42] and multiplex-

ing schemes in which a single gene is targeted at multiple locations to reduce the rate of resis-

tance allele formation [43], and for epidemiological models in which age structure, immunity

and mosquito biting heterogeneity become prohibitive for population models [41].

As gene drive technology matures, potential species of interest are not limited to arthropod

vectors of disease. In addition to public health applications, gene drive has been proposed as a

technique to help address problems in agriculture and conservation, with target species includ-

ing insect agricultural pests [44] and invasive rodents that predate native birds [45]. While

MGDrivE 1 was not designed with non-arthropod species in mind, it has been adapted for

application to invasive rodents on islands [46]. We expect MGDrivE 2 to be easier to adapt to

other insect or mammalian species due to the separation of model specification from simula-

tion, meaning there is no need to adapt code to numerically simulate trajectories. To adapt

model specification, the set of places and transitions for the SPN will need to be updated

according to the life stages and development and mortality rates for the species of interest.

New SPN transitions may be needed for behaviors not currently included, such as multiple

mating in adults, while redundant transitions may be removed.

Supporting information

S1 Table. Model parameters describing the gene drive construct, mosquito bionomics and

malaria epidemiology for simulations resembling releases on Grand Comore, Union of the

Comoros.

(PDF)

PLOS COMPUTATIONAL BIOLOGY MGDrivE 2: A gene drive model incorporating seasonality and epidemiology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009030 May 21, 2021 13 / 16

https://marshalllab.github.io/MGDrivE/docs_v2/index.html
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009030.s001
https://doi.org/10.1371/journal.pcbi.1009030


S1 Text. Description of the modeling framework. A description of the mathematical equa-

tions that govern the inheritance, life history, landscape and epidemiology modules and the

stochastic Petri net model formulation.

(PDF)
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