(A) Percentage (%) of patients who met the primary outcome in each group; (B) Mean %FEV1 change between ceftaroline (square) and vancomycin (circle) with error bars representing standard deviations

Conclusion. This study found no difference in safety and efficacy outcomes between vancomycin and ceftaroline. Our small cohort supports ceftaroline as an alternative agent for the treatment of MRSA mediated APE of CF.

Disclosures. All Authors: No reported disclosures

1316. Uncommon Presentations of Common Variable Immunodeficiency Akankcha Alok, MBBS¹; John Greene, MD²; Sadaf Aslam, MD³; ¹H. Lee Moffitt Cancer Center, Wilmington, Delaware; ²Moffitt Cancer Center, Tampa, FL; ³University of South Florida, Tampa, Florida

Session: P-73. Respiratory Infections - Bacterial

Background. Common Variable Immunodeficiency (CVID) is a primary immunodeficiency disorder which affects B lymphocyte function and differentiation causing decreased levels of Immunoglobulin G (IgG), Immunoglobulin A (IgA) and Immunoglobulin M (IgM).¹ The objective of this study is to highlight how hypogammaglobulinemia can lead to respiratory infections with microbes that are lesser known in the background of CVID with the help of a two-case series.

Methods. Medical records of two patients with CVID were reviewed who were found to have mycobacterium avium-complex intracellulare and streptococcus agalactiae lung infections respectively.

Results. Decreased IgG in CVID means reduced antibody production, low IgA leads to mucosal inflammation and increased susceptibility to respiratory infections² and lower IgM memory B-cells causes infections with encapsulated microorganisms.3 Table 1 highlights the various respiratory infections and their etiologies that have been reported with CVID, the most common being encapsulated organisms like Haemophilus influenza, Streptococcus pneumonia, Neisseria meningitidis along with enterovirus. Table 2 demonstrates our findings. In the first case we have reported a patient with mycobacterium avium-complex intracellulare (MAC-I). This could be because of hypogammaglobulinemia, decreased B and T-cell interaction and reduced T-cell signaling caused by CVID.⁴ Although, mycobacterium tuberculosis, simiae and hominis lung infections and mycobacterium bovis systemic infections have been reported before, MAC-I is relatively rare in CVID.⁵ In our second case, the patient developed streptococcus agalactiae or Group-B streptococcus (GBS) empyema. Most cases of GBS have been reported in pregnant women and infants. Infections with other encapsulated organisms have been reported in CVID but GBS empyema is less fre-quent and can happen due to decreased bacteria-specific CD4 cells, microbial translocation and hypogammaglobulinemia.6

Table 1. Respiratory Infections reported in CVID along with their etiologies.

Study	Infection	Etiology
Janeway et al	Sinusitis, pneumonia	Haemophilus influenza
Cunningham-Rundles	Recurrent bacterial infections	Streptococcus pneumoniae
	including tonsillitis	Metapneumovirus
	Bronchiectasis	
	Pneumonia	
	Empyema	
Kokron et al	Lung Infection	Mycobacterium tuberculosis
Arora et al	Lung Infection	Mycobacterium simiae
Antachopoulos et al	Colonization and infestation	Aspergillus species
		Histoplasma capsulatum
Oksenhendler et al	Bronchitis	Multiple
Berbers et al	Structural airway disease	Prevotella
		Alloprevotella
		Selenomomas
	Interstitial lung disease	Streptococcus
Cohen et al	Pneumonia	COVID-19
Rushchel et al	Pneumonia	Moraxella catarrhalis
		Staphylococcus aureus
		Pneumocystis jirovecci
		Mycoplasma pneumoniae
Więsik-Szewczyk et al		Chlamydophila pneumoniae
Kralickova et al	Pneumonia	Cytomegalovirus
		Atypical mycobacteria
Kellner et al	Lung infection	Candida albicans
		Cryptococcus neoformans
		Herpes simplex virus
		Varicella Zoster virus
		Ebstein Barr virus
		Pseudomonas aeruginosa
Гат et al	Pneumonia	Ureaplasma urealyticum
/azdani et al	Pneumonia	Bordetella pertussis
	Otitis media	Neisseria meningitidis
	Rhino sinusitis	Mycobacterium hominis
	Pharyngitis	Adenovirus
	Laryngitis	Enterovirus
	Epiglottis	Human herpes virus 8
Aydogan et al	Bronchiectasis	Proteus mirabilis
		Serratia marcescens
Urschel et al	Pneumonia	Measles
Baumann et al	Upper respiratory tract Infection	Rhinovirus

Table 1: Case Presentations

	Case 1	Case 2
Age (in years)	61	39
Gender	Female	Female
Chief complaints	Cough, hemoptysis, shortness of	Fever, cough and pleuritic chest pain
	breath, night sweats, significant weight	
	loss and intermittent fever	
Associated disorder	CVID with intravenous immunoglobulin	CVID with allogeneic stem cell transplar
and treatment received	(IVIG) therapy	and associated graft-versus-host diseas
Associated	Stage three ovarian cancer treated with	Acute Myeloid Leukemia (AML) treated
Malignancies and	surgery and chemotherapy.	with chemotherapy.
treatment received		
Infectious history No s	No significant history.	Multiple infections in the past with
		methicillin-sensitive and resistant
		staphylococcus aureus, pseudomonas
		aeruginosa, coagulase-negative
		staphylococcus, clostridium difficile,
		vancomycin-resistant enterococcus, E.
		coli, parainfluenza-3, influenza, herpes
		simplex and aspergillus species, in the
		form of cellulitis, sinusitis, panniculitis,
		colitis, meningitis, bronchitis, urinary
		tract infections, pneumonia, mucositis
		and simple colonization over several
		years. More recently she developed
		empyema of the right lower lobe with
		cultures positive for streptococcus
		agalactiae which required decortication
		lobectomy and a prolonged course of
		intravenous antibiotics.
Other relevant history	History of bronchiectasis.	Multiple drug allergies, past surgical
		history of tonsillectomy, family history
		hypogammaglobulinemia.
Examination findings	Mild expiratory wheezing noted more	A temperature of 101.F was found on
Examination mangs	on the left side than the right	admission but remained normal
	on the felt side than the right	thereafter.
Laboratory findings	Negative blood cultures.	Respiratory viral panels and blood
caperatory mangs	Bronchoalveolar lavage demonstrated	cultures were negative.
	mycobacterium avium-intracellulare	cultures were negative.
	complex.	
Radiology findings	Computed tomography (CT) scan of the	A CT scan of the chest revealed a
Radiology minings	chest showed a 2.1 cm left hilar nodular	decreased fluid collection in the lower
	mass encasing the lingular bronchus,	thorax and diminished parenchymal
	associated with mucus plugging and	consolidation compared to previous
	bilateral hilar lymphadenopathy.	scans.
	(Figure 1)	scans.
Cinel diseasesis	Mycobacterium avium-complex	Findings were consistent with improvin
Final diagnosis	intracellular infection with CVID.	Streptococcus agalactiae empyema
	intracendiar infection with cviD.	
	Constants and a sector list of the	status with CVID.
Management	Symptoms were well-controlled during	Due to lack of any active infections, the
	the hospital stay, patient was	patient did not require antibiotic therap
	monitored with serial CT scans and	and was discharged home in stable
	responded well to symptomatic	condition with orders of regular follow
	management.	up.



Figure 1. CT image of MAC-I infection.

Conclusion. We encountered two unique cases of CVID with rare infectious etiologies. The cases are intended to create an awareness and vigilance regarding CVID induced hypogammaglobulinemia which can cause respiratory infections with lesser known pathogens where antibodies may be important.

Reference

- Cinetto, F., et al., The broad spectrum of lung diseases in primary antibody deficiencies. European Respiratory Review, 2018. 27(149): p. 180019.
- Kokron, C.M., et al., Clinical and laboratory aspects of common variable immunodeficiency. An Acad Bras Cienc, 2004.76(4): p. 707-26.
- Carsetti, R., et al., The loss of IgM memory B cells correlates with clinical disease in common variable immunodeficiency. J Allergy Clin Immunol, 2005. 115(2): p. 412-7
- Rezaei N., et al., B-cell-T-cell activation and interaction in common variable immunodeficiency. Hum Immunol. 2010 Apr;71(4):355-62.
- Herrera-Sánchez D.A., et al., Infection due to Mycobacterium bovis in common variable immunodeficiency. Rev Alerg Mex.Jan-Mar 2015;62(1):75-82.
- Perreau M, Vigano S, Bellanger F, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. Journal of Experimental Medicine. 2014;211(10):2033-2045.
- Baumann, U., et al., The Lung in Primary Immunodeficiencies: New Concepts in Infection and Inflammation Front Immunol, 2018. 9: p. 1837.
- Berbers, R.-M., et al., Low IgA Associated With Oropharyngeal Microbiota Changes and Lung Disease in Primary Antibody Deficiency. Frontiers in Immunology, 2020. 11(1245).
- Cohen, B., et al., COVID-19 infection in 10 common variable immunodeficiency patients in New York City. The journal of allergy and clinical immunology. In practice, 2021. 9(1): p. 504-507.e1.
- Cunningham-Rundles, C., Common variable immune deficiency: case studies. Blood, 2019. 134(21): p. 1787-1795.
 Kellner, E.S., et al., Cellular Defects in CVID Patients with Chronic Luna Disease in the USIDNET Reaistry.
- Kellner, E.S., et al., Cellular Defects in CVID Patients with Chronic Lung Disease in the USIDNET Registry. Journal of clinical immunology, 2019. 39(6): p. 569-576.
- Kralickova, P., et al., Cytomegalovirus disease in patients with common variable immunodeficiency: three case reports. Int Arch Allergy Immunol, 2014. 163(1): p. 69-74.
 Oksenhendler. E., et al., Infections in 252 patients with common variable immunodeficiency. Clin Infect Di
- Oksenhendler, E., et al., Infections in 252 patients with common variable immunodeficiency. Clin Infect Dis, 2008. 46(10): p. 1547-54.
 Song, J., et al., Common Variable Immunodeficiency and Liver Involvement. Clinical reviews in allergy &
- immunology, 2018. 55(3): p. 340-351. 15. Tam, J.S. and J.M. Routes, *Common variable immunodeficiency*. Am J Rhinol Allergy, 2013. 27(4): p. 260-5.
- Wiejsk-Szewczyk, E. and K. Jahnz-Röżyk, From infections to autoimmunity: Diagnostic changes in common variable immunodeficiency. World journal of clinical cases, 2020. 8(18): p. 3942-3955.
- Yazdani, R., et al., Common Variable Immunodeficiency: Epidemiology, Pathogenesis, Clinical Manifestations, Diagnosis, Classification, and Management. J Investig Allergol Clin Immunol, 2020. 30(1): p. 14-34.
- Arora, R., et al., Mycobacterium simiae infection in a patient with common variable immunodeficiency. Journal of allergy and clinical immunology, 2004. 113(2): p. 5123.
- Yazdani, R., et al., Infectious and Noninfectious Pulmonary Complications in Patients with Primary Immunodeficiency Disorders. J Investig Allergol Clin Immunol 2017; 27(4): p.213-224.
- Ayodogan, M., et al., Clinical and Immunological Features of Pediatrics Patients with Common Variable Immunodeficiency and Respiratory Complications. J Investig Allergol Clin Immunol 2008; 18(4): 2p.60-265.
- Antachopoulos, C., T.J. Walsh, and E. Rollides, Fungal infections in primary immunodeficiencies. European Journal of Pediatrics, 2007. 166(11): p. 1099-1117.

Disclosures. All Authors: No reported disclosures

1317. Prevalence of *Pseudomonas aeruginosa* as the Causative Organism for Community Acquired Pneumonia

Adam D. Haviland, MD¹; Wendy Szymczak, PhD²; Gregory Weston, MD MSCR³; ¹Montefiore Medical Center, New York, New York; ²Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY; ³Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York

Session: P-73. Respiratory Infections - Bacterial

Background. IDSA/ATS guidelines regarding pneumonia diagnosis and treatment changed in 2019. Guidelines recommend determining local prevalence of MRSA and *P. aeruginosa* to help guide empiric antibiotic coverage. The aim of our study was to determine the prevalence of *P. aeruginosa* as the causative organism for adult patients admitted to a large urban academic medical center with community acquired pneumonia (CAP).

Methods. A report of urine streptococcus antigen tests collected January 1st-December 31st in 2019 was generated. Six hundred charts were reviewed and two hundred subjects met inclusion criteria (figure 1). Inclusion criteria were age >18, hospital admission, and documented suspicion of pneumonia by a physician.

Results. The average age was 70 and half of the cases were women. The causative organism was identified in 60/200 cases (table 1). No cases of *P. aeruginosa* were identified. The most commonly isolated organisms were Influenza A and pneumococcus. 66% of cases had age >65yo, 25% were from long term care facilities, 34% had structural lung disease, 20% had dementia, 15% were hospitalized in the prior 90 days and received IV antibiotics, and 30% of cases met severe CAP criteria (table 2).

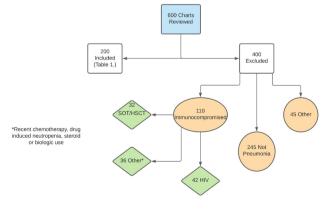


Figure 1. Workflow

Table 1. Organisms Identified

Organism	Frequency n=60	
Influenza A	13	
Pneumococcus	11	
RSV	6	
hMPV	5	
MSSA	5	
MRSA	3	
Other GNB (Klebsiella, E. coli)	4	
Legionella	3	
Other Virus (Coronavirus, Rhinovirus, Parainfluenza)	5	
Co-Infection (i.e. Influenza A + Pneumococcus)	5	

Table 2. Risk Factors

Risk Factor	Frequency (%) n=200	
Age >65yo	132 (66)	
Hx of Smoking	96 (48)	
Presence of Enteric Feeding Tube	12 (6)	
Hx of Dementia	41 (20.5)	
Hemodialysis	4 (2)	
Structural Lung Disease (COPD, Cavitations, IPF, Bronchiectasis)	68 (34)	
Hospitalization within prior 90 days with IV abx	31 (15.5)	
From Long Term Care Facility	50 (25)	
Severe CAP Criteria Met (IDSA 2007)	59 (29.5)	
Pseudomonas in Respiratory or Blood Culture within One Year	1 (.05)	

Conclusion. Limitations include a low prevalence of renal failure in the study population, and lack of a standardized respiratory infection evaluation. Our results suggest that empiric coverage for *P. aeruginosa* may not be needed at our center in this cohort of older patients with clinical characteristics sometimes thought to be risk factors for *P. aeruginosa*.

Disclosures. Wendy Szymczak, PhD, Premier, Inc (Consultant)Qiagen (Consultant, Scientific Research Study Investigator) Gregory Weston, MD MSCR, Allergan (Grant/Research Support)

1318. Clinical and Molecular Characteristics of Hypermucoviscous Klebsiella pneumoniae Causing Pneumonia in Korea

Ji Yeon Lee, n/a¹; Hyun Ah Kim, n/a¹; Miri Hyun, n/a¹; ¹Keimyung University School of Medicine, Daegu, Taegu-jikhalsi, Republic of Korea

Session: P-73. Respiratory Infections - Bacterial

Background. Invasive Klebsiella pneumoniae (K. pneumoniae) was emerged in Asia, well-known for community-onset liver abscess. Healthcare-associated pneumonia caused by hypervirulent K. pneumoniae has been reported in recent studies. The purpose of this study was to evaluate the clinical and molecular characteristics of hypervirulent K. pneumoniae compared with classic K. pneumoniae in respiratory infection.

Methods. The study was performed on 163 *K. pneumoniae* isolates of respiratory infections collected from Keimyung University of Dongsan Medical Center from November 2013 to November 2015; group A, as classic *K. pneumoniae* and group B, as hypervirulent *K. pneumoniae*. Hypermucoviscous phenotype was confirmed with string test. Capsular serotypes, *rmpA*, *magA*, *allS*, *mrkD*, *entB*, *kfu*, and *iutA* were identified using specific primers by polymerase chain reaction. The biofilm mass was determined using the microtiter plate assay measured by optical density (OD, 570nm).

Results. A total 163 patients were analyzed, 100 (61.3%) of group A and 68 (38.7%) of group B. Community-acquired pneumonia was observed in 49.2% of group B and 18.0% of group A (p=0.001). Underlying diseases except chronic lung disease were more associated with group A. Mean age (72.6±11.7 vs. 68.8±12.5 years,