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Summary

� Revealing the contributions of genes to plant phenotype is frequently challenging because

loss-of-function effects may be subtle or masked by varying degrees of genetic redundancy.

Such effects can potentially be detected by measuring plant fitness, which reflects the cumula-

tive effects of genetic changes over the lifetime of a plant. However, fitness is challenging to

measure accurately, particularly in species with high fecundity and relatively small propagule

sizes such as Arabidopsis thaliana.
� An image segmentation-based method using the software IMAGEJ and an object detection-

based method using the Faster Region-based Convolutional Neural Network (R-CNN) algo-

rithm were used for measuring two Arabidopsis fitness traits: seed and fruit counts.
� The segmentation-based method was error-prone (correlation between true and predicted

seed counts, r2 = 0.849) because seeds touching each other were undercounted. By contrast,

the object detection-based algorithm yielded near perfect seed counts (r2 = 0.9996) and highly

accurate fruit counts (r2 = 0.980). Comparing seed counts for wild-type and 12 mutant lines

revealed fitness effects for three genes; fruit counts revealed the same effects for two genes.
� Our study provides analysis pipelines and models to facilitate the investigation of Arabidop-

sis fitness traits and demonstrates the importance of examining fitness traits when studying

gene functions.

Introduction

A major goal of biology is to understand the molecular basis for
the development of organisms and their adaptation to different
environments (McDonald, 1983). One approach is to evaluate
the effects of genetic variants on phenotypes. However, it is
often challenging to investigate such effects because gene func-
tions may be masked by genetic redundancy (Bouch�e &
Bouchez, 2001; Sun et al., 2012) and/or be condition specific
(Hirsch et al., 1998; Meissner et al., 1999). Moreover, the phys-
iological and/or developmental changes caused by loss of gene

function may be too subtle to detect. This challenge can be alle-
viated by measuring the effects of genetic variations on fitness
(i.e. the ability of an individual to survive and reproduce)
because it reflects the cumulative effects of genetic changes over
the lifetime of a plant. Accurate estimates of fitness are therefore
valuable for several fields of study, including plant genetics, evo-
lution and plant breeding.

Among fitness measures, the most direct measure is the num-
ber of progenies produced (Thomson & Hadfield, 2017). In Ara-
bidopsis thaliana, a predominantly selfing plant, the total number
of seeds produced per plant is a particularly good estimate of fit-
ness because it incorporates both male and female contributions.
However, because Arabidopsis seeds are small (c. 0.1–0.2 mm2;*Joint first authors.

� 2022 The Authors
New Phytologist � 2022 New Phytologist Foundation

New Phytologist (2022) 234: 1521–1533 1521
www.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Research

https://orcid.org/0000-0002-7580-9627
https://orcid.org/0000-0002-7580-9627
https://orcid.org/0000-0002-7911-6991
https://orcid.org/0000-0002-7911-6991
https://orcid.org/0000-0002-1551-3517
https://orcid.org/0000-0002-1551-3517
https://orcid.org/0000-0002-4200-3694
https://orcid.org/0000-0002-4200-3694
https://orcid.org/0000-0003-1613-5826
https://orcid.org/0000-0003-1613-5826
https://orcid.org/0000-0003-4916-915X
https://orcid.org/0000-0003-4916-915X
https://orcid.org/0000-0001-6470-235X
https://orcid.org/0000-0001-6470-235X
https://orcid.org/0000-0003-1985-2687
https://orcid.org/0000-0003-1985-2687
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Jahnke et al., 2016) and produced in large numbers (up to thou-
sands per plant; Boyes et al., 2001; Morales et al., 2020), it is dif-
ficult to obtain accurate seed counts. As a consequence, fruit
(silique) number (Busoms et al., 2015) and total fruit length
(Roux et al., 2004; Busoms et al., 2015; Kerwin et al., 2015) are
often used to measure fitness. Both measures are correlated with
seed production, but fruit number is not perfectly correlated with
seed number (e.g. r2 = 0.960, Mauricio & Rausher, 1997) and
correlations with fruit length are highly variable across studies,
ranging from r2 = 0.988 (Roux et al., 2004) to r2 = 0.256 (Gnan
et al., 2014). In addition, fruit numbers (up to 450 per plant;
Hamidinekoo et al., 2020) are typically counted manually, and
these counts can be error-prone. Thus, to better measure fitness,
both fruit and seed numbers should be evaluated using methods
that are not hindered by propagule size or number.

Several programmes have been designed to increase the effi-
ciency and accuracy of seed analyses. Some are aimed at measur-
ing the properties of individual seeds (e.g. size and shape) and
others at obtaining high-throughput seed counts (Herridge et al.,
2011; Tanabata et al., 2012; Moore et al., 2013). These
approaches typically require that seeds be separated before imag-
ing, which increases the time needed for processing. Other sys-
tems have been designed to separate seeds mechanically such as
the phenoSeeder device (Jahnke et al., 2016), large-particle flow
cytometer (Morales et al., 2020) and the BELT imaging system
combined with the phenoSEED algorithm (Halcro et al., 2020).
A drawback of these methods is that they require specialized
equipment, hindering their widespread adoption. Another
approach that has been increasingly used in plant biology for
applications such as measurement of fitness traits is machine
vision, the application of deep learning algorithms to image anal-
ysis (Mochida et al., 2019).

Deep learning approaches, in particular Convolutional Neural
Network (CNN)-based frameworks, have been developed to
detect vastly different objects (from cars to plant seeds) in images.
For example, aiming to train instance segmentation models
where seed counting was not the primary task, Toda et al. (2020)
were able to detect the seeds of rice, lettuce, oat and wheat with
96% recall and 95% precision using Mask Region-based CNN
(R-CNN). However, the detection of much smaller objects using
CNN-based approaches remains challenging (Cao et al., 2019),
likely because CNNs create low-level abstractions of the images,
and if the objects are too small, the resulting abstractions are too
simple to be used to distinguish whether the object is present or
not. Although the CNN-based models developed by Toda et al.
(2020) detected seeds with high accuracy, the smallest seeds
tested were lettuce seeds, which have areas ranging from 1.5 to
3.6 mm2 (Penaloza et al., 2005) and are c. 10 times larger than
Arabidopsis seeds. Another consideration is that the most conve-
nient way to count all the seeds from an Arabidopsis plant, which
can produce thousands of seeds (Boyes et al., 2001; Morales et al.,
2020), would be to put all the seeds in a single image, thus result-
ing in a relatively small ratio of seed size to image size. However,
because of the small images (10249 1024 or 20009 2000 px2)
used in Toda et al. (2020), the ratio of seed size to image size was
relatively large (> 5000 px2 per barley seed), which limited the

number of seeds that could be included in an image. Therefore,
it is important to assess how well the CNN-based approaches
perform in detecting objects as small as Arabidopsis seeds in an
image containing thousands of them.

Convolutional Neural Network-based approaches have also
been used in fruit counting. For example, wheat spikes can be
detected, counted and analysed to estimate yield using R-CNN
(correlation between true and predicted counts: r2 = 0.93 with a
slope of 1.01; Hasan et al., 2018). Starting from two pretrained
models (ResNet and ResNext), Afonso et al. (2020) applied the
Mask R-CNN approach to detect and count tomato fruits from
images, obtaining an F1 of 0.94 when fruits partially overlapped
with each other. DeepPod effectively counts Arabidopsis fruits
but results in a high number of false negatives when there are
many fruits (r2 = 0.90 with a slope of c. 0.70; Hamidinekoo et al.,
2020). In addition, the inflorescences need to be harvested when
the fruits are still green, preventing the harvesting of seeds for
future propagation or analysis. Thus, it is important to develop
tools or models to detect and count mature fruits when seeds
need to be saved for future experiments. Because Arabidopsis
fruits shatter easily when dry, such tools should ideally be able to
count fruits at different stages, including intact fruits and those
that have already dehisced and released seed.

In this study, we evaluated two approaches for counting seeds
from an Arabidopsis plant in a single image: (1) a segmentation-
based method using the software IMAGEJ (Schneider et al., 2012)
and (2) an object detection method using the Faster R-CNN
algorithm (Ren et al., 2017). We also applied Faster R-CNN to
count fruits in images of whole plants captured after seeds were
mature. To facilitate seed and fruit counting in diverse images,
we established models using input images with varying resolu-
tion, contrast, brightness and blurriness. The final seed and fruit
models are provided and can be readily used by the research com-
munity. Finally, we used our pipeline to count seeds for loss-of-
function mutants of six pairs of duplicate genes. We showed that
mutation of three genes affects fitness, illustrating the potential
importance of measuring fitness traits and the utility of our
pipeline in the investigation of gene functions.

Materials and Methods

Plant materials

T-DNA insertion mutants in the Arabidopsis Col-0 background
and wild-type (WT) Col-0 controls were used for training seed and
fruit counting models. Information about these lines is provided in
Supporting Information Tables S1–S3. Fitness data are reported for
T-DNA insertion mutants of PURPLE ACID PHOSPHATASE
2 (PAP2), PAP9, HIGH MOBILITY GROUP A4 (HON4,
also known as GH1-HMGA1), HON5 (GH1-HMGA2),
EUKARYOTIC INITIATION FACTOR 4B1 (EIF4B1), EIF4B2,
ADENOSINE 50-PHOSPHOSULFATE REDUCTASE-LIKE 5
(APRL5), APRL7, PLANT AND FUNGI ATYPICAL DUAL-
SPECIFICITY PHOSPHATASE 3 (PFA-DSP3), PFA-DSP5,
KINESIN 7.2 (KIN7.2) and KIN7.4 (Tables S4, S5). These mutants
were collected as part of a large-scale study to assess the degree of

New Phytologist (2022) 234: 1521–1533
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

Research

New
Phytologist1522



genetic redundancy between duplicate genes. Multiple homozygous
mutant and WT sibling plants were identified by PCR with gene-
specific primers (two to six plants per genotype, Table S3). Seeds
harvested from these independent lines (referred to as sublines) were
planted (n = 5–20 per subline, total n ≥ 40 per genotype) for fitness
comparison between mutants and WT, and each mutant was com-
pared with its WT sibling. This was done to reduce the chance that
observed fitness effects were due to other undetected T-DNA
insertions.

For plants grown for fitness analysis (Tables S3–S5) and seed
scan images (Table S1), seeds were grown as described in Meth-
ods S1. Plants were grown until they were mature (i.e. had under-
gone global arrest). When plants were completely dry, the
numbers of intact and completely or partially shattered fruits
from each plant were recorded as detailed in Methods S1. The
total number of seeds produced per plant was estimated in two
steps. First, the number of seeds counted was divided by the
number of intact fruits to obtain the average seed number per
fruit. Second, the average seed number per fruit was multiplied
by the total fruit number (both intact and shattered) to estimate
the total seed number per plant. Plants used for fruit imaging
(Table S2) were grown as described in Methods S1.

Seed image scanning, processing and counting with the
segmentation method

Before seed imaging, we separated the seeds from the chaff (see
Methods S1). Seed images were obtained by placing Petri plate
lids containing seeds in a template made from white acrylic
(295 mm9 210 mm9 10 mm, Fig. 1a) and taking scans with a
desktop scanner (see Methods S1). The IMAGEJ (v.1.52a,
https://imagej.nih.gov, Schneider et al., 2012) workflow is
shown in Fig. 1. Details about seed counting using IMAGEJ are
provided in Methods S1. The image conversion programme
and the IMAGEJ macro were combined into a Windows batch
script (available in our GitHub repository, see the ‘Data avail-
ability’ section), in which a for-loop was used to quickly count
seeds for images in sequence. It took c. 5 min to fully process
10 images.

Seed image processing and counting with an object
detection method using Faster R-CNN

Before seed detection, each scanned image was split into 12
subimages; each subimage contains a single plate lid and is
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Fig. 1 Workflow and performance for seed counting with a segmentation method using IMAGEJ when seeds were deliberately separated. (a) Workflow.
Seeds from 12 different plants were scattered and manually separated from each other on the lids of 12 Petri plates, which were placed in a template and
scanned. Twelve search areas, each with a diameter of 60mm (yellow circles), were predefined. A threshold was applied by selecting pixels with intensities
between 50 and 140 to separate the seed areas (red) from the background. Pixels were then converted to real-world distance units in mm. The ‘Analyze
Particles’ tool was used to detect and count the seeds. (b) An example of an image with detected seeds (left) and an enlarged image showing the seeds
(right). Red region with number, individual detected seed area. (c) Correlation between true and predicted seed counts using the segmentation method
when seeds were deliberately separated.
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referred to as a ‘whole-plate image’. After testing several algo-
rithms, we chose to use Faster R-CNN for seed detection (for
reasons, see Methods S1). Faster R-CNN combines the genera-
tion of region proposals (i.e. circumscribing the areas of interest,
a regression problem) and their classification (i.e. in our case, the
object is a seed or not) into a single pipeline (Ren et al., 2017). In
Faster R-CNN, images were first processed by a feature extractor
(INCEPTION v.2; Szegedy et al., 2016), and the resulting feature
maps were used to predict bounding boxes (referred to as propos-
als) containing images of individual seeds (left panel in Fig. S1);
these proposals were then used to crop features from the feature
maps (right panel in Fig. S1). These cropped features were subse-
quently used for classification and bounding box regression.

Faster R-CNN models were trained using TENSORFLOW object
detection API (Huang et al., 2017) and implemented in TENSOR-

FLOW v1.13.2 (Abadi et al., 2016) in PYTHON v3.6.4. In the initial
Faster R-CNN modelling trial, each whole-plate image was split
into four quarter-plate images. Images were preprocessed, and
seeds were annotated as detailed in Methods S1. To speed up the
training process, a pretrained model (faster_rcnn_inception_v2_-
coco, https://docs.openvino.ai/latest/omz_models_model_faster_
rcnn_inception_v2_coco.html) was used as a starting point. To
optimize Arabidopsis seed detection, we conducted hyperparame-
ter tuning (Methods S1; Tables S6, S7; Figs S2, S3) and evalu-
ated tuned models using the measure IoU, which is defined as the
intersection (I) over (o) the union (U) of a ground truth area and
a prediction area, as detailed in Methods S1.

Fruit image capturing and counting with an object
detection method based on Faster R-CNN

Each dry Arabidopsis plant was placed on a pink paper back-
ground and photographed with an iPhone 8 smartphone. The
images were saved in jpeg format with dimensions of
30249 4032 pixels. Fruits in the images were manually anno-
tated, and the annotated coordinates were then converted to the
csv and TFrecord formats, as conducted for the seed images
(Methods S1). The same pretrained Faster R-CNN model used
for seed counting was used to build the fruit counting models,
and the same three hyperparameters were tuned to optimize the
model performance but with a different hyperparameter space
(Table S8). For each hyperparameter combination, a model was
saved after 6000 steps, when the performance had converged. A
final model was established using hyperparameters selected based
on performance on the validation set images.

Statistical analysis of fitness traits

Data from the border cells (see Methods S1) showed different
distributions compared with data from inside cells; therefore,
these data were excluded from further analysis. For each block
(i.e. one including pap, hon and eif4b and one including aprl,
pfa-dsp and kin7, see Methods S1), quantile normalization was
performed across flats using the R package ‘BROMAN’ (https://
github.com/kbroman/broman) to account for variation between
flats. Each mutant was compared with its WT control using the

Wilcoxon rank-sum test. Each pair of duplicate genes had the
same WT sibling control.

Results

Seed counting with the segmentation method using IMAGEJ

Because IMAGEJ is widely used for seed morphology analysis (Cer-
vantes et al., 2016), we first developed a pipeline for seed counting
that incorporated IMAGEJ analysis based on segmentation of seed
areas. When fewer than 200 seeds were placed on the plate lid
and separated using forceps, seeds were detected and counted with
high accuracy (correlation between true and predicted seed
counts, r2 = 0.998, slope = 0.9998, 60 images, Fig. 1b,c;
Table S9). Our segmentation-based pipeline allowed the detection
of c. 52 template images (total of 624 plate lids) per hour with a
typical laptop (Intel Core i7-7500 U CPU, 16GB RAM).

However, when seeds were placed on plate lids without separa-
tion, big clumps of seeds were not counted by the segmentation
method, and small clumps where a small number of seeds were
touching each other were recognized as single seeds (Fig. 2a). The
prediction accuracy drops off as the number of seeds increases
(Fig. 2c; Table S10); this is because the more seeds there are on
the plate lid, the more likely it is that seeds touch each other,
leading to an increase in the false-negative rate of prediction.
Moreover, the detection of seeds could be disrupted by scratches
or letters on the plate lids, and seeds outside the predefined circu-
lar search regions were not detected (purple arrowheads in
Fig. S4). Thus, to obtain accurate counts based on segmentation,
it is necessary to separate seeds and confine them to the centre of
the plate lid, which is time-consuming and not amenable to
high-throughput analysis.

Improved seed counting by an object detection method
based on Faster R-CNN

We then evaluated the performance of an object detection
approach using Faster R-CNN in seed counting. Since it is time-
consuming to annotate a large number of seeds for model training,
we adopted a two-step strategy. First, we split the 256 whole-plate
images into 1024 quarter-plate images and manually labelled a
subset (180) of these quarter-plate images to speed up the training
process. A total of 160 labelled quarter-plate images (Training
image set 1 in Fig. 3a) were used to build the models, and the
remaining 20 images were set aside as the Validation image set
(Fig. 3a) to evaluate model performance. A model (Modelseed 66)
built with the optimal hyperparameter combination (scale-B,
aspect ratio-A and 10 000 proposals, see Methods S1) was used to
detect seeds in the remaining 844 quarter-plate images to produce
in silico seed annotations for the second-round modelling (Fig. 3a,
b), resulting in 211 labelled whole-plate images.

A new model, Modelseed 67, with the same parameters as
Modelseed 66, was built using 161 (Training image set 2 in
Fig. 3b) out of these 211 images. The remaining 50 labelled
whole-plate images (Test image set in Fig. 3b) were used to evalu-
ate the performance of Modelseed 67, which had an improved

New Phytologist (2022) 234: 1521–1533
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation

Research

New
Phytologist1524

https://docs.openvino.ai/latest/omz_models_model_faster_rcnn_inception_v2_coco.html
https://docs.openvino.ai/latest/omz_models_model_faster_rcnn_inception_v2_coco.html
https://github.com/kbroman/broman
https://github.com/kbroman/broman


average F1 of 0.992 (Table S10) compared with the F1 (c. 0.970)
of Modelseed 66 (Fig. S2). Note that the test set images were not
used for training or validating Modelseed 67; they were thus ideal
for independently testing the model. In contrast to the segmenta-
tion method, Modelseed 67 correctly predicted seeds even if they
were in contact with each other (Fig. 2b), and the prediction
accuracy was not influenced by the total seed number
(r2 = 0.9996, P = 1.7e-83, Fig. 2d). The differences between true
and predicted seed counts were close to zero, much smaller than
those in segmentation-based analysis (Fig. 2e). Furthermore,
Modelseed 67 allowed the detection and counting of seeds in
c. 240 whole-plate images per hour using 1 GPU (NVIDIA Tesla

K80) with 4 GB of GPU memory in a UNIX cluster, or c. 33
images per hour using a laptop with 16 GB of memory (i.e.
c. 800 seed images can be processed per day). These results sug-
gest that our Faster R-CNN-based models provide highly accu-
rate Arabidopsis seed counts and can be used for large-scale
fitness studies.

Impact of seed density on the Faster R-CNN model

The number of seeds in an image has a detrimental effect on the
performance of the segmentation method, but not on that of
Faster R-CNN (Fig. 2d). To verify that the Faster R-CNN model
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whole-plate images with in silico seed annotations, which were then manually curated and used as ground truth seed annotations. Modelseed 67 was built
using 161 (training set 2) out of the 211 annotated images with the same hyperparameters used in Modelseed 66, and was evaluated using the test set (50
independent images not used for modelling) and the modified test set (i.e. the 50 independent test set images plus 1700 images modified from the test set
images that had different image properties (blurriness, brightness, contrast and resolution values)). For data augmentation, the image properties of 20 images
from training set 2 were modified, and the resulting 420 images were combined with training set 2 (161 images), resulting in 581 images (modified training
set 2), which were used to build Modelseed 68. The modified test set was used to evaluate the performance of Modelseed 68.
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performance was not affected by the seed density, we established
the seed density index (SDI), which takes into account the differ-
ing densities across a single plate. First, a circle with a radius of
30 pixels (corresponding to 0.62 mm, approximate length of two
seeds) was drawn from the centre of a seed, and then, the number
of seeds with central points located within the circle was calcu-
lated. Finally, the average number of seeds per circle in a whole-
plate image was defined as the SDI (Fig. 4a).

We calculated the SDIs of the test set images (e.g. see Fig. S5)
and determined the Pearson’s correlation coefficient (PCC)
between SDI and the performance of Modelseed 67 on the test set
images (Fig. 4b). The higher the seed density, the lower the
model performance (PCC between SDI and F1 was �0.581,
P = 9.8e-06, Fig. 4b; for the correlation between SDI and other
performance measures, see Fig. S6). Nevertheless, the effect of
seed density on the performance of Modelseed 67 was small, as
the F1 only dropped from 1.000 for an SDI of 1.157 to 0.971
for an SDI of 3.100 (Fig. 4b; Table S10). An F1 of 0.971 with a
recall of 0.968 indicates that for an image with 1000 seeds, there
would only be 32 false negatives (seeds not detected) and 25 false
positives (seeds detected in an area with no seeds or a seed area
counted more than once). Consistent with this, there was no sig-
nificant correlation between the SDI and the difference between
true and predicted seed counts (PCC =�0.206, P = 0.15), in
contrast to the significant negative correlation observed for the
segmentation method (PCC =�0.886, P = 1.2e-17, Fig. 2f). We
also calculated SDIs for the predicted seed coordinates and found
that the PCC value between true and prediction-based SDIs was
0.997 (P = 1.5e-54, Fig. 4c), demonstrating that our Faster R-
CNN model also predicts the locations of seeds very well.

Model improvement through data augmentation

Our goal is to provide a seed counting model that can be widely
used by different researchers, who may have seed images with dif-
ferent properties. Thus, we investigated the utility of Modelseed
67 using images with varying resolution, contrast, brightness and
blurriness (Fig. 5a). These modified seed images were created by
modifying the properties of the test set images (Fig. 3b, for the
image property settings, see Table S11). In the modified test set,
there were 1750 images: the original test set images (50) and
modified images with 34 different attributes (349 50, light
green box, Fig. 3b). A slight but significant decrease in F1 was
observed when the brightness of the images was ≤ 0.60 (P = 0.01,
one-sided Wilcoxon signed-rank test) relative to the original
images, while the F1 dropped dramatically when the relative
brightness was ≥ 1.20 (P = 6.4e-08, Fig. 5b). A significant
decrease in F1 was also observed when the relative contrast of
images (relative to the original image) was ≤ 0.50 (P = 1.0e-07)
or ≥ 1.75 (P = 5.0e-4), the relative blurriness was ≥ 1.50
(P = 6.7e-10) or the relative resolution was ≤ 0.50 (P = 9.1e-10,
Fig. 5b). These results suggest that although Modelseed 67 is suit-
able for a range of image qualities, the seed detection accuracy
will decrease dramatically when the image properties deviate from
the training images beyond a certain point.

To improve the robustness of Modelseed 67, we applied data
augmentation, a method used to increase the size of a training
data set by including images with more properties so that better
prediction models can be built (Shorten & Khoshgoftaar, 2019).
To accomplish this, we used 20 of the 161 training set 2 images
to produce additional images with 21 different property settings
(219 20, darker green box, Fig. 3b; for the image property set-
tings, see Table S11). These 420 additional images, together with
the original 161 images, were used to build a new model,
Modelseed 68 (Fig. 3b), with the same hyperparameter settings as
Modelseed 67. Modelseed 68 was then used to detect seeds in the
modified test set images. Although there was a slight decrease in
F1 when the relative blurriness was ≥ 3.00 (P = 0.04, median F1
decrease = 0.002) or when the relative resolution was ≤ 0.30
(P = 0.02, median F1 decrease = 0.003, Fig. 5b), Modelseed 68
(blue, Fig. 5b) performed better than the non-augmented
Modelseed 67 (red, Fig. 5b) in all situations, and thus, the aug-
mented model is robust to different image properties.

Fruit counting using Faster R-CNN models

Compared with seed number, total fruit count is an even more
frequently used proxy for fitness. Because dry Arabidopsis fruits
shatter easily, it is not always possible to harvest all fruits pro-
duced by a single plant after seeds have matured, especially for
plants growing in the field. In this case, the best method would
be to count all fruits (including dehisced ones) and count seeds
per fruit for a subset that have not dehisced, and then calculate
total seed number by multiplying the number of seeds per fruit
by the total fruit number. Thus, to obtain more accurate esti-
mates of seed production per plant, it is necessary to record the
numbers of both intact and shattered fruits. With these
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considerations in mind, we developed Faster R-CNN models to
count all fruits without harvesting the fruits first. When capturing
the images for fruit counting, a pink background was used to
maximize the contrast between the background and the dark, dry
fruits and the pale replum of shattered fruits that remained after
the valves fell from the fruit (Fig. 6a,d). Because fruits in each
image were less abundant and much larger compared with seeds,
we manually labelled the fruits in 120 images.

Eighty, 20 and 20 images were randomly selected and used as
training, validation and test sets, respectively (Fig. 6a). Different
combinations of hyperparameter values (Table S8) were evalu-
ated, and the resulting models (Modelfruit 1–75, Fig. 6a) had sim-
ilar performances with an average F1 of 0.925 (Fig. S7). Thus, to
minimize the computational cost (lower scales or aspect ratios)
while maximizing the number of fruits detected per plant (more
proposals), the model built with scalefruit-A, aspect ratiofruit-A
and 500 proposals (Modelfruit 21) was used. Modelfruit 21 was
applied to the test set images, resulting in an average F1 of 0.914
(Table S12). This F1 value translates into one false positive and
15 false negatives for an image with 100 fruits. Although the r2

between true and predicted fruit counts was 0.980 (P = 6.7e-17),
the detection error increased with an increasing number of fruits
in an image and the error was mostly due to undercounting or
false negatives (Fig. 6b,c). The majority of the false negatives were
unopened fruits that overlapped with the stem or with each other.
One potential reason for the failure to detect these fruits is that
they are similar to the stem in colour and shape. Another reason
may be the smaller number of labelled intact fruits (543)

compared with the number of pale replums (2082) in our train-
ing images.

To assess the robustness of our model on images with different
qualities, we applied Modelfruit 21 on test set images with different
image properties (Fig. 6d). In this modified test set, there are 700
images: the original test set images (20) and modified images with
34 different attributes (34 9 20, for the image property settings,
see Table S11). Significant decreases in F1 were observed when the
relative image brightness was ≤ 0.70 (P = 0.04) or ≥ 1.40 (P = 0.02),
the relative contrast was ≤ 0.50 (P = 0.02) or ≥ 1.50 (P = 0.03), the
relative blurriness was ≥ 2.0 (P = 0.002) or the relative resolution
was ≤ 0.6 (P = 0.05) (Fig. 6e). By including images with different
properties (Table S11) in the training set (1840 images), a new
model, Modelfruit 76, was established and applied to the modified
test set. A significant but slight decrease in the resulting F1 values
was only observed when the relative resolution was ≤ 0.3 (P = 0.02,
median F1 decrease = 0.01) (Fig. 6e), indicating the robustness of
Modelfruit 76. Using this model, 180 images could be processed per
hour using a UNIX node with 1 GPU and 4GB graphics memory,
and 90 images per hour could be processed using a laptop (1 CPU,
16 GB memory). Thus, our Faster R-CNN-based models can pro-
cess over a thousand plant images per day.

Effects of loss of gene function revealed by measuring
fitness traits

To evaluate the importance of fitness traits in investigating
gene functions and the utility of our pipeline, the fruits and
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seeds produced by loss-of-function mutants of six pairs of
duplicate genes (Tables S3–S5) were counted and compared
with those of WT. Of these 12 mutants, three (pap2, kin7.4
and hon5) showed a significant difference in total seed count
compared with the corresponding WT control (Figs 7, S8, S9).
One of these genes, PAP2, modulates carbon metabolism; in
addition, overexpression of PAP2 resulted in earlier bolting and
a higher seed yield than WT (Sun et al., 2012), which is consis-
tent with the lower fitness that we observed for the pap2 mutant
(total seed counts, P = 3.6e-03, Wilcoxon rank-sum test, Fig. 7b).
However, when studying this same mutant, Sun et al. observed

no significant differences in plant growth or seed yield relative to
WT (Sun et al., 2012).

One possible explanation for this discrepancy is the different
fitness measures used by Sun et al. (2012) – seed weight per plant,
weight per 100 seeds and fruit number per plant – none of which
were significantly different between pap2 and WT in their study.
To compare our fitness estimates more directly with those of Sun
et al., we measured the same traits and found no significant dif-
ference in fruit number (P = 0.15, Fig. 7a) or total seed weight
per plant (P = 0.40, Fig. 7c). However, the pap2 mutant did have
a higher weight per 100 seeds than the WT (P = 3.8e-08,
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Fig. 7d). This could potentially indicate differences in viability
because larger seeds have more resources for germination and
early seedling growth (Sundaresan, 2005), but we observed no
difference in germination rate between WT and pap2 (Table S4),
suggesting that there is no difference in seed viability. Taken
together, our findings suggest that seed number is a better mea-
sure for revealing fitness effects of loss of PAP2 function. How-
ever, we cannot rule out the possibility that we observed these
effects because our experimental conditions were more stressful
(i.e. nutrient limiting) than those in Sun et al. (2012).

For HON5, which encodes a high-mobility group protein
(Kotli�nski et al., 2017), and KIN7.4, which belongs to the
kinesin motor family, members of which are involved in
microtubule-based movement (Moschou et al., 2016), there were
significant differences in both fruit numbers (P = 0.04 for hon5
and P = 5.0e-04 for kin7.4, Fig. 7e,g) and seed numbers
(P = 5.8e-03 for hon5 and P = 3.0e-05 for kin7.4, Fig. 7f,h)
between the mutants and WT. No functions have been reported
for KIN7.4. HON5 was previously shown to regulate the transi-
tion to flowering along with HON4 by repressing FLC expres-
sion, but no effects on fitness were reported (Zhao et al., 2021).
Loss of function of HON4 was previously reported to cause steril-
ity (Charbonnel et al., 2018), but neither we (Fig. S8g-i) nor
Zhao et al. (2021) observed this phenotype when using a differ-
ent mutant with an insertion in a similar location (intron 2), sug-
gesting that the sterility phenotype of the hon4 mutant may be
dependent on environmental conditions.

Discussion

Fitness is one of the best measures of gene functionality because
it reflects the ability of a plant to survive and reproduce given all

the phenotypic effects of the mutation over the lifetime of the
individual. For self-pollinating species such as Arabidopsis, fitness
is better assessed by counting the numbers of seeds than fruits, as
they more directly reflect the number of offspring and reproduc-
tive success. Because of the lack of an effective tool enabling
high-throughput counting of small seeds en masse, seed counts
are often estimated indirectly, for example, by dividing the total
seed weight per plant by the estimated individual seed weight
(Cvetkovic et al., 2017) or multiplying the fruit count by the
average fruit length (Kerwin et al., 2015; Taylor et al., 2019).
However, these approaches may not yield accurate estimates of
seed production because of potential variation in seed size, such
as that between pap2 and WT (Fig. 7c,d), and the imperfect cor-
relation between seed number and fruit length (Roux et al.,
2004). Here, we established a model employing a deep learning
approach, Faster R-CNN, to count Arabidopsis seeds – one of
the smallest objects analysed using machine vision to date – with
a near perfect accuracy (F1 = 0.992) using images with multiple
different properties or qualities.

Our model outperforms the Mask R-CNN approaches in
Toda et al. (2020) (F1 of c. 0.95), where the detected objects
were much larger than Arabidopsis seeds. Mask R-CNN is built
on top of Faster R-CNN, so the differences in performance likely
are not due to differences in algorithms. The better performance
of our model is likely because our training seed images are more
representative of the diversity in seed sizes and shapes than the
repetitive cropped images used by Toda et al. The Faster R-
CNN-based predictions greatly outperform those of the segmen-
tation method implemented in IMAGEJ, a well-known platform
with macros/modules for segmentation and morphology extrac-
tion (Schneider et al., 2012; Cervantes et al., 2016; Vasseur et al.,
2018). In addition, object detection based on Faster R-CNN is
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less time-consuming than segmentation using IMAGEJ because
seeds can be accurately detected without first being separated or
confined to predefined regions.

One of the challenges when using deep learning approaches is
the requirement for a large number of labelled data (in our case,
labelled seeds). To overcome this, we adopted a two-step mod-
elling strategy to reduce the labour needed for seed annotations.
In step 1, we split the images and used a subset of the split images
to build a preliminary model (F1 < 0.975) and applied it to the
remaining images. While the predictions were not perfect, this
step drastically reduced the manual annotations needed because
we only needed to correct mis-predictions to boost our seed labels
by c. 5-fold (29 360 labels in the first round, 138 929 labels in
the second round). Using this much larger set of seed labels, new
models were built (step 2) that had improved model performance
(F1 = 0.992), indicating the effectiveness of our strategy.

The Faster R-CNN approach also shows promise in fruit detec-
tion and counting (r2 = 0.98, slope = 0.79). The performance of
our fruit counting model was better than that of another recently
published CNN-based approach, DeepPod (r2 = 0.90, slope
c. 0.70, Hamidinekoo et al., 2020). In that paper, the task (i.e. fruit
detection) was first divided into four classification tasks: the detec-
tion of the tip, body and base of the fruits and the detection of the
stem. The separately detected parts were then joined together as a
whole fruit. As the authors noted, this post-processing step affected
the final fruit detection performance. In our study, the fruits were
labelled and detected as whole objects, thus avoiding the need for
post-processing. In addition, different from Hamidinekoo et al.
(2020), where most of the fruits and stems in the images were fresh
and green, fruits in our study were dry and light brown to grey, or
were shattered with only the pale replum remaining. Thus, our
fruit counting approach is expected to be applicable to a wider
range of Arabidopsis fruit developmental stages. This is especially
important when plants must be grown to maturity, and seed
counts are estimated by multiplying the average number of seeds
per intact fruit by the total number of fruits (intact and dehisced)
(Conner & Rush, 1997).

Nevertheless, our fruit counting models did not perform as well
as our seed counting models and a published IMAGEJ-based seg-
mentation and skeletonization approach (r2 = 0.91, slope � 1;
Vasseur et al., 2018), which may be due to the many fewer labelled
fruits than labelled seeds (there were c. 52 times more labelled
seeds than fruits). Thus, the performance of the fruit counting
model is expected to be improved when more fruit labels are
included to train the model. In addition, one notable drawback of
our approach is the undercounting at higher fruit numbers; this
was mainly due to overlap between intact fruits and between intact
fruits and stems. To remedy this, one approach is to rearrange the
inflorescences before capturing the images to keep fruits from over-
lapping with each other and with stems. Another potential
approach, which is an important future direction, is to analyse
multiple images (or frames of a movie) taken at different angles or
to examine the 3D reconstruction of the inflorescence. In addition,
there have been substantial advances in object detection algorithms
in terms of performance and processing speed. New initial models
that can be retrained (e.g. INCEPTION v.3 and v.4) have also been

developed (we used INCEPTION v.2). Although we explored some of
these algorithms and initial models (see Methods S1), we did not
optimize them because of the significant computational complexity
in just optimizing Faster R-CNN/INCEPTION v.2 for fitness traits.
Thus, in future studies, these algorithms and initial models should
be more thoroughly explored to further improve fitness trait phe-
notyping.

We should emphasize that pictures of seeds or fruits are taken
for record keeping and documentation purposes regardless of
whether a machine vision-based approach or manual counting is
used. After the picture is available, it takes our Faster R-CNN-
based models c. 109 and 40 s to provide counts for a seed and
fruit picture, respectively. By contrast, manual counting takes us
c. 50 s per 100 seeds and 40 s per 100 fruits. Thus, as the seed
and fruit number increases, our Faster R-CNN-based models
have an even bigger advantage over manual counting.

By examining fitness traits, especially seed counts, we were able
to observe phenotypic changes in loss-of-function mutants that
were previously not detectable (pap2, Sun et al., 2012) or not
reported (kin7.4 and hon5). In our relatively small sample of 12
mutants, effects on fitness were observed for three (25%). A simi-
lar percentage of lines with lower fitness than WT was reported
by Rutter et al. (2017), who investigated the fitness effects of Ara-
bidopsis T-DNA insertion lines using fruit number as a measure.
They also found that a sizable percentage of lines had increased
fitness compared with WT (12%), leading them to conclude that
genetic redundancy is not common. We found that fruit counts
could reveal fitness effects for two of three genes, indicating that
seed counts are a better measure of fitness in some cases, such as
when a genotype produces more fruits with fewer seeds per fruit.
We are currently measuring both seed and fruit counts for a large
number (> 400) of mutants, which will allow us to obtain a more
complete picture of the relative importance of fruit and seed
counts for assessing fitness.

The seed counting pipeline that we established does not mea-
sure seed size, which is an agriculturally important trait associated
with yield and seed viability (Sundaresan, 2005). By measuring
seed weights, we found that pap2 produces larger seeds than WT.
Although we observed no clear difference in viability between
them, seed size is a useful distinguishing characteristic between
these genotypes. It might also provide insight into the underlying
biology. For example, one possible reason for the increased seed
size in the mutant is a lower fertilization rate, which would lead
to fewer seeds and less restriction on seed growth (Herridge et al.,
2011; Fatihi et al., 2013). Because measuring seed weights is
time-consuming, a focus of our future work will be to adapt our
pipeline to include approaches to measure seed size and number
simultaneously.

Taken together, our results illustrate the importance of fitness
traits in the study of gene functions and show that Faster R-
CNN-based models, which can almost perfectly detect and count
Arabidopsis seeds and also detect fruits with high accuracy, are
valuable tools in large-scale studies of plant fitness. In future, we
will use these tools to measure the fitness traits of a larger number
of mutants to obtain a more complete picture of the effects of loss
of gene function on fitness.
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