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Abstract 

Background: The rapid and often uncontrolled rural–urban migration in Sub-Saharan Africa is transforming urban 
landscapes expected to provide shelter for more than 50% of Africa’s population by 2030. Consequently, the burden 
of malaria is increasingly affecting the urban population, while socio-economic inequalities within the urban settings 
are intensified. Few studies, relying mostly on moderate to high resolution datasets and standard predictive variables 
such as building and vegetation density, have tackled the topic of modeling intra-urban malaria at the city extent. 
In this research, we investigate the contribution of very-high-resolution satellite-derived land-use, land-cover and 
population information for modeling the spatial distribution of urban malaria prevalence across large spatial extents. 
As case studies, we apply our methods to two Sub-Saharan African cities, Kampala and Dar es Salaam.

Methods: Openly accessible land-cover, land-use, population and OpenStreetMap data were employed to spatially 
model Plasmodium falciparum parasite rate standardized to the age group 2–10 years  (PfPR2–10) in the two cities 
through the use of a Random Forest (RF) regressor. The RF models integrated physical and socio-economic informa-
tion to predict  PfPR2–10 across the urban landscape. Intra-urban population distribution maps were used to adjust the 
estimates according to the underlying population.

Results: The results suggest that the spatial distribution of  PfPR2–10 in both cities is diverse and highly variable across 
the urban fabric. Dense informal settlements exhibit a positive relationship with  PfPR2–10 and hotspots of malaria 
prevalence were found near suitable vector breeding sites such as wetlands, marshes and riparian vegetation. In both 
cities, there is a clear separation of higher risk in informal settlements and lower risk in the more affluent neighbor-
hoods. Additionally, areas associated with urban agriculture exhibit higher malaria prevalence values.

Conclusions: The outcome of this research highlights that populations living in informal settlements show higher 
malaria prevalence compared to those in planned residential neighborhoods. This is due to (i) increased human expo-
sure to vectors, (ii) increased vector density and (iii) a reduced capacity to cope with malaria burden. Since informal 
settlements are rapidly expanding every year and often house large parts of the urban population, this emphasizes 
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Introduction
Unprecedented rates of rural–urban migration and nat-
ural population increase in sub-Saharan Africa (SSA) 
have dramatically affected urban environments [1]. Low 
income housing has not kept up with population growth 
which has contributed to widely varying physical and 
socio-economic landscapes within cities where formal 
and informal settlements coexist [2]. Informal settle-
ments are often characterized by residential areas where 
land tenure is not recognized by authorities, housing 
quality is sub-standard and access to several basic ser-
vices is lacking [3–5]. These rapidly transforming envi-
ronments, have an impact upon urban health, such as the 
risk of infection with vector-borne diseases [6, 7].

While malaria has widely been known as a rural dis-
ease, uncontrolled urbanisation has altered urban land-
scapes in ways that may increasingly support vector 
breeding, making the disease to be persistent in urban 
settings [7–9]. One reason for this is the increased like-
lihood of breeding sites for mosquitoes of the genus 
Anopheles, the vectors of the Plasmodium falciparum 
parasite [10]. Previous work has highlighted the focal 
nature of urban malaria and its link with human activi-
ties. For example, the development of urban agricultural 
areas, irrigation schemes, market gardens, open water 
storage, or even open excavation during the construction 
of building sites and roads have led to rain-fed breeding 
sites associated with increased malaria prevalence [7–9, 
11–16]. Furthermore, the functional organization of cit-
ies can influence the heterogeneity of urban malaria risk. 
Areas with peripheral housing settlements and a central 
business district may exhibit different malaria patterns 
compared to those with business districts located on the 
periphery and housing located centrally.

The social vulnerability of a population, which can 
vary spatially, is also expected to affect the ability of 
a population to cope with the burden of malaria [17]. 
Previous work has shown that malaria prevalence can 
be significantly higher in informal settlements than 
in other urban landscapes due to poor housing infra-
structure, lack of bed nets, and inadequate financial 
resources to buy anti-malarial drugs, among others 
[18, 19]. Hence, given the same levels of vector den-
sity, two communities with significantly different lev-
els of income and education might have significantly 

different prevalence levels of malaria. These variations, 
often dominated by differences between planned and 
unplanned settlements, might explain the clustered 
nature of urban malaria in SSA cities [20]. Indeed, as 
noted by Taubenböck [21], the physical urban surface 
reflects the underlying social processes that developed 
it. It would be reasonable to assume that spatial malaria 
models capturing a combination of the physical surface 
and the population’s socio-economic levels are more 
informative than those only relying on a purely physical 
representation of the land cover.

Satellite images can contribute a vast amount of 
information for modeling and mapping malaria preva-
lence at the city scale. The intra-urban component of 
malaria dynamics, however, has neither been part of 
continental malaria risk mapping initiatives nor consid-
ered part of most national control strategies [22–25]. 
Satellite imagery can provide valuable input for epi-
demiological models such as detailed land-cover (LC), 
land-use (LU) maps, as well as socioeconomic indica-
tors and population distribution maps. Recent research 
has demonstrated that several moderate or high-res-
olution geospatial and/or satellite-derived features 
could distinguish areas of higher malaria risk within 
the urban settings of Dar es Salaam, Tanzania [6, 11], 
Ouagadougou, Burkina Faso [26] and Dakar, Senegal 
[9], often due to the differences in building density and 
vegetation type coverage.

In this paper, we model and map the spatial distribu-
tion of malaria prevalence across two SSA cities—Dar 
es Salaam and Kampala, using very-high-resolution 
(VHR) satellite indicators and machine learning tech-
niques. We investigate the use of VHR LC and LU 
classes as a composite of both physical and socio-eco-
nomic information to predict malaria prevalence. We 
then examine the use of human population products to 
adjust our estimates according to the underlying popu-
lation. Our research objectives can be summarized as 
follows:

1) Assessing the potential of VHR satellite-derived LC, 
LU and population information for modeling urban 
malaria prevalence.

2) Exploring their utility as tools to map and highlight 
intra-urban variations of malaria prevalence across 
large extents.

the need for systematic and consistent malaria surveys in such areas. Finally, this study demonstrates the importance 
of remote sensing as an epidemiological tool for mapping urban malaria variations at large spatial extents, and for 
promoting evidence-based policy making and control efforts.

Keywords: Urban malaria, Random forest, Kampala, Dar es Salaam, Remote sensing, Population
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Methods
Case studies
Dar es Salaam, Tanzania
Dar Es Salaam is the former capital of Tanzania with an 
estimated population exceeding five million, and one of 
the fastest growing cities in the world [27]. According to 
recent estimates, 75% of the residential population lives 
in informal settlements where only a small part of the 
urban fabric is planned [28–30]. Malaria is endemic in 
the city, with over one million cases reported annually [6, 
11, 31]. The Urban Malaria Control Project (UMCP) has 
been responsible for a large part of the efforts to control 
malaria transmission in the city through ground-based 
sampling and monitoring [6, 14, 19, 32, 33]. While ento-
mological inoculation rates in urban areas can in gen-
eral be considered lower than rural regions, this might 
not hold true in urban slums, as these are usually built 
around environments that favor mosquito vector breed-
ing [19]. The dominant vector species in Dar es Salaam, 
come from the Anopheles gambiae complex with a 
smaller contribution coming from Anopheles funestus 
[19, 34]. Anopheles gambiae are usually found in small 
bodies of freshwater while Anopheles funestus is fre-
quently encountered in permanent water bodies such as 
wetlands and marshes [19]. Additionally, Anopheles ara-
biensis of the gambiae complex are increasingly feeding 
outdoors, an adaptation to the high levels of bed nets 
usage and house protection [32, 35]. Analyzing samples 
from health care facilities in and around Dar es Salaam, 
Wang et  al. [36] found that the differences of malaria 
prevalence between the urban–rural spectrum in the 
city were low. In addition, Kabaria et  al. [6] identified 
increased risk across riparian vegetation and wetlands in 
the city.

Kampala, Uganda
Kampala is the capital and main economic center of 
Uganda, with a population of over 1.5 million [37]. 
Similar to Dar es Salaam, Kampala is growing rapidly 
every year at a rate of about 5% [38]. Informal settle-
ments house roughly 60% of the urban residents [39, 40]. 
Malaria is endemic in the region, and previous research 
has noted significant spatial variations within the city 
associated with the residential characteristics of sampled 
locations such as the water sources utilized by a house-
hold [41]. The majority of the malaria vectors in Kampala 
are of the Anopheles gambiae complex, with a smaller 
population of Anopheles funestus vectors [42]. Infor-
mal settlements have been built in vicinity of marshes, 
streams and swamps because of their high viability for 
urban agriculture [43]. This influences the intra-urban 
spatial heterogeneity and is consistently implicated in 
increased malaria prevalence in these areas [44, 45]. In 

addition, the sanitation conditions of the city’s slums 
tend to deteriorate during the peak of the wet season in 
which malaria transmission intensifies [46]. In a study by 
Mukasa [18], it was shown that about 45% of the inter-
viewed mothers from the Bwaese slum in Kampala, were 
not in possession of a bed net indicating high inability to 
cope with the burden of malaria.

Satellite derived indicators
Land‑cover (LC)
The LC maps (50 cm resolution) used in this study were 
produced through a combination of Computer Assisted 
Photo Interpretation, Geographic Object Based Image 
Analysis GEOBIA and machine learning algorithms 
through open-access software ([47–49]; Additional 
file 1), and are openly accessible through the Zenodo sci-
entific repository [50, 51]. The classifications were based 
on Pleiades satellite imagery of Kampala (collected in 
February 2013) and Dar es Salaam (stereo-images col-
lected in March and January 2016 and July 2018). The 
LC of Kampala exhibited an overall accuracy of 86% (7 
classes), while that of Dar es Salaam, an overall accuracy 
of 90% (9 classes). The accuracy metrics were the result 
of an assessment through out of bag error of a random 
forest (RF) classifier trained and validated at the date of 
acquisition. The building class in Dar es Salaam LC was 
further subdivided into three height subclasses due to 
the availability of photogrammetrically generated height 
elevation data [52]. The complete LC legend is shown in 
Figs. 1 and 2. 

Land‑use (LU)
The LU maps utilized here were the outcome of a pro-
cessing chain involving the computation of LC-based 
spatial metrics derived from the maps mentioned above 
and information derived from OpenStreetMaps (OSM) 
[53]. Linear elements extracted from OSM such as the 
street network and various parcel types were imported 
into a PostGIS database and processed to create street-
block polygons. Subsequently, a machine learning clas-
sifier assigned a LU value to each street-block through 
supervised training. The complete processing chain was 
a reproduction of the work by Grippa et al. ([54]; Addi-
tional file  1). The LU classification allowed for the clas-
sification of the urban surface according to its different 
urban functions (i.e., residential/non-residential). The 
residential classes were categorized into either formal or 
informal settlements. The complete LU legend is shown 
in Figs. 1 and 2.

Population density
We used high-resolution population maps (100-m 
resolution) that were constructed through population 
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disaggregation algorithms trained on census data, and 
using the LC and LU data as input [55, 56] and Additional 
file  1). The validation of the population models demon-
strated  R2 values of 0.63 and 0.77 for Dar es Salaam and 
Kampala, respectively, which is in line with state-of-the-
art results of similar studies [55–57].

Ancillary data
To complement the previous datasets, we extracted the 
Normalized Difference Vegetation Index (NDVI) from 
the raw VHR satellite images, and terrain height infor-
mation (30  m resolution) from the NASA/NGA Shuttle 
Radar Topography Mission (SRTM) [58]. In the case of 
Dar es Salaam, OSM vector features such as wetlands, 

streams and rivers were used due to the high level of 
detailed information available for the city, in a large part 
thanks to community mapping projects. For instance, 
‘Ramani Huria’, one of the largest community projects 
in Dar es Salaam aiming to mitigate hazard and flooding 
risk, has mapped detailed urban infrastructure such as 
the drainage network and buildings for more than 4 mil-
lion people in the city since 2018 [29]. Table  1 summa-
rizes the complete set of variables examined.

Plasmodium falciparum prevalence data
Data of community surveys were extracted from an 
open access online database [59] that accompanied 
the publication of changing malaria prevalence across 

Fig. 1 a Pleiades satellite imagery of Dar es Salaam—RGB natural color composite, b land cover (0.5 m resolution), c land use at the street block 
level, d population counts per hectare and e location map of Dar es Salaam within Tanzania
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sub-Saharan Africa since 1900 [60]. From the avail-
able pool of surveys, we included those that have high 
degrees of spatial accuracy of the survey location (GPS 
coordinates or Google Earth validation) and consistent 
metadata information. Because different surveys often 
cover different age ranges, each parasite rate was stand-
ardized to the age group 2–10  (PfPR2_10) [6, 61, 62]. As 
mentioned by Smith et  al. [63],  PfPR2_10 combines reli-
able epidemiological and statistical properties beneficial 
for multi-survey comparison and analysis. The temporal 
range of selected samples was 2005-2014, resulting in 39 
surveys (at 38 unique locations) for Kampala and 90 sur-
veys (at 57 unique locations) for Dar es Salaam (Fig. 3). 
In Dar es Salaam, 27 (30%) school surveys were included, 
undertaken in 2014. In Kampala, 21 school surveys (54%) 
were included, with 20 of them undertaken in 2014. 

The average survey sample size in Kampala and Dar es 
Salaam, is 82 and 175, among individuals aged 0–16 years 
old, respectively. All surveys were random selections of 
communities or schools. Further information regard-
ing the key characteristics of the malaria dataset can be 
found in Additional file 2. The mean  PfPR2_10 values were 
6.76% and 7.76% for Kampala and Dar es Salaam, respec-
tively. 17.6% of the data points reported zero  PfPR2_10. 
Finally, we used 1-kilometer buffers around each geolo-
cated survey to extract aggregated values for each predic-
tor mentioned previously in Table 1 (i.e. proportions for 
categorical features, mean values for continuous ones and 
the mean distance to the “Wetland”, “River” and “Stream” 
classes), similar to research employing survey data and 
geographical variables [6, 64]. Even though there was a 
temporal mismatch between the satellite imagery and the 

Fig. 2 a Pleiades satellite imagery of Kampala—RGB natural color composite, b land cover (0.5 m resolution), c land use at the street block level, d 
population counts per hectare and e location map of Kampala within Uganda
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malaria data, we presume a degree of stationarity across 
the main urban extent as most of the LU changes in SSA 
cities are characterized mostly by expansion rather than 
transition, and that the malaria data are likely to be rep-
resentative of land use/ecology in the period of the sat-
ellite imagery, as done in similar studies [6]. Moreover, 
the collapse of the temporal dimension was inevitable 
due to the limited sample size and was the only means to 
increase spatial coverage.

Modelling and quality assessment methods
To train the PfPR2_10 models, we used a random forest 
(RF) regressor which has shown to be resilient to overfit-
ting, capturing non-linear relationships and appropriate 
for heavily contextual models [65]. RF is an ensemble of 
regression decision trees, trained on random data boot-
straps (bagging). In a standard RF configuration, each 
computed tree is trained using a random sub-sample of 
about 70% of the initial data. The average prediction of all 
computed trees is used as the final output [65]. The hyper 
parameters that require fine-tuning in RF are (i) the num-
ber of considered features for each decision split in each 
tree (feature bagging) and (ii) the total number of deci-
sion trees built. In this study, the former was determined 
through cross validation (value of 1), while the latter was 
set at a computationally efficient number (1000) through 

the R software’s caret package [66]. To create the final 
predictive models, we employed feature selection meth-
ods, namely the Variable Selection with Random Forests 
(VSURF) algorithm [67]. VSURF is a well-documented 
and robust variable selection procedure that uses itera-
tive and nested RF models to identify variables contrib-
uting to the task at hand eliminating useless, noisy and/
or redundant features. By creating more parsimonious 
models, the model performance may increase as several 
studies have shown [68, 69].

For the evaluation metrics, we reported the Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE) 
and the Predicted Coefficient of Determination (Pre-
dicted  R2). Given the relatively small sample sizes, and to 
reduce the prediction bias, we made use of a bootstrap 
approach [70]. The train and test data were split in an 
80:20 ratio using stratified random sampling through 100 
simulations and reported on the average RMSE, MAE 
and  R2 values. The sampling was stratified by the sur-
vey type (i.e., samples from a particular study) to make 
sure that the training and testing data distributions were 
similar. Finally, the variable importance and respective 
partial dependency plots for the most important vari-
ables in each model were extracted and visualized. In RF 
regression, the most common way to extract the vari-
able importance is by the increase in Mean Squarer Error 

Table 1 Predictive variables investigated in each city

Kampala Dar es Salaam Type

Land cover

 Low vegetation (humid, riparian, grasses, bushes) X X Proportion

 Tall vegetation X X Proportion

 Bare ground (or dried out vegetation) X X Proportion

 Water X X Proportion

 Building X Proportion

 Low elevated building X Proportion

 Medium elevated building X Proportion

 High elevated building X Proportion

Land use

 Planned residential X X Proportion

 Informal residential − high density X X Proportion

 Informal residential − medium/low density X X Proportion

 Wetlands, streams, marshes, rivers (mixed class) X Distance

OSM

 Wetlands X Distance

 Rivers X Distance

 Streams X Distance

Ancillary features

 Population per hectare X X Average

 Normalized difference vegetation index X X Average

 Terrain elevation X X Average
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(iMSE). To compute the iMSE for a given feature, its val-
ues are randomly permuted and the internal RF perfor-
mance metric, the Out of Bag (OOB) error is computed. 
Important variables are expected to significantly decrease 
model performance if permuted, reporting high values of 
iMSE [65, 71, 72]. For prediction, we used a 100-m grid 
resolution with variables aggregated at that level. Even 
though higher resolutions have been used such as 10 
meters [6], 100  ms was a reasonable scale for mapping 
intra-urban  PfPR2_10, capturing neighborhood variability 
and also matching with the spatial data used (i.e., popula-
tion and land-use at the street block level).

To gain a deeper understanding of the urban malaria 
prevalence, we adjusted our predicted estimates accord-
ing to the underlying population based on the population 
distribution maps. In each of the cities, we multiplied the 
predicted  PfPR2_10 with the population of each grid cell 
to obtain the predicted number of infected people. After-
wards, we summarized this information at the admin-
istrative level that the population model was trained at. 
Finally, we computed population adjusted  PfPR2_10 esti-
mates, by dividing the total predicted number of infected 

people aggregated of a census unit with its total popu-
lation as in previous works [73–77]. The census deline-
ation for Dar es Salaam was an aggregated version of 
the administrative level 5 of the 2002 census, and was 
computed through k-means cluster analysis [55]. This 
was done to find suitable training formations for the 
population distribution models resolution and as such, 
these units do not represent official administrative lev-
els. For Kampala, we made use of the 2002 level 4 census 
delineation.

Hardware
The data processing and model training was performed 
with two  Intel®  Xeon®  CPU E5-2690 (2 processors of 
2.90  GHz, 16 cores and 32 processing threads) having 
96 GB of RAM.

Results
Variable selection and importance
Using the results of the VSURF as an anchor, we filtered 
out variables that had minimal or zero influence for the 
task of predicting  PfPR2_10. Notably, in the case of Dar 
Es Salaam all initial features were kept, while in Kampala 
three features were dropped (SRTM, NDVI and the pro-
portion of “water” class coming from the LC map). This 
could be explained both by the fact that the lower the-
matic detail of the Kampala LC information coupled with 
minimal coverage of inland water in the imagery. Figure 4 
presents the variables used and their importance derived 
from the RF regressor for Dar es Salaam and Kampala. To 
account for uncertainty, we extracted the average impor-
tance over one hundred model runs, along with the cor-
responding standard deviation using all data points. The 
proportion of water was the most important variable in 
the prediction of  PfPR2_10 in Dar es Salaam, along with 
the proportion of tall vegetation, bare ground, distance to 
wetlands, medium density informal settlements and low 
elevated buildings. Four out of the six most important 
variables were derived from the LC map which indicates 
the importance of mapping the physical characteristics 
of the surface. On the other hand, in Kampala, the LU 
classes were dominant in terms of feature importance. 
The typology of street blocks (residential, informal) was 
the most discriminating predictor of  PfPR2_10, followed 
by the land cover classes of bare ground and tall veg-
etation. Other variables such as the population density, 
building density, the proportion of low vegetation and the 
distance to wetlands, while still important, contributed to 
lower degrees.

To further illustrate these outcomes, we present the 
partial dependency plots averaged over 100 model runs 
for the six most important variables in each city. The 
dependency plots illustrate the response of  PfPR2_10 with 

Fig. 3 Overview of geolocated malaria surveys over a subset of the 
urban extent of a Kampala and b Dar es Salaam
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an increase in each explanatory variable, after adjusting 
for the effects of all other predictors. In Dar es Salaam 
(Fig. 5), the proportion of water was positively associated 
with  PfPR2_10. After the threshold of roughly 2% of water, 
the response of malaria prevalence spiked in a positive 
manner and then levels off. This could be an indicator of 
small patches of inland water such as ponds, or riparian 

vegetation that is particularly humid, wetlands, or urban 
agriculture irrigation systems. Tall vegetation and bare 
ground are negatively associated. Moreover, there as a 
strong relationship between the distance from wetlands 
and a reduction in malaria prevalence. Low elevated 
buildings had a non-linear impact in  PfPR2_10, where 
a negative trend is exhibited up to 40% and then the 

Fig. 4 Variable importance across 100 model runs using all data points. a Dar es Salaam and b Kampala

Fig. 5 Partial dependency plots for the six most important model predictors in Dar es Salaam. The shaded area represents the standard deviation 
over 100 simulations using all data points. The x-axis in a to e represents proportions while in panel f, the x-axis units represent meters. The y-axis 
refers to the Plasmodium falciparum parasite rate standardized in the 2–10 years age range
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relationship became positive. Finally, medium/low den-
sity informal settlements demonstrated a negative rela-
tionship with malaria prevalence. This can be explained 
as this residential class represents the average and most 
common building type in Dar es Salaam.

In Kampala, high-density informal settlements 
reported a strong positive relationship with malaria prev-
alence (Fig. 6). Different to Dar es Salaam, the proportion 
of medium/low informal settlements and bare ground 
exhibited a positive relationship with  PfPR2_10 in Kam-
pala. Meanwhile, planned residential blocks revealed a 
negative association, highlighting the importance of resi-
dential typology for identifying malaria hotspots. As in 
Dar Es Salaam, tall vegetation showcased a negative asso-
ciation with  PfPR2_10.

Model performance
The model performance metrics for the two cities are 
presented in Tables 2 and 3. Both models performed sat-
isfactorily, with a median  R2 of 0.39 and 0.43 in Kampala 
and Dar es Salaam, respectively. The model in Kampala 
indicated more dispersion across the bootstrap, and thus, 
increased uncertainty (Interquartile range of  R2 = 0.45) 
while a smaller dispersion was noted for the Dar es 
Salaam model (Interquartile range of  R2 = 0.33). With 

Fig. 6 Partial dependency plots for the six most important model predictors in Kampala. The shaded area represents the standard deviation over 
100 simulations using all data points. The x-axis in a to e represents proportions while in panel f, the x-axis units represent population per hectare. 
The y-axis refers to the Plasmodium falciparum parasite rate standardized in the 2–10 years age range

Table 2 Descriptive statistics of  the  root mean squared 
error (RMSE), mean absolute error (MAE) and  coefficient 
of  determination  (R2) model performance metrics 
for Kampala

The RMSE and MAE refer to PfPR2–10 values

Kampala

RMSE MAE R2

1st quartile 4.64 3.91 0.12

Median 5.45 4.54 0.39

Mean 5.53 4.59 0.38

3rd quartile 6.59 5.19 0.57

Table 3 Descriptive statistics of  the  root mean squared 
error (RMSE), mean absolute error (MAE) and  coefficient 
of  determination  (R2) model performance metrics for  Dar 
es Salaam

The RMSE and MAE refer to PfPR2–10 values

Dar es Salaam

RMSE MAE R2

1st quartile 5.16 4.28 0.23

Median 6.02 4.81 0.43

Mean 6.05 4.88 0.39

3rd quartile 6.85 5.55 0.56
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respect to the RMSE, Kampala exhibited a median RMSE 
of 5.45 while Dar Es Salaam a median score of 6.02. The 
MAE distribution for both cities was less dispersed than 
the RMSE, as it is not influenced as much by large error 
deviations. The median MAE values were 4.54 and 4.81 
for Kampala and Dar es Salaam, respectively. The RMSE 
and MAE values should not be compared across cities as 
they are dependent on the amount of surveys and distri-
bution of PfPR2–10 values in each city.

PfPR2_10 predictions
Dar es Salaam
As exhibited in Fig.  7, the predicted distribution of 
malaria prevalence in Dar es Salaam was diverse and 

did not follow a gradually increasing malaria risk as 
a function of the distance from the urban center. The 
spatial clustering of high PfPR2–10 values appeared to 
be associated with the underlying physical and socio-
economic environment and develops across riparian 
vegetation, urban agriculture and highly dense informal 
settlements. When adjusted for population, the aggre-
gated census polygons that contain highly dense infor-
mal settlements displayed high  PfPR2_10 values, even if 
they were in the urban center. As Fig. 8 demonstrates, 
the predicted PfPR2_10 values in Dar es Salaam were 
lower across the wealthier planned neighborhoods of 
the urban center, while were significantly higher for 

Fig. 7 Model derivatives at a raster (a, b) and administrative (c, d) resolution for Dar es Salaam. a Predicted  PfPR2_10 at a 100 m resolution, b number 
of predicted positive malaria cases at 100 m resolution using the distributed population grid, c Mean predicted  PfPR2_10 at an aggregated version of 
the level 5 of the administrative level of the 2002 Tanzania Census and d Mean Population Adjusted  PfPR2_10 at an aggregated version of the level 5 
administrative level of the 2002 Tanzania Census
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the dense informal settlements (Fig. 8c), and regions of 
urban agriculture and wetlands (Fig. 8a).

Kampala
In Kampala, the overall range of the parasite rate was 
higher than that of Dar es Salaam but with a differ-
ent urban distribution. The highest values of predicted 
 PfPR2–10 are in regions combining a set of physical and 
socio-economic criteria such as highly dense slums bor-
dering wetlands. The overall predicted  PfPR2_10 ranged 
from 2.6 to 15.2 at the grid level, while it decreased when 
summarized at an administrative level (3.9–9.9). Figure 9 
illustrates these outputs across the main urban extent 

of Kampala. The population adjusted estimates signify 
increased risk across administrative units that con-
tain large extents of highly populated slums, developed 
across large bodies of water, wetlands and humid vegeta-
tion. The risk in the planned and commercial center was 
significantly lower than in peri-urban regions whether 
accounting for population or not. Figure 10 shows snap-
shots of the predicted  PfPR2_10 across different loca-
tions in Kampala. The model predicted increased values 
of  PfPR2_10 in informal settlements (Fig. 10c), regions of 
urban agriculture, wetlands and swamps (Fig. 10a) while 
the risk was decreased in the planned residential areas.

Fig. 8 Predicted  PfPR2_10 in 2 locations in Dar es Salaam. a Intensified urban agriculture across the Mbezi river, c distinction of estimates across the 
dense slums and planned neighborhoods. The second column (b and d), display the corresponding true color composite of the Pleiades satellite 
imagery. In b land-use classes of wetlands and agricultural are overlaid with shaded green. In d land-use blocks classified as informal settlements are 
overlaid with shaded red
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Spatial uncertainty
Figure  11 presents the spatial distribution of the coeffi-
cient of variation (CV), computed on the predictions of 
the 100 model runs in each city. The CV values were low 
in both cities, indicating low spatial prediction uncer-
tainty. Nonetheless, in relative terms across the spatial 
domain, some differences emerge. In Kampala, the CV 
was higher in the urban center with decreased values 
across the peri-urban regions, while in Dar es Salaam 
higher values of CV were clustered mostly at the planned 
residential neighborhoods.

Discussion
Relationship between satellite indicators and malaria 
prevalence
Previous research using remotely sensed datasets was 
able to distinguish malaria risk across the urban fabric in 
SSA cities, albeit using coarser resolution information [6, 
9]. Given the nature of datasets and differences in objec-
tives, only basic distinctions could be made (land cover 
classes such as building density and vegetation). Building 
density was in general negatively associated with malaria 
prevalence while vegetation exhibited positive asso-
ciations. Although very informative, these models often 
neglect the importance of the underlying socio-economic 
relationship of different urban settlements with malaria 
risk. Here, our results support the notion that malaria 

Fig. 9 Model derivatives at a raster (a, b) and administrative (c, d) resolution for Kampala. a Predicted  PfPR2_10 at a 100 meter resolution, b number 
of predicted positive malaria cases at 100 m resolution using the distributed population grid, c Mean predicted  PfPR2_10 at the level 4 administrative 
level (2002 Uganda Census) and d Mean Population Adjusted  PfPR2_10 at the level 4 administrative level (2002 Uganda Census)
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prevalence is combination of physical factors such as 
urban land cover that favors the emergence of vector 
breeding sites, but also the type of surrounding commu-
nities (informal, formal), which provides an indication on 
their capability to cope with the burden of malaria. This 
aligns with previous work suggesting that malaria preva-
lence can be significantly higher in informal settlements 
in comparison to other urban landscapes [18, 19]. Addi-
tionally, we show that malaria prevalence can be linked to 
neighborhood location, where settlements located close 
to wetlands or agricultural fields were more affected. 
Recent evidence of increased insecticide resistance of 
malaria vectors in SSA cities is also fortifying the link 

between persistent malaria prevalence and urban agricul-
ture [78]. The strength of VHR remotely sensed products 
resides in their ability to discriminate, with relative ease 
various types of urban communities based on their built-
up characteristics (orientation, size, density, elevation). 
Moreover, with the latest advents in computer vision, 
analysis of very large areas (city extent) can be feasible 
with standard computers and open source software [49, 
54]. Nonetheless, VHR imagery can be particularly costly 
for institutions in the Global South to acquire. Soon, we 
expect more VHR satellite data to be publicly distributed, 
as is the case already in some areas.

Fig. 10 Predicted  PfPR2_10 in 2 locations in Kampala. a Urban agriculture and c planned and informal residential neighborhoods. The second 
column (b, d), display the corresponding true color composite of the Pleiades satellite imagery. In b land-use classes of wetlands and agriculture are 
overlaid with shaded green. In d land-use blocks classified as informal settlements are overlaid with shaded red
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Malaria data limitations and model assessment
The  PfPR2_10 RF models are temporal composites of sur-
veys ranging almost a decade, and consequently the tem-
poral dimension was assumed stationary. We assumed 
that the extracted signal is mostly invariant as we focused 
on urban regions that have not undergone major tran-
sitional changes but might have expanded (i.e., large 
informal settlements, the planned residential center). 
Moreover, it was a necessary sacrifice in order to assem-
ble a dataset large enough to capture the fine-scale spatial 
variability. Nonetheless, improvements in the modeling 
process can be expected if temporal effects are to be inte-
grated. Furthermore, significant variations exist within 
the malaria datasets used in this study, with respect to 
sample sizes, survey locations and years of survey, which 
are likely to bias the results. Although, we attempted to 
mitigate these effects through stratified sampling and 
intense bootstrapping, a rigorous sensitivity analysis 
should be investigated when facing situations of multi-
survey information as input to spatial models. Informa-
tion regarding potential anti-malarial interventions was 
not incorporated as the number of surveys and infor-
mation in both cities was limited. In future work, indi-
cators pertaining to intervention campaigns should be 
investigated as some are already available at the national 
or regional levels [79]. As informative as they are, the 
model results should be used with caution and as compli-
mentary material with other malaria sources and expert 
knowledge.

Our models explained about half of the variance, which 
is in range with predictive studies of malaria preva-
lence across various spatiotemporal scales [6, 80–84]. 
The results are expected to improve when information 

regarding human decisions and behavior is integrated, 
such as the use of insecticidal bed nets and type of infec-
tion (imported or acquired locally from rural–urban 
migration). Furthermore, we must acknowledge that the 
predictors used in this study cannot be considered absent 
of error. As with any LC and LU classification, there is a 
certain degree of misclassification error which can prop-
agate in any subsequent analysis. This can be investigated 
further, using the maps of the coefficient of variation in 
the predictions. Areas that highlight hotspots of variation 
might indicate that a local refinement in the predictive 
variables of the LC and LU maps is needed and the clas-
sification process subsequently revisited. Alternatively, 
it might indicate uncertainties pertaining to the influ-
ence of the variables in the task of predicting  PfPR2_10. 
Nonetheless, all the LC and LU products were produced 
with recent, state-of-the-art analysis and high degrees of 
accuracy, and validated by the high level of model per-
formance and minimal spatial uncertainty. It should be 
noted that the models developed here are applicable only 
in an urban context and lose generalization ability in the 
rural or dominantly rural peri-urban regions.

The importance of urban geography when addressing 
urban malaria
With respect to the predicted PfPR2_10 distributions in 
Dar es Salaam and Kampala we conclude there is not a 
straightforward urban–rural trend in malaria preva-
lence. As mentioned by previous urban malaria reviews 
[85], the underlying physical and socio-economic geog-
raphy may dictate part of the malaria distribution in the 
city. This would explain why some cities exhibit hot-
spots of malaria prevalence in densely urbanized areas 

Fig. 11 Coefficient of variation in a Kampala and b Dar Es Salaam. The coefficient of variation is computed on the predictions from 100 model runs 
in each city
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or intermediate zones rather than in surrounding, more 
rural regions [86, 87]. Aligning with these findings, our 
analysis demonstrated that central hotspots can be found 
when certain criteria are met, e.g., proximity to water 
bodies and humid, low, marsh-like vegetation, slums and 
agriculture. In Dar es Salaam, while low-elevated build-
ing density was mostly negatively associated with preva-
lence, a spike in  PfPR2–10 was observed once its density 
exceeded a certain threshold-which can be described as 
a highly dense, informal settlement. On the contrary, in 
Kampala, the land-use predictors were the most domi-
nant in terms of importance for predicting malaria preva-
lence as a clear dichotomy between slums and planned 
neighborhoods was exhibited, which was not obvious in 
Dar es Salaam. These variations could be explained by 
two main factors. First, the land cover product of Kam-
pala is generally less detailed than that of Dar es Salaam 
since it contains only a single building density class. 
Given that stereoscopic images were used for the LC 
classification in Dar es Salaam, the building elevation 
was extracted, offering more discrimination capabilities. 
Second, there exists intrinsic historical differences with 
respect to the way each city has been built and developed. 
Kampala exhibits a clearer pattern of clustered, wealthier 
areas built in elevated topography, with slums developed 
around them. In Dar es Salaam, most of the city can be 
considered to have a more informal nature, and as such, 
the discriminatory power of the LU map might be more 
limited—at least to the level that was used in this study. 
Notably, the data extracted from OSM in Dar es Salaam 
were highly predictive and should be considered as an 
additional source of information when they have enough 
degree of completeness for a given study area.

Intra‑urban human population distribution maps 
as an additional tool to address urban malaria
To our knowledge this was the first study making use 
of fine-scale population data distributed through VHR 
information in order to adjust the  PfPR2_10 estimates 
across two cities. As population density varies greatly 
across the urban fabric, efforts should be made to not 
only present the malaria prevalence as an abstract varia-
ble, but according to the underlying population at risk. It 
should also be emphasized that the population informa-
tion used in both cities comes from a census carried out 
in 2002 and a temporal mismatch between the imagery 
and population counts can exist, even though relative 
patterns are expected to be similar. Nonetheless, popu-
lation projection techniques can be applied to simulate 
both population and malaria cases in future dates.

Future prospects
This work also serves as a call for the intensification of 
geolocated urban malaria surveys and their dissemina-
tion, while not neglecting privacy issues. With almost 
half of the SSA population predicted to be residing in 
cities by 2030 [88], understanding and mapping malaria 
prevalence across the various urban environments is 
of utmost importance for building more resilient cit-
ies. Our study suggests that more attention should be 
paid to informal settlements. The second point of note 
relates to secondary urban areas (SUA’s) in SSA. Most 
of the malaria research is focused on rural communities 
or main urban centers of economic growth. Nonethe-
less, SUA’s currently absorb about 75% of rural–urban 
migration and their growth rates can be considerably 
higher compared to the already large urban centers 
[89]. Zimmer et  al. [90], analyzed SUA’s in 8 southern 
African countries and concluded that they account for 
about half the urban population. These secondary cit-
ies are undergoing severe transformations. However, 
not much is known about them either from an epide-
miological or a geographical perspective, with a large 
part of available information coming through studies 
employing satellite remote sensing [90]. In order to 
reduce and eliminate urban malaria in the coming years 
and to encourage sustainable urbanization, these cities 
should become a focus of interest for the research and 
policy-making community to prevent situations that 
might lead to high degrees of sustained and persistent 
intra-urban malaria prevalence. Along with the devel-
opment of a systematic ground survey network in these 
forthcoming urban centers, the use of remote sensing 
should be heavily exploited. Due to the high transfer-
ability of malaria models based on earth observation 
datasets even with a very limited number of ground 
data available, hotspots of malaria prevalence could 
be detected, facilitating evidence-based allocation of 
resources and enhancing evidence-based policy making 
in these cities.

Conclusions
This research provides a framework to predict intra-
urban malaria at a fine scale spatial resolution, coupling 
machine learning algorithms, very-high-resolution 
satellite derived indicators, and geospatial and survey 
data. Focusing on Dar es Salaam and Kampala as case 
studies, we conclude that the predictive dataset appears 
to be robust for modelling the intra-urban spatial dis-
tribution of malaria prevalence across large scales. 
Within both cities, urban malaria prevalence is not 
evenly distributed and varies intrinsically across the 
urban fabric. Informal settlements, urban agriculture 
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and locations near wetlands and riparian vegetation are 
highlighted as potential hotspots. Population adjusted 
estimates indicate higher prevalence values in highly 
populated administrative units. Finally, the outcome of 
this work further encourages the use of satellite data to 
understand and investigate urban malaria enhancing 
evidence-based policy making and control efforts in 
SSA cities.
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