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Human genetic variation associates with the composition of the gut microbiome, yet its
influence on clinical traits remains largely unknown. We analyzed the consequences of
nearly a thousand gut microbiome-associated variants (MAVs) on phenotypes reported
in electronic health records from tens of thousands of individuals. We discovered and
replicated associations of MAVs with neurological, metabolic, digestive, and circulatory
diseases. Five significant MAVs in these categories correlate with the relative abundance
of microbes down to the strain level. We also demonstrate that these relationships are
independently observed and concordant with microbe by disease associations reported
in case–control studies. Moreover, a selective sweep and population differentiation
impacted some disease-linked MAVs. Combined, these findings establish triad relation-
ships among the human genome, microbiome, and disease. Consequently, human
genetic influences may offer opportunities for precision diagnostics of microbiome-
associated diseases but also highlight the relevance of genetic background for micro-
biome modulation and therapeutics.

gut microbiome j host–microbe interactions j PheWAS j microbiome-associated disease

The human gut microbiome associates with health and disease due to wide-ranging roles
in immune system training and maintenance, metabolite production and conversion, and
homeostatic signaling (1–4). While many factors (e.g., diet, environment, social exposures,
etc.) explain degrees of gut microbiome variation (5–8), studies indicate that human geno-
mic variation associates with microbiome variation in the gut, skin, vagina, and mouth,
with the gut microbiome being the most deeply characterized to date (9–15). For exam-
ple, human microbiome by genome-wide association studies (mbGWAS) on individuals
without chronic disease reveal hundreds of associations between human gut microbiome-
associated variants (MAVs) and microbiome traits, including community diversity and
taxon relative abundance (16–23). The most consistent and recurring gene-microbe asso-
ciations are between the lactose digestion LCT/MCM6 genomic region and the gut genus
Bifidobacterium (17, 23–26); however, variation in this genomic region is not associated
with preferential expansion of any one species of this taxon (27). In contrast, associations
between the blood antigen genomic region ABO and several gut microbes are inconsis-
tently detected (22, 23, 26, 28–31), indicating that in addition to sample size, other
biological and technical factors may belie the discovery of gene–microbe relationships.
Determining whether host genetics simultaneously associates with differential microbial
abundance and disease risk is a central challenge to resolve with substantive potential for
personalized diagnostics and/or treatments for disease. If select taxa are adapted for certain
human physiological or metabolic niches, their modulation through behavioral, dietary,
or medical intervention may prevent or contribute to deleterious outcomes. However,
how MAVs interrelate with disease risk is largely uncatalogued.
While methods to assess microbiome–disease relationships often rely on direct observa-

tion in case–control studies or model organism experimentation, the full spectrum of
microbiome-linked disease phenotypes is likely unknown and requires an unbiased discov-
ery effort in large diverse populations. Moreover, through the assemblage of MAVs from
large and geographically diverse populations of individuals free from chronic disease, there
is an opportunity to assess how human genetic variation links with microbial variation for
both patterns and targets of human gene regulation and the evolutionary histories of
MAVs. There is also a prospect to test if sites in the human genome that associate with
specific microbes in healthy individuals link with disease in the collective medical records
of diseased individuals. Finally, if MAVs associate with diseases from case–control micro-
biome studies, is the presence or relative abundance of the predicted microbe concordant
with that measured in healthy individuals with a given allele?
MAVs occur across all 22 pairs of autosomes and in coding and noncoding regions of

the genome, including as expression quantitative trait loci (eQTL), wherein variation at a
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nucleotide is associated with the differential expression of a target
gene (32). Environmental exposures affect gene regulation
through gene by environment eQTLs with the type and magni-
tude of response depending on the variation at an eQTL (33,
34). The modulation of the gut microbiome directly in mice and
indirectly in humans suggests that similar microbiome by gene
regulation mechanisms are present (35–37). In fact, recent work
connecting host gene regulation across four hominid species,
including humans, indicates that microbiome by gene interactions
are mostly conserved at this level; among divergent gene
responses, traits for inflammation and apoptosis are enriched (38).
Microbiome associations are evident in many chronic diseases,
such as obesity and metabolic disease, inflammatory bowel disease,
diabetes, and gastrointestinal cancer, with changes preceding the
onset or worsening of disease (39–42). Here, we integrate gene
expression data from the Genotype-Tissue Expression Consortium
(GTEx) database to investigate the genes and pathways that con-
nect human genetic variation to the microbiome (32), and we
delineate these expression patterns through simulation across 28
tissues types (Fig. 1).
Population-level approaches are in their infancy in the micro-

biome field and have thus far addressed a small number of MAVs
(16, 19, 22, 43–45). Although an invaluable data source, elec-
tronic health repositories (EHRs) are sparse, and each differs in
their patient and phenotype distribution as well as access to

researchers, with preceding works leveraging an EHR-based bio-
bank outside of the United States. We connect Vanderbilt’s
EHR-based biobank of ∼90,000 individuals to a comprehensive
set of MAVs assembled across 11 studies to assess the clinical
traits and disease phenotypes of significant MAVs identified to
date (Fig. 1) (46). To determine the replicability of MAV associa-
tions, we compare disease-linked variants with phenome-wide
association study (PheWAS) data in the UK Biobank, the largest
collection of clinical health records globally. By extension with
microbiome by genome-wide association data and gene expres-
sion patterns, this framework may indirectly connect gut
microbes with a plurality of human phenotypes that covary at
shared genomic loci. These unique resources coupled with Phe-
WAS open an unbiased lens to broadly characterize the triad
between human genomes, gut microbiomes, and human diseases.

Results and Discussion

Assembling a Catalog of Gut Microbiome-Associated Human
Genetic Variants. To assemble a set of significant and unbiased
gut MAVs, we used 11 large mbGWAS to investigate single-
nucleotide polymorphisms (SNPs) that associate with gut microbial
taxon relative abundance and beta diversity (Table 1). Binary
microbiome traits (presence/absence) were excluded in this analysis.
Genotypes and microbiome traits were measured in individuals
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Fig. 1. An integrative framework to identify associations between human genetics, gene expression, disease phenotypes, and evolutionary patterns. Collat-
ing significant associations from 11 of the largest microbiome by genome-wide studies to date, we created an expansive set of nearly a thousand human
genetic MAVs. This collection of genetic variants associated with microbiome traits is then annotated to identify the composition and location of MAVs and
their relationship with human gene expression. In a complementary phenome-wide scan of hundreds of thousands of medical records from two DNA-linked
health record repositories, we connected these MAVs to a catalog of disease phenotypes. Taken together, MAV-linked diseases coupled with MAV-linked
microbiome traits create triads, in which the human genome, microbiome, and disease risk are linked. These previously undescribed associations establish
hypotheses that have the potential to unravel microbiome-associated disease.
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without chronic illness from multiple continents and biogeographi-
cal populations, and we aggregated variants below a genome-wide
significance of P < 5×10�8 in these studies through a review of the
published genome-wide association study (GWAS) summary statis-
tics. This produced a dataset of 1,220 significant MAVs and 925
uniqueMAVs following the removal of duplicates that were signifi-
cant within and between studies (Dataset S1). All measured gut
microbiome traits and differential relative abundances derive from
subject fecal samples using either 16S ribosomal RNA (16S rRNA)
or shotgun metagenomic sequencing (whole-genome shotgun
sequencing [WGS]). MAVs were annotated to the exact level of
taxonomic resolution from their study of discovery down to the
strain level where available.
For each study, the geographic population is noted. Multiple

populations were sampled in one large study spanning 11
nations, including the United States, Canada, the United King-
dom, Israel, South Korea, Germany, Denmark, the Netherlands,
Belgium, Sweden, and Finland. The sequencing method for each
study is listed as 16S rRNA amplicon sequencing or WGS.

MAVs Are Enriched for Gene Expression in 15 Tissues and
Functional Pathways Relevant to Gut Microbiome Biology
and Immune System Function. Of the 925 MAVs, 908 had
annotations based on the Ensembl genome database using Vari-
ant Effect Predictor and SNPNexus (Dataset S2) (47–49). Anno-
tated MAVs span chromosomes 1 to 22, with a global minor
allele frequency (MAF) range of 0.02 to 49.8% (mean = 15.5%)
(SI Appendix, Fig. S1). Just 4 of 908 MAVs are protein coding,
representing two synonymous and two nonsynonymous variants.
Among the remaining 904 MAVs, 437 are intergenic with near-
est genes noted, 415 are intronic, and 45 are variants in the
30 untranslated region (UTR; 18) or the 50 UTR (27)
(Fig. 2A). Twenty-five percent of intergenic variants were identi-
fied between two long intronic noncoding RNA or two processed
pseudogene regions. In total, two MAVs and nine MAV-
containing genes replicated between two studies (AC005833.1,
BANK1, CDH13, FHIT, FNDC3B, MAP4K4, R3HDM1, RAB3-
GAP1, SPRY4-AS1), while one MAV and two MAV-containing
genes (MCM6 and PTPRD) replicated between three studies
(Dataset S2). Notably, recurring associations between the micro-
biome and the lactose digestion LCT/MCM6 genomic region
have been well described (17, 23–26), while the significance of
microbiome-linked variants in or near PTPRD has not previously
been investigated.
Given that MAVs are nearly all intergenic and intronic non-

coding variants, we annotated their associations with differences
in gene expression and eQTL across 48 tissues in the GTEx

database (32); 373 MAVs were annotated as eQTLs associated
with differential expression of 688 genes in 28 tissues (FDR
< 0.05) (Dataset S3 and SI Appendix, Fig. S2). To determine if
the tissue-specific frequency of MAV eQTLs differed from a
simulated set of matched SNPs, 200 SNP sets were simulated
based on MAV allele frequency, the number of SNPs in linkage
disequilibrium, the distance to the nearest gene, and gene den-
sity (50). We were able to simulate SNP panels for 790 of 908
annotated MAVs, and z scores and P values were computed
from each tissue-specific distribution (Dataset S4). MAV
eQTLs were significantly enriched in 15 of 28 tissues groups
when compared with simulated SNP sets in each tissue (FDR
< 0.05) (Fig. 2B). Collectively among these significantly
enriched tissues, MCM6 (of the LCT/MCM6 genomic region) is
reproduced as the most targeted gene by MAV eQTLs because of
cumulative representation across 10 tissues. In contrast, LINGO2
(51) and R11-123G.1 (52) (an interim gene identifier) are
enriched in a single tissue only (Fig. 2C).

Since MAV eQTLs are enriched in sites related to gut micro-
biome functions, including the gastrointestinal and cardiovas-
cular systems, we next explored the biological pathways of
genes correlated with MAV eQTLs from the identified
enriched tissues. Using the human Reactome database (53), we
performed overrepresentation analysis by first narrowing down
the collection of MAVs to those from the 15 tissues that were
significantly enriched. Next, we analyzed MAV eQTL target
genes individually in the following tissues (number of target
genes): skin [223], esophagus [202], thyroid [189], nerve
[179], artery [179], adipose [178], whole blood [148], testis
[143], muscle skeletal [132], lung, colon, heart, pancreas,
spleen, and pituitary. We identified significant overrepresenta-
tion shared among all 15 enriched tissues, including tissues of
the colon, heart, and lung (FDR < 0.05) (Fig. 2D, Dataset S5,
and SI Appendix, Fig. S3). Many of these common pathways,
including interferon, T cell receptor (TCR), and Programmed
Cell Death Ligand 1 (PD-1) signaling pathways, collectively
reflect T cell interactions as well as other immune system func-
tions. This indicates that both generalized and specific path-
ways are ubiquitously enriched by target genes from MAV
eQTL. The more generalized “adaptive immune system” path-
way term was enriched in 10 of 15 tissues (Fig. 2D). Interest-
ingly, no single tissue had MAV eQTL target genes associated
with a unique overrepresented pathway. Collectively, pathway
representation corresponds with expected host–microbiome
immunological interactions as well as inflammatory and autoim-
mune disorders that emerged during the PheWAS analyses
described below.

Table 1. Total collection of gut MAVs across studies and population

Ref. Year Population Samples MAVs Method

Wang et al. (21) 2016 Germany 1,812 95 16S
Turpin et al. (105) 2016 Canada 1,098 51 16S
Bonder et al. (17) 2016 Holland 984 83 WGS
Scepanovic et al. (18) 2019 Western Europe 858 285 16S
Hughes et al. (19) 2020 Germany 3,900 13 16S
Xu et al. (45) 2020 China 1,475 17 16S
R€uhlemann et al. (22) 2021 Germany 8,956 38 16S
Liu et al. (20) 2021 China 1,295 36 WGS
Kurilshikov et al. (16) 2021 Multiple 18,340 30 16S
Lopera-Maya et al. (26) 2022 Holland 7,738 18 WGS
Qin et al. (23) 2022 Finnish 5,959 554 WGS
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PheWAS of Gut MAVs Produce Cross-Validating Diseases in
Two Large Biobanks. To identify which, if any, MAVs are asso-
ciated with disease, we performed a PheWAS using the 908
annotated MAVs in populations stratified by European ancestry
(EA) and African ancestry (AA), the two largest ancestral sam-
ple populations in Vanderbilt’s biobank-linked EHR reposi-
tory. In its simplest form, PheWAS is a regression analysis that
can determine if a genetic variant is associated with a disease
based on the medical records of large populations (with and
without the phenotype) that have all been genotyped at a given
locus. Briefly, the PheWAS analysis was performed as a series of
individual logistic regressions (e.g., MAV by phenotype), which
included variables for age, sex, and the first five principal com-
ponents of genetic ancestry. Analytical methods for EHR
biobank data are chosen based on the characteristics of the sam-
pled population, including size, sequencing methodologies,
scope of collection criteria, and medical phenotyping defini-
tions. For example, the PheWAS method used for BioVU data
removes related individuals prior to the analysis, while the
method used for UK Biobank adjusts for relatedness in each
regression model. In the BioVU discovery cohort, we applied a
conservative cutoff of at least 200 cases of a phenotype to be
considered and required that a medical code in an individual’s
EHR appear twice or more to avoid spurious conditions. At the
time of analysis, the Vanderbilt BioVU dataset for the 908

MAVs contained 201 to 25,467 cases and 24,935 to 56,748
controls spanning 815 EHR-derived phenotypes.

This discovery PheWAS identified 31 clinical traits that
significantly associated with 10 MAVs in the EA cohort (FDR
< 0.05) (Fig. 3A). There were no significant PheWAS associa-
tions in the AA cohort at the study-wide significance threshold
(discussed further below). No disease-linked MAVs were associ-
ated with multiple taxa in their initial GWAS discovery
cohorts, which simplifies the MAV–microbe interpretation in
this study. In the EA population, genetic variants were distrib-
uted on chromosomes 2, 3, 6, 9, 15, and 18 (Fig. 3B), with the
largest number of associations stemming from three MAVs on
chromosome 6 in the human leukocyte antigen (HLA) region.
Clinical traits identified in the EA cohort include the following
categories (number of MAVs): circulatory system (seven), neu-
rological (six), dermatologic (five), endocrine/metabolic (five),
musculoskeletal (four), hematopoietic diseases (two), digestive
(one), neoplasms (one), and sense organs (one). Most notably,
6 of 10 MAVs having associations with neurological, hemato-
logical, dermatological, and metabolic phenotypes also were
corresponding eQTLs in brain, vascular, skin, and gastrointesti-
nal (GI) tract tissues, respectively (SI Appendix, Fig. S4).

We tested the replicability of these 10 MAV associations in
the UK Biobank PheWAS catalog among 1,419 EHR-derived
phenotypes from more than 400,000 individuals of EA. The UK
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Fig. 2. Gut MAVs are predominantly intronic/intergenic and enriched in tissues and functional pathways involved in the nervous system, circulatory system,
gastrointestinal tract, and immune system. (A) The 908 annotated variants were genetically classified by Ensembl annotation and summarized according to
frequency. Boxes containing both purple and another color indicate they are elements of the smaller subset of nonintergenic or nonintronic variants.
(B) Among 908 MAVs, simulated-matched SNP panels for 790 MAVs could be matched for allele frequency, number of SNPs in linkage disequilibrium (LD),
distance to the nearest gene, and gene density. MAV eQTLs are significantly enriched in 15 of 28 tissue groups (False Discovery Rate (FDR) < 0.05) (Dataset
S4). (C) Within the 15 enriched tissues identified (indicated in the color key), gene targets of distinct MAV eQTLs within each tissue were summed to repre-
sent the top 50 targets genes, with MCM6 (of the LCT/MCM6 genomic region) as the most frequently occurring. (D) Reactome overrepresentation analysis
of MAV eQTL gene targets from enriched tissues reveals a strong association with adaptive and innate immune system functions common across all
15 MAV-enriched tissues, including TCR, interferon, PD-1 signaling, major histocompatibility complex class (MCH) II antigen presentation, and endoplasmic
reticulum (ER) -phagosome interactions, among others (FDR < 0.05) (Dataset S5). Colors of tissues correspond to the color key in C. Numbers above each set
of shared pathways correspond to numbers of shared pathways. Symbols above vertical bars correspond to pathways in the pathway legend. Individual
plots of pathway overrepresentation in each of the 15 tissues are presented in SI Appendix (SI Appendix, Fig. S3).
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Biobank dataset contains 51 to 77,714 cases and 167,467 to
407,136 controls tested and is roughly five times larger than
BioVU. The UK Biobank PheWEB catalog was precomputed
using the Scalable and Accurate Implementation of GEneralized
mixed model (SAIGE) method (54) to account for the size and
imbalance of cases to controls. As with the BioVU data, logistic
regression results were computed for each MAV and phenotype
and then corrected for multiple testing. In this targeted replica-
tion analysis, we restricted our analysis to only the 10 previ-
ously identified MAVs from the BioVU discovery analysis and
the full set of phenotypes for each MAV present in the UK
Biobank PheWAS catalog. We replicated 13 phenotypes with
five MAVs that were further grouped into six diseases/disorders
and eight MAV–disease associations (e.g., multiple sclerosis
[MS]) (Table 2 and Dataset S8). These replicated associations
agreed in the size and direction of disease risk of those identi-
fied in the discovery cohort. Notably, all replicated MAVs
are eQTLs.
Following identification of 31 PheWAS phenotype associa-

tions in the EA cohort in Vanderbilt BioVU, 13 of 31 signifi-
cant phenotype associations from five MAVs were reidentified
in the UK Biobank PheWEB database (Dataset S8). A deep
vein thrombosis (DVT) PheCode (452.2) is not represented in
the UK Biobank; instead, an association with (451.2) phlebitis
and thrombophlebitis of lower extremities as a closest match is
used. Odds ratios (ORs) shown are for the disease risk allele;
OR > 1 indicates an increased likelihood of the phenotype
with the indicated allele (FDR < 0.05).

Triad Relationships among Genome, Microbiome, and Disease
Span Autoimmune, Cardiovascular, and Metabolic Diseases.
An open question is whether the elements of a MAV–micro-
be–disease triad align, wherein a microbial relative abundance
controlled by a MAV also links with the disease that the MAV
associates with by PheWAS. If the triads occur, human genetic
influences on both microbial relative abundance and disease may
offer opportunities for precision diagnostics as well as potential
challenges for probiotic therapies that target microbial relative
abundance changes. To this point, we hypothesized that the links
between MAV–microbe and MAV–disease may connect and pre-
dict the differential relative abundance of a microbe in the repli-
cated phenotypes we detected in BioVU and the UK Biobank.

We informally explored this through a post hoc analysis in the
absence of a human phenotype–microbe simulation approach. For
each of the eight replicated phenotypes, we sought peer-reviewed
support in human case–control studies for a specific disease and
significant change in the relative abundance of the previously asso-
ciated microbe. Interestingly, we identify a supported triad in five
of eight associations in which the human genotype links with
both disease risk and a microbial relative abundance direction
independently connected to disease in case–control studies, thus
completing the triadic cycle of genome influences phenome, and
microbiome and microbiome influences or is influenced by disease
(Fig. 4 and Dataset S9). We cautiously present these observations
as hypotheses for future research as the data are derived from mul-
tiple independent studies, and interestingly, half of these triads
involve the core gut family Lachnospiraceae that exists in humans
from infancy to adulthood (56). Lachnospiraceae are enriched in
pathways degrading diet-derived polysaccharides and frequently
associated with inflammatory conditions, depressive syndromes,
and MS that link with gut microbial relative abundance changes.
The implications and specific associations of Lachnospiraceae with
phenotypes are explored below.

Two MAVs had significant independent associations with MS
and sequelae including lack of balance and coordination, and
these MAVs are not in linkage disequilibrium. First, MAV
rs9357092 (G) is identified with increased risk of MS and reduced
relative abundance of Coriobacteriaceae (family), a commensal
microbe of the oral, gut, and genital microbiome (57). These bac-
teria are depleted in the guts of untreated MS patients (58), sup-
porting a triadic connection between microbiome by human
genotypeand microbiome–MS association studies. This MAV is
located within a zinc ribbon domain containing the pseudogene
ZNRD1ASP that is proximal to the HLA complex. It suggests that
it may be linked to an effect allele related to immune function.
The associated taxon, Coriobacteriaceae, is also a recurrently iden-
tified ethnicity-associated taxa differing between Asian, Hispanic,
and European populations (59). The other risk allele, rs11751024
(C), for MS correlates with the decreased relative abundance
of the bacterial family Lachnospiraceae (coabundant gene group
882 [CAG-882]) (23). A decreased relative abundance of Lachno-
spiraceae occurs in relapsing–remitting MS (60) in adults and is
associated with MS relapse among pediatric cases (61). This inter-
genic variant falls within the HLA genomic complex between

Fig. 3. Gut MAVs in the discovery cohort associate with a range of diseases, including neurological, metabolic, and hematological disorders. (A) PheWAS
identified 31 clinical trait associations that are colored by disease category among 10 MAVs and nine disease categories in BioVU. The significance threshold
is in red as FDR < 0.05 corrected over all MAVs and phenotypes. (B) A phenogram plot shows the 31 phenotype associations among 10 MAVs from the
PheWAS analysis (Datasets S6 and S7). The list of colored dots corresponds to all significant clinical traits associated with the MAVs.

PNAS 2022 Vol. 119 No. 26 e2200551119 https://doi.org/10.1073/pnas.2200551119 5 of 12

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200551119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200551119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200551119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200551119/-/DCSupplemental


HLA-DQA1/HLA-DRB1 and HLA-DRB5/HLA-DRB9. Taken
together with the prior Reactome analysis of immune pathways
enriched by MAVs in the HLA complex, these results support a
triad model that immunogenetic variation and microbial balance
may together predispose or cause neuroimmunological dysregula-
tion (62–64).
MAV rs11751024 has four additional clinical trait associa-

tions spanning psoriasis, cardiovascular disease (CD), and type
1 diabetes (T1D), and all four associations replicate in the UK
Biobank population (Table 2). Effect sizes for these phenotypes
were all in the same direction between BioVU and UK Bio-
bank populations. At this MAV, an increased disease risk for
CD and T1D links with the decreased relative abundance of
Lachnospiraceae (CAG-882) (23). Accordingly, Lachnospira-
ceae is depleted in active CD (65) and consistently abundant
in genetically predisposed children leading up to onset (66).
Also consistent with this MAV–T1D connection, we cross-
validate depletion of Lachnospiraceae in infants and genetically
predisposed children with the disease (67, 68). In contrast to
other associations at the C allele of rs11751024, the A allele
associates with psoriasis risk and the relative decreased relative
abundance of Lachnospiraceae. Interestingly, intergenic MAV
rs35026345 (T) in proximity to the HLA complex also associates
with risk of psoriasis (and psoriatic arthropathy and psoriasis
vulgaris) in conjunction with the reduced relative abundance
of Lachnospiraceae (CAG-81) (23). Lachnospiraceae is a taxon
of interest in psoriasis patients with both concordant (69, 70)
and discordant (71) risk associations matching the bidirec-
tional relative abundance traits identified here among CAGs.
Given their inter- and intraspecies diversity and notable prev-
alence in psoriasis patients, these results indicate that the
observed variation of Lachnospiraceae is associated with two
distinct triads (72).
Recurrent observations of a relationship between MAV

rs11751024 and Lachnospiraceae are of particular interest. This

MAV is a significant eQTL among all 25 tissues with 27 eQTL
gene targets that recapitulate the broad set of immunological
pathways and signaling outlined in Fig. 2C, including Major
Histocompatibility Complex (MHC) class II antigen presenta-
tion; generation of second messenger molecules; and interferon
gamma, TCR, and PD-1 signaling (Dataset S5). It is tempting
to hypothesize how this eQTL differentially alters the relative
abundance of Lachnospiraceae. Lachnospiraceae’s role as a
prominent short-chain fatty acid (SCFA) producer in the gut
suggests that in addition to human genetic variation, the timing
and concentration of SCFAs produced or delivered could play
roles in preventing and driving inflammation (73). Similar to
work demonstrating that inhibitory innate immune sensor
NLRP12 preserved Lachnospiraceae relative abundance in high-fat
diet–induced obesity (74), variation in innate regulation of the
above-mentioned signaling pathways could also explain the deple-
tion of this taxa. Alternatively, the abundance of this taxa and its
SCFAs could be compensatory as well, since SCFA may reduce
epithelia inflammation and limit autoimmune responses (75).

In contrast to the aforementioned autoimmune phenotypes,
we identified gut MAV–phenotype associations with hemato-
logical and cardiovascular traits for pulmonary embolism and
infarction, venous embolism and thrombosis, DVT, and pul-
monary heart disease. These interrelated phenotypes associate
with intronic MAVs rs8176645 (A) and rs3758348 (C) of
ABO and SURF4, respectively. The ABO/SURF4 region is one
of a few recurring genomic regions linked to gut microbiome
composition and associates with risk for cardiovascular disease
(76). rs8176645(A) (ABO risk allele) links with reduced relative
abundance of Bifidobacterium bifidum (26) (Bifidobacteriaceae
[family]), whereas rs3758348 (C) (SURF4 risk allele) links with
the increased relative abundance of Faecalibacterium (Oscillo-
spiraceae [family]) (22). Interestingly, Bifidobacterium is the
most recurrently identified genus across all mbGWAS (10, 17,
23–26), and it has numerous beneficial health associations,
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Fig. 4. Microbiome–genome–disease triads replicate across two biobanks. Five MAVs across eight diseases replicated in BioVU and the UK Biobank. Colored
phenotype categories correspond to those shown in Fig. 3A and Table 2. Triad relationships between MAV, microbe, and disease are grouped by disease cate-
gory, with a line connecting category and the effected site. MAVs and associated diseases are connected by a line. MAVs and the relative abundance of linked
microbes are illustrated with an arrowed line denoting the increased relative abundance of a microbe or a line with a rounded end denoting the decreased
abundance of a microbe. All triads are oriented toward the disease risk allele of a MAV such that the relative abundance between a microbe and MAV is always
related to the increased risk for the associated disease. Microbial taxonomy is at the genus level unless indicated by taxonomic designation, such as family (f).
CAG taxonomy is provided in parentheses for taxa annotated using Genome Taxonomy Database–aligned taxonomy (55).
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including a reduction in cardiovascular disease (77–79). The
ABO risk allele phenotypes replicate in the UK Biobank (Table
2). The SURF4 risk allele has enhancer activity, increasing gene
expression by ∼50%, and significantly associates with blood
protein levels of platelet endothelial cell adhesion molecule-1,
which is independently associated with thrombosis (80–82).
This MAV also links with an increased thrombosis risk for
DVT and pulmonary heart disease. As such, it is interesting to
speculate that a MAV-induced increase in the relative abundance
of Faecalibacterium, whose butyrate metabolites have antithrom-
botic properties (83), is compensatory to MAV–cardiovascular dis-
ease links. Indeed, Faecalibacterium is depleted in older patients
with coronary artery disease and heart failure (84). Human fecal
microbiota transplant studies demonstrate that healthy microbiome
supplementation can suppress pathological coagulation in patients
with metabolic syndrome (85, 86).
A single association for metabolic disease was identified

between gout and MAV rs3749147 (A), which is linked with
the increased relative abundance of Eggerthella (Eggerthellaceae
[family]) (20). Gout is a common metabolic disease in which
purine metabolism and urate transport dysfunction lead to the
formation of urate crystals, causing joint and renal damage (87,
88). The gout-linked MAV is an eQTL that targets, among
several genes, GCKR, a glucokinase inhibitor with significant
gout associations (89, 90). The associated taxon for this MAV,
Eggerthella (20), is differentially abundant in urine microbiome
samples of gout patients and has not been associated with gut
microbiomes in gout patients (91).

MAVs Lack Associations in Individuals of AA. Using the same
PheWAS parameters as above, we did not identify significant
MAV associations in the AA cohort (SI Appendix, Fig. S5).
Additionally, we performed a secondary PheWAS on a subset
of MAVs in the AA cohort for comparison using a 100-case
cutoff, MAF greater than 25% (which included 18 MAVs from
the significant EA results), and a control–case ratio greater than
4:1 to account for limitations in the size of the AA cohort and
the quality of International Classification of Diseases, Ninth
and Tenth Revision (ICD-9/10) codes. Prior PheWAS power

analysis simulations using these parameters estimated 75%
power to detect allele disease penetrance above 20% in binary
traits (92). This PheWAS did not detect any associations
between MAV and disease phenotypes. We reason that the lack
of identified associations in the AA cohort could be attributed
to two factors. Mainly, AA sample sizes at large and in compa-
rable phenotypes lack the power to observe an association in
many EA-positive phenotypes in the AA cohort (Dataset
S10). Additionally, differences among population genetic
architectures may contribute to diluted EA effect sizes in non-
EA populations (93, 94). We explored the extent to which
differentiation between populations could contribute to the
variation of MAVs below.

Disease-Linked MAVs Have Different Evolutionary Histories.
To examine the evolutionary processes acting on the regions
identified in the PheWAS, we ran the 10 significant MAVs
from our discovery cohort through an evolutionary analysis
pipeline designed to detect enrichment in evolutionary signals
using a variety of sequence-based metrics of population differ-
entiation and selection (95). Of the 10 MAVs identified in the
BioVU discovery cohort with disease phenotype associations, 4
MAVs with phenotype associations, including increased risks
for cardiovascular, sensory, and musculoskeletal traits, produced
sufficient background control datasets to enable testing and
interpretation following simulation for null hypothesis testing
(Fig. 5A and Dataset S11). The interpretation of six MAVs
that did not produce suitable simulation data for comparison
testing is described in Methods.

MAV rs28473221 associates with Meniere’s disease and the
increased relative abundance of Erysipelotrichaceae (family)
(105). It has a high FST between AA and other ancestry groups
(FST between East Asian ancestry and AA groups: z score = 2.679,
P = 0.028; FST between EA and AA groups: z score = 1.65,
P = 0.08). This is further reflected in the differing MAFs
between ancestries (AA: 48%, EA: 11%, East Asian ancestry:
1%). The variant is also low between AA and East Asian ances-
try in XP-EHH (cross-population extended haplotype homozy-
gosity), which measures population-specific positive selection

Table 2. Microbiome-linked diseases discovered in the BioVU replicate in the UK Biobank

Disease/disorder and aligned phenotype MAV

Vanderbilt BioVU UK Biobank

OR FDR OR FDR

Psoriasis
Psoriasis rs11751024 (A) 1.67 2.73E-02 1.32 1.15E-18

Celiac disease
Celiac disease rs11751024 (C) 2.89 9.02E-03 1.68 2.08E-49

Type 1 diabetes
Type 1 diabetes with renal manifestations rs11751024 (C) 3.78 1.36E-06 1.88 4.30E-03
Type 1 diabetes with ophthalmic manifestations rs11751024 (C) 3.16 1.69E-03 1.80 3.71E-18

MS
MS rs11751024 (C) 1.92 2.94E-08 1.40 2.60E-17
MS rs9357092 (G) 1.79 3.12E-04 1.36 6.36E-12

Gout
Gout and other crystal arthropathies rs3749147 (A) 1.52 1.21E-03 1.11 1.89E-04
Gout rs3749147 (A) 1.45 8.16E-03 1.14 1.29E-05

DVT and pulmonary heart disease
Acute pulmonary heart disease rs8176645 (A) 1.95 2.82E-09 1.30 6.83E-30
Pulmonary heart disease rs8176645 (A) 1.36 4.19E-04 1.30 6.83E-30
DVT rs8176645 (A) 1.65 4.21E-07 1.46 2.08E-49
Other venous embolism and thrombosis rs8176645 (A) 1.60 2.82E-12 1.27 2.17E-04
DVT rs3758348 (C) 1.64 1.21E-02 1.39 1.53E-20
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(z score of �1.96, P = 0.07) (97). The low MAF (G) in East
Asian ancestry together with the low XP-EHH score supports a
selective sweep acting on the major allele (A) (Fig. 5B).
Although current clinical observations do not reveal equal inci-
dence or prevalence of Meniere’s disease among these ancestries, it
may be underdiagnosed among Africans (106). Further attention
is warranted to determine if Meniere’s disease represents an unrec-
ognized health disparity or if genetic susceptibility is a driver of
disease prevalence.
Two MAVs with replicated phenotypes in size and direction

in the UK Biobank also produced viable evolutionary scores for
simulation with the evolutionary analysis pipeline. First, MAV
rs8176645, linking B. bifidum, hypercoagulable traits, and pul-
monary heart disease, has a high ARGWEAVE (103) score
(z score = 1.551), low FST values, and similar MAFs across ances-
tries (43% African, 38% East Asian, and 40% European). ARG-
WEAVE estimates the time to the most recent common ancestor
(TMRCA) to be 115,179 y for this variation, which is much
higher than in the control set (62,855 y). That suggests this
MAV arose in ancient humans. The low FST and similar MAFs
between ancestries collectively indicate that the allele is under bal-
ancing selection in concordance with an old TMRCA. Notably,
both alleles (T and A) of this MAV are observed in Denisovans

supporting the observed TMRCA estimate (107, 108). Second,
MAV rs3758348, linked with Faecalibacterium and also associ-
ated with hypercoagulable traits and pulmonary heart disease,
stands out for its low PhyloP100 score (z score = �1.36), which
measures evolutionary conservation (99). The ancestral G allele is
the major allele at this position and is conserved throughout old
world monkeys and apes. The negative value at this location is
most consistent with human-specific mutational acceleration. In
contrast to the previous MAV, which shared hypercoagulability
and pulmonary heart disease traits and is under balancing selec-
tion, this MAV demonstrates faster evolution than expected under
neutral drift. Finally, MAV rs12910631, associated with micro-
biome beta diversity and joint stiffness, does not exhibit any
z scores for evolutionary metrics greater or less than one, which
suggests that the region is likely evolving neutrally.

Conclusion

Understanding the precise relationships between the human
genome, microbiome, and clinical traits remains limited yet
central for research and efforts aimed at developing new thera-
pies and personalized diagnostics of diseases with unclear
etiologies. Here, using an unbiased framework integrating genetic,
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transcription, microbiome, and evolutionary approaches, we lev-
eraged 11 mbGWAS and case–control studies with a phenome-
wide scan of clinical health records from two independent
health record repositories to uncover the genetic footprints of
disease that interrelate with gut microbiome variation. We
report six key results. 1) 10 MAVs associate with 31 BioVU
clinical traits spanning neurological, autoimmune, metabolic,
dermatological, and hematological diseases in EA but not AA
individuals. 2) Five of these MAVs replicate the size and direc-
tion in the UK Biobank. 3) MAVs with clinical traits relevant
to gut microbiome biology, including digestive and neurological
diseases as well as dermatological traits, tend to exhibit complete
triads in which the human genotype links with both disease risk
and a microbial relative abundance direction connected to dis-
ease. Conversely, clinical traits that are not regularly linked with
gut microbiome biology, including sensory and musculoskeletal
functions, do not exhibit complete triads with microbial relative
abundance. 4) Gut MAV eQTLs are enriched in tissue-specific
gene expression profiles related to gut microbiome functions,
including the gut–lung axis, gastrointestinal and cardiovascular
tissues, and metabolic traits. 5) Pathways of MAV eQTLs are
overrepresented in all enriched tissues for immune signaling and
antigen processing pathways, while disease MAVs were most
enriched in diseases of immunological dysfunction, supporting a
model that immunogenetic variation and microbial relative
abundance collectively influence dysregulation. 6) Finally,
evolutionary analyses demonstrate significant population differ-
entiation of a MAV-linked disease risk allele and a haplotype
pattern, suggesting a selective sweep on a disease risk allele in
EA and East Asian ancestry populations. Together, these results
establish relationships between the genome, microbiome, and
human diseases, with opportunities to account for these triads
in targeted case–control disease studies while generating hypoth-
eses for disease–microbiome associations.
As the discovery of genome-wide MAVs has predominantly

been biased in populations with EA, we highlight the need to
unbias microbiome studies for more inclusive and diverse research
as none of the PheWAS results replicate across populations with
AA. The reasons are multifaceted but are potentially related to
sample sizes and disease incidence differences that may relate to
health inequities. Indeed, time to treatment; access to care and
health resources; and social factors, such as racial discrimination
and bias, can exacerbate disparities in health and therefore, con-
tribute to heterogeneity in population health records. While we
hypothesized that some shared associations would be detected
between populations, we recognize that this does not rule out the
discovery of shared MAVs in the future as GWAS and micro-
biome sampling become larger and more representative. Connec-
tions between MAVs and ancestry are especially relevant in light
of work identifying racially and ethnically varying taxa overlap-
ping known heritable taxa (59, 109–114). While social and
environmental exposures contribute to modulating microbiome
compositions (115–117), how these influences converge with var-
iation in population structure and shape disease risk and/or pre-
disposition remain important goals for the future.
In summary, our results establish a set of relationships

between the genome, microbiome, and human diseases, with
opportunities to account for triadic relationships in targeted
case–control disease studies. However, genetic influences on
microbiome variation associated with clinical traits could also
pose operational hurdles for therapies that target microbial
compositions, which are presumed to be malleable but may be
less so due to underlying host genetic factors. As such, human
genetic influences may offer opportunities for precision

diagnostics, especially as the relationship between the relative
abundance of specific microbes and disease risk is further
elucidated.

Methods

Collection and Annotation of Microbiome-Linked Alleles. Large-scale
microbiome by genotype studies testing gut microbiome traits in fecal samples
were reviewed. Studies were not considered if they did not report sufficient
GWAS summary statistics for further analysis or relied on related individuals.
Preference was given to studies of 1,000 or more individuals during the litera-
ture review. A significance threshold of P < 5×10�8 was used for inclusion of
SNPs in the creation of a SNP panel for further analysis. In studies that found
associations between multiple microbiome traits and an individual SNP , the
microbiome trait with the lowest P value was retained as the presumptive lead-
ing microbial trait. Variants were annotated and accessed using a web interface
for Variant Effect Predictor (48) and SNPNexus (49), both utilizing the Ensembl
genome database (47) for reference. All computational analyses were performed
using the R statistical programming language (version 3.6.2) in RStudio
(version 1.4.1103).

SNPsnap Enrichment Testing and eQTL Analysis. Simulated background
sets were generated using SNPsnap (default parameters, HLA not excluded)
(50), which matches input SNPs with randomly drawn sets of SNPs based on
allele frequency, the number of SNPs in LD, the distance to the nearest gene,
and gene density. Two hundred SNPsnap sets were generated to calibrate back-
ground expectations. Quantitative trait loci annotation was performed using the
using the R package Qtlizer (118) (Qtlizer::get_qtls) to retrieve GTEx (version 8)
tissue-specific gene expression results (119). SNP sets were processed using cus-
tom R scripts to calculate the number of distinct SNP eQTLs in each tissue and tis-
sue group. Tissue grouping was applied uniformly in both SNP and MAV groups
to condense related tissues of a generalizable tissue type. MAV z score and one-
sided P value (FDR < 0.05) were computed in each tissue and then, FDR
corrected across all tissues (FDR < 0.05). Only significant tissues are shown in
Fig. 2B. All summary statistics are shown in Dataset S4.

Reactome Pathway Analysis. Pathway analysis was performed using the
Reactome Knowledgebase web platform (53). Following eQTL analysis, MAV
eQTL target genes were filtered by tissue, selecting only the 15 tissues that were
shown to be significantly enriched. Target genes within each tissue were then
used to perform pathway overrepresentation analysis on the gene list with the
Reactome web-based platform with the selected options for “Project to human”
and “include interactors.” P values and FDR-adjusted P values were computed
under a hypergeometric model to determine if the number of selected entities
(eQTL target genes) associated with a Reactome pathway is larger than expected.
The entities ratio (the total entities in the pathway divided by the total entities
for the entire species) and the reaction ratio (the total reactions in the pathway
divided by the total reactions for the entire species) are additionally reported for
each tissue.

BioVU Study Populations. The PheWAS populations were derived from the
Vanderbilt University Medical Center (VUMC) BioVU repository, in which deiden-
tified EHR data are linked to a DNA biobank extracted from discarded patient
blood samples. BioVU subjects genotyped using the Illumina Infinium Multi-
Ethnic Genotyping Array platform were stratified by genetic ancestry using princi-
ple component analysis (PCA) in conjunction with HapMapreference populations
to define AA and EA populations. This resulted in 15,862 AA individuals and
75,408 EA individuals in total. This population was further filtered to include
only individuals over 18 y old during PheWAS. Case and control sizes for individ-
ual BioVU phenotypes are listed in Datasets S6 and S9.

Phenotyping. ICD-9/10 codes from VUMC BioVU EHRs were converted to
1,815 PheCodes version 1.2. Cases were defined by individuals with two or
more occurrences of an ICD code on different dates in their medical records.
Controls for each phenotype were defined using PheWAS case–control defini-
tions. PheCodes were analyzed at two case count/MAF criteria levels with 200
cases and MAF ≥ 0.01 as default parameters and 100 cases and MAF ≥ 0.25
MAF to detect associations in the smaller AA population. These levels are
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supported by prior simulation to retain statistical power ≥75% when cases ≥
100, MAF ≥ 0.25, case–control ratio > 4, and disease penetrance ≥ 0.15 (92).

Vanderbilt BioVU PheWAS Discovery Analysis. The phenome-wide associa-
tion analysis was performed in R with the PheWAS package (120) using multi-
variable logistic regression on binary traits (phenotype present or phenotype
absent) with each stratified population separately. The code for this analysis is
available in GitHub (Data Availability). Briefly, the first 10 principle components
(PCs) calculated within each ancestry were retained with the first five covariables
used in the regression model within each stratified genetic ancestry group. Addi-
tionally, terms for age and sex were included. To adjust for multiple testing, P
values were adjusted using the false discovery rate Benjamini–Hochberg
method. FDR< 0.05 was considered significant.

A PheWAS association between rs139904671 and “neoplasm of unspecified
nature of digestive system” was observed; however, due to the very low allele
frequency, lack of extant variant annotation, and unrealistic effect size, we omit
this result from downstream analysis (Dataset S6).

The UK Biobank Replication Analysis. PheWAS replication was performed
using the TOPMed-imputed (121) UK Biobank PheWeb browser (122) to identify
summary statistics for variants of interest among 1,419 EHR-derived phenotypes
in >400,000 White British individuals (cases: 51 to 78,000; controls: 167,000
to 407,000). Analyses on binary outcomes were computed using the SAIGE
method (54) to account for size and case–control imbalances. Covariables were
included for genetic relatedness, sex, birth year and the first four principal com-
ponents. Associated P values were multiple test corrected in R using “p.adjust,
method = fdr.”

Detecting and Annotating Differences in Evolutionary Signatures. To
examine the evolutionary history of the regions identified in the PheWAS, we
ran the significant variants through an evolutionary analysis pipeline (more
details are in ref. 95). This pipeline is designed to detect enrichment in evolu-
tionary signals using a variety of sequence-based metrics of selection. The value
for these metrics observed for each variant is compared against 5,000 control
variants matched on linkage disequilibrium structure, MAF, and proximity
to genes. The pipeline produces both a P value and z score for each metric. The z
score represents the amount of enrichment or depletion for the test variant as
compared with the background distribution. The P value represents the statistical
value of that enrichment or depilation based on the background distribution.

The sequence-based evolutionary metrics used are as follows. 1) FST (96)
measures the variance of allele frequency among populations to infer popula-
tion differentiation. 2) XP-EHH (97) measures haplotype homozygosity by
comparing integrated extended haplotype homozygosity profiles to detect
cross-population positive selection at the same SNP. 3) iES (98) is based on
the iintegrated extended haplotype homozygosity (123) measure and detects
haplotype homozygosity to infer positive selection over a chromosomal
region. 4) PhyloP (99) calculates a substitution rate to infer positive and neg-
ative selection based on expected neutral drift. 5) The phastCons(100)100
score is the probability that each nucleotide belongs to a conserved element
as calculated from the multiz alignment of 100 vertebrate species (https://
hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons100way/). 6) The LIN-
SIGHT (101) score measures the probability of negative selection on noncod-
ing sites. 7) The GERP (102) score measures the reduction in the quantity of
substitutions in the multispecies sequence alignment as compared with the
neutral expectation. 8) The ARGWEAVE (103) score measures the TMRCA as
computed by the ARGweaver pipeline. 9) Beta (104) measures balanced poly-
morphisms to infer balancing selection.

The haplotype analysis was conducted using the 1000 Genomes Phase3 data
(124). Haplotype blocks were extracted using PLINK (125) version 1.9b_5.2
using the standard “blocks” command. These haplotype blocks were then for-
matted into a nexus file for analysis in POPART (126). Median joining networks
were then constructed and color coded. Analysis of allele conservation was per-
formed using the “Multiz Alignment of 100 Vertebrates” track of the University
of California, Santa Cruz (UCSC) genome browser (127, 128).

The interpretation of nonviable MAV variants following the simulation for null
hypothesis testing with the evolutionary analysis pipeline is as follows. The four
variants located on chromosome 6 (rs35026345, rs78279385, rs9357092,
rs11751024) are in highly variable regions of the human genome, making
sequence-based evolutionary metrics difficult to deploy. The variant
rs139904671 was not present in the database used for identifying linked var-
iants and is very rare among modern human populations. The variant
rs3749147 did not produce viable results due to an unusual linkage and
MAF structure that produced only 230 of the 5,000 required matched
control regions.

Data Visualization. Data parsing and visualization were performed using Tidy-
verse version 4 (129) and ComplexHeatmap version 2.12 (130) packages. The
Manhattan plot of PheWAS results by category was created in R using custom
scripts. The phenogram plot was created using the Phenogram tool (131). Figs.
1 and 4 were created using illustrations from BioRender.com with full publishing
rights secured.

Data Availability. PheWAS summary statistics, eQTL data, SNPsnap data, and
Reactome data have been deposited in FigShare under the project “Microbiome-
associated human genetic variants impact phenome-wide disease risk” (https://
figshare.com/projects/Microbiome-associated_human_genetic_variants_impact_
phenome-wide_disease_risk/125482) (132). Code to generate results and fig-
ures has been deposited in GitHub (https://github.com/BordensteinLaboratory/
VMI_MAV) (133). Due to privacy issues concerning the human genotype data
and EHRs, access is restricted to authorized Vanderbilt researchers; other
researchers may contact The Vanderbilt Institute for Clinical and Translational
Research (research.support.services@vumc.org) to make inquiries about
data access.
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