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Abstract: HIV-1 resistance to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) results 

from mutations in reverse transcriptase that increase the ability of the enzyme to excise 

AZT-monophosphate after it has been incorporated. Crystal structures of complexes of 

wild type and mutant reverse transcriptase with double-stranded DNA with or without the 

excision product, AZT adenosine dinucleoside tetraphosphate (AZTppppA), have recently 

been reported [1]. The excision-enhancing mutations dramatically change the way the 

enzyme interacts with the excision product.  
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In a recent paper [1], investigators at Rutgers University in Piscataway, New Jersey, The National 

Cancer Institute in Frederick, Maryland, and The University of Missouri in Columbia, Missouri, 

described several crystal structures of HIV-1 reverse transcriptase (RT) containing resistance 

mutations to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) that provide new molecular insights 

into a major mechanism of resistance of HIV-1 to AZT, the first antiretroviral drug approved by the 

U.S. Food and Drug Administration for use in the AIDS epidemic. 

Several nucleoside analogs lacking the 3' OH have proven to be useful therapeutic agents against 

HIV infection; however, prolonged use of these drugs leads to selection of resistance mutations. 

Resistance to AZT is not usually associated with reduced ability of the mutant RT to bind AZT 

triphosphate (AZTTP) or to incorporate AZT monophosphate (AZTMP). Instead, the mutant RTs 

incorporate AZTMP as efficiently as wild type RT, but have increased ability to excise the  
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chain-terminating residue after it has been incorporated [2,3]. Excision is accomplished by transfer of 

the AZTMP moiety to an acceptor substrate, removing the block to elongation so that the DNA chain 

is free to be elongated with natural nucleotides. Enhanced excision by these mutants is not limited to 

AZTMP and can extend to other nucleoside RT inhibitors, but resistance is typically much greater for 

AZT than for other chain terminators [4]. The mutants are widely referred to as thymidine analog 

resistance mutations (TAMs).  

Excision occurs through a mechanism related to pyrophosphorolysis, the reversal of the DNA 

polymerization reaction. In pyrophosphorolysis, the 3'-terminal nucleotide on the primer strand is 

transferred to pyrophosphate forming the corresponding nucleoside triphosphate. HIV-1 RT has a 

unique ability to use cellular nucleoside triphosphates in place of pyrophosphate in this reaction 

forming dinucleoside tetraphosphate as the excision product [5]. The nucleoside triphosphate most 

readily available for excision in the intracellular environment is ATP, and it is considered the most 

likely candidate for acceptor substrate in the in vivo reaction. The product of ATP-dependent excision 

of AZTMP is AZT adenosine dinucleoside tetraphosphate (AZTppppA) and the formation of 

AZTppppA is enhanced in in vitro reactions with mutant RTs containing TAMs [3]. The new crystal 

structures reported by Tu et al. [1] provide direct structural evidence to explain enhanced excision  

by the mutant RTs. 

These authors have described ternary complex crystal structures consisting of wild type or  

AZT-resistant mutant RT, 27:21-mer double-stranded DNA, and AZTppppA, using a previously 

reported cross-linking strategy [6,7]. Cross-linking was introduced between a cysteine introduced by a 

Q258C mutation in the large subunit of RT (p66 subunit) and an N
2
-thioalkyl tether attached to an 

internal G in the primer strand. The investigators also introduced dideoxy-AMP at the 3' terminus of 

the primer strand to prevent reincorporation of AZTMP. The primer-template contains a template dA 

in the polymerase active site allowing it to base-pair with an incoming T analog. AZTppppA was 

prepared synthetically and bound in the dNTP-binding site on the enzyme to form a stable closed 

ternary complex. The mutant RT contained five of the most prevalent TAMs (M41L, D67N, K70R, 

T215Y and K219Q). Structures were obtained for ternary complexes with wild type RT and mutant RT 

at resolutions of 3.15 Å and 3.2 Å, respectively. The investigators also determined structures for two 

binary complexes containing the mutant enzyme in complex with AZTMP-terminated dsDNA and a 

structure for the unliganded mutant RT. 

The most remarkable finding from these structures is that the AMP portion of AZTppppA occupies 

very different positions in wild type and mutant RT (Figure 1). The AMP binding site is well defined 

in the mutant complex, but much more variable in the wild type complex. In both of these complexes 

AZTppppA is recognized as an analog of TTP and the AZTTP portion of the molecule superimposes 

closely with TTP in the ternary complex containing wild type RT, dsDNA and TTP [8]. The AMP 

portion of AZTppppA finds a place to bind near site I in wild type RT (Figure 1), but does not form 

distinctive interactions with RT residues. By contrast, the primary TAMs (T215Y and K70R), form a 

new binding site for AMP on the surface of the enzyme that causes the AMP moiety to bind more 

tightly at an alternative position (site II), about 10 Å from the binding site in the wild type enzyme. 

AZTppppA binding to both mutant and wild type enzyme is dominated by the interaction with the 

AZTTP portion of the molecule, which is not much affected by the TAMs. These results are consistent 

with previous reports that both wild type and mutant enzymes have little ability to distinguish between 
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TTP and AZTTP, and that AZTppppA is a good substrate for AZTMP incorporation by the mutant 

enzyme (in fact it is a better substrate than AZTTP [9]), but a poor substrate for wild type RT.  

Figure 1. Comparison of binding positions of the AMP portion of AZTppppA in ternary 

complexes formed by wild type RT (Site I) and the AZT-resistant mutant RT (Site II). The 

molecular surface is shown for the AZT-resistant enzyme and the positions of the primary 

TAMs (arginine-70 and tyrosine-215). AMP carbons in the wild type complex are shown 

in grey and in the mutant enzyme complex are shown in yellow. The positions of the two 

AMPs are ~ 10 Å apart. Reprinted with permission from [1]. 

 

 

The contributions of the primary TAMs to ATP-dependent excision agree with predictions made 

previously on the basis of molecular modeling [10,11]. The adenine ring of the AMP portion of 

AZTppppA interacts with tyrosine 215 through a  stacking interaction, and the ribose and  

phosphate portions of AMP interact with arginine 70 through hydrogen bonding between the 

guanidinium of arginine, the 3' and 5' oxygen atoms in the ribose ring, and the  phosphate. These 

observations establish a new binding site for AMP in the mutant enzyme that does not exist in the wild 

type enzyme. Secondary TAMs are mutations that confer little resistance by themselves but increase 

the level of resistance when present together with primary TAMs. The secondary TAMs, D67N and 

K219Q, can be largely understood as enhancing the ability of the AMP structure to occupy site II. 

Glutamine-219 in the mutant enzyme interacts with the 4' oxygen in the ribose ring of AMP when it 

occupies site II but, perhaps more importantly, wild type lysine at position 219 forms an ion pair with 

aspartate at position 67 [10] that could affect the access to site II. Mutation to a neutral residue at 

either position 219 or 67 would prevent the formation of the salt bridge and increase access to this site. 

Loss of interaction between residues 219 and 67 also removes a constraint on the position of the 3-4 

loop in the fingers portion of the enzyme (residue 67 is at the tip of that loop). Excision is known to  

be enhanced by other mutations that alter the 3-loop including dipeptide insertions following 

residue 69 [12–15]. 
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The contribution of the M41L mutation is still something of a mystery although it is arguably the 

most important secondary TAM based on the high frequency with which the M41L/T215Y 

combination is observed [16]. This residue is not close enough for direct interaction with any portion 

of the AZTppppA ligand in the mutant RT ternary complex structure; however, in infected cells, the 

M41L mutation substantially enhances AZT resistance when the T215Y mutation is also present. The 

leucine at position 41 is 3.9 Å from phenylalanine-116 and the authors speculate that this interaction 

may stabilize binding between the 3'-azido group at the primer terminus and the binding pocket formed 

by alanine-114, tyrosine-115, phenylalanine-116 and glutamine-151, which would favor binding of the 

primer terminus in the dNTP binding site (N-site). Preferential N-site occupancy by the mutant 

enzyme could help explain enhanced excision activity since the primer terminus must be located in the 

N-site for excision to occur.  

Tu et al. [1] also report structures of binary complexes in which the primer-terminating AZTMP 

occupies the pre-translocation (N-site) or post-translocation (P-site) positions on the mutant RT. In the 

P-site complex, the p66 fingers subdomain residues occur in an ―open‖ configuration as they do in 

other binary complex structures including the wild type N-site and P-site complexes previously 

published by these investigators [17]. By contrast, the fingers subdomain occurs in a ―closed‖ 

configuration in the mutant N-site complex giving it an overall structure that is similar to the ternary 

complexes containing the excision product. The authors suggest that the closed structure may depend 

on the presence of a primer-terminal AZTMP in the N-site. AZTMP-terminated primer-templates have 

previously been shown to bind preferentially in the pre-translocation position on the wild type 

enzyme [18,19]. The authors point out that the availability of a closed N-site binary complex and a 

closed ternary complex containing AZTppppA provides a unique opportunity to model the transition 

state in the excision reaction. The resulting model suggests that the transition state intermediate 

matches the intermediate formed during DNA polymerization. The attacking  phosphate of the ATP 

excision substrate is positioned ~ 3 Å from the  phosphate of the primer terminal AZTMP and the 

attacking  phosphate oxygen assumes an almost collinear position with respect to the scissile 

phosphate bond of AZTMP prior to the attack.  

In summary, our previous understanding of the mechanism of AZT resistance was based largely on 

molecular modeling using the ternary complex containing WT RT, dsDNA and the incoming 

dNTP [8]. The new structures confirm many of the conclusions from that modeling; however, they 

have also provided some surprises. A new binding site for the AMP moiety is formed in the mutant 

enzyme that was not present in the wild type enzyme, and the pre-excision binary complex of mutant 

RT and AZTMP-terminated primer-template occurs in a ―closed‖ configuration. Some questions 

remain: Notably, why does the selection of TAMs divide into two different pathways—the more 

common TAM-1 pathway (leading to M41L, L210W and T215Y) and the less common TAM-2 

pathway (leading to D67N, K70R, T215F and K219Q/E) [20]? And why are the K70R and M41L 

mutations antagonistic to each other during the early stages of selection [21]? Nonetheless, the 

availability of these new structures provides an invaluable resource for the design of drugs that target 

the resistant enzyme. These results may lead to the development of drugs that increase the potency of a 

wide variety of nucleoside RT inhibitors by preventing their excision.  
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