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Abstract

The derivation and comparison of biological interaction networks are vital for understanding the functional capacity and
hierarchical organization of integrated microbial communities. In the current work we present metagenomic annotation
networks as a novel taxonomy-free approach for understanding the functional architecture of metagenomes. Specifically,
metagenomic operon predictions are exploited to derive functional interactions that are translated and categorized
according to their associated functional annotations. The result is a collection of discrete networks of weighted annotation
linkages. These networks are subsequently examined for the occurrence of annotation modules that portray the functional
and organizational characteristics of various microbial communities. A variety of network perspectives and annotation
categories are applied to recover a diverse range of modules with different degrees of annotative cohesiveness.
Applications to biocatalyst discovery and human health issues are discussed, as well as the limitations of the current
implementation.
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Introduction

The ubiquity of next-generation sequencing projects has vastly

accelerated the accumulation of metagenomic sequence data. As

of last year the Sequence Read Archive [1] exceeded 100

Terabases of open-access reads produced by next-generation

sequencing efforts [2]. A common goal in attempting to

understand the functional capabilities of newly sequenced

microbial communities involves the annotation of putative genes

through the assignment of biological functions. Such functional

annotation relies heavily on homology-based annotation transfer

using tools such as BLAST, HMMs, and motif finding algorithms

[3]. In turn, the success of these approaches is necessarily bounded

by the diversity of the reference databases that are used to find

candidate annotations. However, an important proportion of

microorganisms do not grow under common laboratory culturing

conditions [4,5]. This limited spectrum of cultured microbial

diversity, combined with biases in applied research interests, has

yielded a skewed representation within sequence annotation

databases [6]. Because metagenomes represent an attempt to gain

access to the uncultured majority, homology-based annotation

methods rooted in limited experimental knowledge about the

functional roles of gene products are insufficient to adequately

address the influx of unknown genes [7].

Given the difficulties in the annotation of individual metage-

nomic genes, the derivation and comparison of biological

interaction networks represents a promising prospect for metage-

nomic data sources. Nevertheless, interaction networks can reveal

vital information about functional organization and activity [8].

For example, studies of interaction networks in Escherichia coli [9]

and Saccharomyces cerevisiae [10] have provided a systems perspective

of these genomes by enumerating their respective functional

modules. Recently there have been several attempts to capture

metagenomic analogs of traditional interaction networks through

the prediction of metabolic pathways and functional modules.

MetaPath [11] uses prior knowledge of metabolic pathways in

conjunction with metagenomic sequence data to predict the

occurrence of metabolic pathways in metagenomic data sources.

In contrast, Konietzny et al. [12] used a Bayesian approach to find

co-occurrence patterns for functional descriptors contained in

microbial genome annotations in order to infer functional

modules.

In the present work we exploit metagenomic operon predictions

to derive functional interactions that are translated and catego-

rized according to their associated functional annotations as

provided in the IMG/M metagenomics database [13] (Figure 1).

The result is a collection of discrete networks of weighted

annotation linkages that are subsequently examined for the

occurrence of annotation modules that portray the functional

and hierarchical organization of various microbial communities. A

variety of network perspectives and annotation categories are

compared and their potential applications are discussed.

Results

In order to demonstrate the utility of metagenomic annotation

networks, networks employing a variety of perspectives and

annotation categories were constructed and compared. The

network construction protocol proposed in this work is confined

to a process of network prediction followed by network translation

(Figure 2; see also Methods). Subsequent analyses of the resulting

networks were performed in order to demonstrate potential uses
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and applications but not as part of the network construction

protocol itself. Therefore, examples provided here involve the use

of Cytoscape 2.8.1 [23] for network analyses and the MINE plugin

[24] for the identification of putative annotation modules.

However, these tools were selected on the basis of potential

familiarity for readers and it is certainly possible to use any other

software, plugins, or algorithms as required for particular

investigations.

Figure 1. Data Source Diversity. The relative proportions (%) of various data source types that were used are shown categorized according to
IMG/M microbiome taxa at the class level. Panel A shows the proportions (%) with respect to the total number of data sets while Panel B shows the
proportions (%) with respect to the total number of genes.
doi:10.1371/journal.pone.0041283.g001

Applications of Metagenomic Annotation Networks

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e41283



Target Perspective Networks
Networks can be constructed from a target perspective by using

a keyword or series of keywords joined by logical operators to filter

and reduce a set of results on the basis of keyword occurrence, or

target hits. The goal is to constrain the resulting functional

interactions so that they reflect a target-centric view for a domain

of interest, such as interactions relating to cellulases. In the

following examples single keywords of general interest, namely

‘‘polyketide’’ and ‘‘cellulase,’’ were used to select specific operons

from the complete set of available operons thereby reducing the

overall network into specific target perspective networks. However,

it is possible to construct a target perspective network from a

smaller and more specific range of data sets, such as using only

human gut microbiomes (see Source Perspective Networks).

Prior to evaluating any target perspectives networks, the effects

of target stringency were investigated. Specifically, operons can be

qualified as target hits if a fixed number or scalable proportion of

their member genes have an annotation that contains the target.

To determine the effects of target stringency versus network

coverage, four polyketide target perspective networks were

Figure 2. Network Construction Workflow. Operonic genes are predicted on the basis of co-direction and intergenic proximity using scaffolds
containing more than one gene (Panel A). Operons and their constituent genes can be filtered according to the presence or absence of a target
annotation such that at least one member of an operon is required to possess a target descriptor (Panel B). Note that the filter step is optional and
can applied to obtain target perspective networks while being omitted in the construction of source perspective networks. Each gene in a given
operon is mined for its various types of functional annotations where any particular type has a domain of existing values (Panel C). For each operon,
the obtained functional annotations are used to infer bidirectional functional interactions for annotations having the same type but different values
(Panel D). Note that interactions are inferred directly for immediately adjacent gene pairs and also transitively for downstream members within the
same operon.
doi:10.1371/journal.pone.0041283.g002
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constructed and the stringency for qualification was progressively

increased. Operons in the first network were required to have at

least one target hit, operons in the second network were required

to have at least two target hits, and so on, up to and including a

stringency of requiring at least four target hits. Furthermore, each

of the four networks was translated into each the four different

annotation categories (see Methods) resulting in four sets of four

target perspective networks. Figure 3 shows the proportion of

nodes and edges recovered from the equivalent overall network

(i.e. no filtering) with respect to increasing target stringency across

each annotation category. The results illustrated that coverage for

both nodes and edges decreased for all annotation categories with

increasing target stringency. Therefore, the target perspective

networks that follow used the least stringent requirement (i.e. at

least one target hit) in an attempt to maximize the diversity and

Figure 3. Target Stringency versus Network Coverage. Four polyketide target perspective networks were constructed with progressively
increasing target stringency and each network was translated into each of the four annotation categories. The proportion of nodes and edges in each
polyketide network was compared to its corresponding overall network. Panel A shows that coverage for nodes decreased for all annotation
categories with increasing target stringency and Panel B shows that coverage for edges also decreased for all annotation categories with increasing
target stringency.
doi:10.1371/journal.pone.0041283.g003
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number of putative functional interactions available for subsequent

analyses.

A MetaCyc cellulase network was constructed that consisted of

213 nodes and 779 edges (Table 1). A highly connected central

hub was observed that had the annotation PWY-1001: cellulose

biosynthesis (Figure 4, Panel A). Five modules were identified

within the network (Tables S1 and S2). The top ranked module

(Figure 4, Panel B) contained annotations relating to amino acid

degradation and biosynthesis (Table 2). The precise annotation

terms were analyzed for more general themes and a highly

cohesive module emerged that described aliphatic amino acid

metabolism, with particular emphasis on branched-chain amino

acids (BCAAs) (Figure 5). BCAA metabolism is consistent with

functional expectations for ruminal bacteria such as members of

the genus Peptostreptococcus [14]. Likewise, data from ruminal

environments would be expected to contribute interactions to a

metagenomic cellulase network.

A COG cellulase network was constructed that consisted of 301

nodes and 763 edges (Table 1). A highly connected central hub

was observed that had the annotation COG1363: cellulase M and

related proteins (Figure 4, Panel C). A total of 33 modules were

identified within the network (Tables S1 and S2). The top ranked

module (Figure 4, Panel D) contained annotations relating to

ABC-type transport, permease, ATPase, as well as various other

terms (Table 2). Furthermore, the term ‘‘uncharacterized’’ was

observed in conjunction with several instances of the previously

listed annotations. The precise annotation terms were analyzed for

more general themes resulting in a less cohesive module than the

top ranked MetaCyc module. Nevertheless, these annotations are

generally consistent with secretion and transfer activities such as

multienzyme secretion in the cellulolytic bacterium Clostridium

thermocellum [15] and glycoside hydrolase secretion in Thermobifida

fusca, a soil bacterium involved in the degradation of plant cell

walls [16].

Source Perspective Networks
In contrast to the target perspective, a source perspective

network involves generating all possible functional interactions but

from a particular range or collection of data sets. In this case, the

goal is to constrain functional interactions so that they reflect a

source-centric view for a domain of interest, such as human gut

interactions. Moreover, it is possible to integrate target and source

perspectives by constructing a target perspective network from a

particular collection of source related data sets. This approach can

be used to find functional interactions that are simultaneously

target-centric and source-centric, such as cellulase interactions

occurring in the human gut. In the present work a human gut

microbiome [17] was used to produce two source perspective

networks.

A KEGG gut network was constructed that consisted of 153

nodes and 192 edges (Table 1). Unlike the target perspective

networks, no central hub was observed (Figure 6, Panel A). A total

of 11 modules were identified within the network (Tables S1 and

S2). The top ranked module (Figure 6, Panel B) scored lower than

either of the top ranked cellulase modules and contained a diverse

range of annotation terms (Table 2). The terms glycolysis and

pyruvate occurred frequently in the pathway annotations of this

module and are likely indicative of core metabolic activities across

the gut community. Additional terms like isoprenoid biosynthesis

and mevalonate pathway may be associated with cholesterol and

possibly the statin pathway of the host liver. In fact, recent

evidence suggests that the enteric microbiome can moderate

response to statins [18]. Moreover, the term phosphatidylcholine

biosynthesis may offer another potential link to the host liver as

phosphatidylcholine from non-microbial sources has been report-

ed to be associated with significant liver protection as part of the

silybin-phosphatidylcholine complex [19].

A TIGRFAM gut network was constructed that consisted of 543

nodes and 607 edges (Table 1). Like the KEGG network, no

central hub was observed (Figure 6, Panel C). A total of 57

modules were identified within the network (Tables S1 and S2).

The top ranked module (Figure 6, Panel D) scored slightly higher

than the top ranked KEGG module but lower than either of the

top ranked cellulase modules (Table 2). The annotation term

ribosomal protein dominated this module and often occurred in

conjunction with the term bacterial/organelle. The result was a

highly cohesive module that involved bacterial ribosomal proteins.

Like the glycolysis features of the aforementioned KEGG module,

this is potentially indicative of core metabolic activities across the

gut community.

Comparative Networks
Provided that two or more networks share the same perspective

and a common annotative basis, it is possible to perform set

theoretic operations that result in newly generated comparative

networks. In the present work a second source perspective

TIGRFAM network was generated using another human gut

microbiome from the same study [17] that was used to produce

the other source perspective networks. The TIGRFAM networks

were compared to produce two new networks, an intersection

network and a difference network.

A gut intersection network was constructed that consisted of 407

nodes and 278 edges (Table 1). This network contained a much

lower ratio of edges to nodes than the non-comparative networks

(Figure 7, Panel A). A total of 19 modules were identified within

the network (Tables S1 and S2). The top ranked module (Figure 7,

Panel B) scored the same as the top ranked TIGRFAM module

(i.e. module derived using only one gut microbiome) and was

composed of the same annotation terms (Table 2). In fact, the top

ranked intersection module was a subset with all 13 nodes

occurring in the superset of the 18 nodes that comprised the top

ranked TIGRFAM module. Compared to the TIGRFAM

module, the result was a reduced but highly cohesive module that

similarly involved bacterial ribosomal proteins.

A gut difference network was constructed that consisted of 356

nodes and 329 edges (Table 1). This network contained a higher

ratio of edges to nodes than the intersection network but was still

slightly lower than the ratio in the TIGRFAM network (Figure 7,

Panel C). A total of 20 modules were identified within the network

Table 1. Summary of Network Features.

Network Type Annotation Perspective Nodes Edges Modules

Cellulase MetaCyc Target 213 779 5

Cellulase COG Target 301 763 33

Human Gut KEGG Source 153 192 11

Human Gut TIGRFAM Source 543 607 57

Gut Intersection TIGRFAM Comparative 407 278 19

Gut Difference TIGRFAM Comparative 356 329 20

The general features of each metagenomic functional network are shown
including the type of network, the category of annotations used to construct
the network, the network perspective, the number of nodes and edges that
compose the network, and the number of predicted functional modules
contained within the network.
doi:10.1371/journal.pone.0041283.t001
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(Tables S1 and S2). The top ranked module (Figure 7, Panel D)

scored roughly the same as the top ranked TIGRFAM module

and was composed of similar annotation terms (Table 2). While

this module was also dominated by the theme of ribosomal

proteins it was however more diverse and the ribosomal proteins

terms frequently occurred in conjunction with the terms eukary-

otic and/or archaeal, rather than bacterial.

Discussion

The modules derived in this work are of particular interest

because they represent functional metamodules. This is because it

is not possible to resolve whether the activities of a single module

are accomplished by a single microbial species or if they represent

composite functionality produced by the greater microbial

community. Therefore, metamodules provide a systems perspec-

tive at the community level. In addition, these modules provide a

Figure 4. Metagenomic Cellulase Networks. The target perspective networks for cellulase functional interactions are shown where large node
diameter represents high node degree within each respective network. Panel A shows a network constructed using MetaCyc annotations with a
highly connected central hub having the annotation PWY-1001: cellulose biosynthesis. The highlighted nodes represent the top ranking module
which is enlarged in Panel B. Panel C shows a network constructed using COG annotations and features a highly connected central hub with the
annotation COG1363: cellulase M and related proteins. The highlighted nodes represent the top ranking module which is enlarged in Panel D.
doi:10.1371/journal.pone.0041283.g004
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direct characterization of functional capability and organization as

opposed to an inferred characterization on the basis of taxonomic

composition. This marks an important departure from previous

taxonomy driven approaches because they are susceptible to

effects of community functional plasticity [20,21] that can cloud

the taxonomy versus function relationship. However, this does not

exclude the incorporation of concurrent taxonomic information

that could bolster the interpretation of certain data sets. As a

result, metamodules can provide crucial functional insight for a

variety of applied pursuits.

Modules from target perspective networks have the potential to

reveal novel metabolic relationships that can subsequently assist in

the hunt for new biocatalyst candidates. This process can be

regarded as a metagenomic analog to the ‘guilt by association’

principle [22] that has been previously used to infer contextual

information at the genomic level. In the case of the presented

cellulase networks, modules that contain annotations with key-

words like unknown or uncharacterized can be used to highlight

genes of particular interest since annotation values (e.g.

COG1699) can be easily traced back to their source genes in

the raw data. This provides an expedient method to recover a

shortlist of promising genes from among a raw data set that may

contain tens of millions of otherwise indistinguishable records.

Mining candidate genes that can be subjected to more rigorous

analyses can be applied to a broad collection of interests ranging

from novel glycoside hydrolase detection for biomass degradation

[23] to prebiotic molecule discovery for human health applications

[24].

Modules from source perspective networks have the potential to

reveal how particular microbial environments orchestrate func-

tional interactions to achieve specific functional capacities and

hierarchical organization. Although gene-centric analyses have

been previously applied to metagenomic functional evaluation

[25], they lack the ability to provide a systems perspective of

functional organization. This is because gene content analyses

cannot reveal the functional interactions that are essential in

understanding how various microbial communities cooperatively

achieve their specific functional capabilities. In the case of the

Table 2. Top Ranked Functional Modules.

Source Score Nodes Edges Members

MetaCyc Cellulase
Network

14.0 14 91 Alanine biosynthesis I; Isoleucine biosynthesis I (from threonine); Isoleucine biosynthesis II;
Isoleucine biosynthesis III; Isoleucine biosynthesis IV; Isoleucine biosynthesis V; Isoleucine
degradation I; Isoleucine degradation II; Leucine biosynthesis; Leucine degradation I; Leucine
degradation III; Valine biosynthesis; Valine degradation I; Valine degradation II

COG Cellulase Network 15.0 15 105 3-polyprenyl-4-hydroxybenzoate decarboxylase; 3-polyprenyl-4-hydroxybenzoate
decarboxylase and related decarboxylases; ABC-type cobalt transport system, permease
component CbiQ and related transporters; ABC-type uncharacterized transport system,
permease component; ABC-type uncharacterized transport systems, ATPase components;
ATPase components of various ABC-type transport systems, contain duplicated ATPase;
Acetylornithine deacetylase/Succinyl-diaminopimelate desuccinylase and related deacylases;
Adenine deaminase; Amidases related to nicotinamidase; Carbon dioxide concentrating
mechanism/carboxysome shell protein; Inosine-uridine nucleoside N-ribohydrolase; Predicted
metal-dependent hydrolase; Ribulose kinase; Uncharacterized ABC-type transport system,
permease component; Uncharacterized conserved protein

KEGG Human Gut
Network

6.2 13 37 Bacitracin transport system; C5 isoprenoid biosynthesis, mevalonate pathway; Ceramide
biosynthesis; Eicosanoid biosynthesis, arachidonate = .8(S)-HETE; Gluconeogenesis,
oxaloacetate = . fructose-6P; Glycolysis (Embden-Meyerhof pathway), glucose = .pyruvate;
Glycolysis, core module involving three-carbon compounds; Indolepyruvate:ferredoxin
oxidoreductase; Non-phosphorylative Entner-Doudoroff pathway, gluconate = .

glyceraldehyde + pyruvate; Phosphatidylcholine (PC) biosynthesis, PE = .PC;
Phosphatidylethanolamine (PE) biosynthesis, ethanolamine = .PE; Pyruvate oxidation,
pyruvate = . acetyl-CoA; Semi-phosphorylative Entner-Doudoroff pathway, gluconate = .

glyceraldehyde-3P + pyruvate

TIGRFAM Human Gut
Network

8.2 18 70 30S ribosomal protein S17; 50S ribosomal protein L3, bacterial; 50S ribosomal protein L4,
bacterial/organelle; Preprotein translocase, SecY subunit; Ribosomal protein L14, bacterial/
organelle; Ribosomal protein L15, bacterial/organelle; Ribosomal protein L16, bacterial/
organelle; Ribosomal protein L18, bacterial type; Ribosomal protein L2, bacterial/organellar;
Ribosomal protein L22, bacterial type; Ribosomal protein L24, bacterial/organelle; Ribosomal
protein L29; Ribosomal protein L30, bacterial/organelle; Ribosomal protein L6, bacterial type;
Ribosomal protein S10, bacterial/organelle; Ribosomal protein S19, bacterial/organelle;
Ribosomal protein S3, bacterial type; Ribosomal protein S5, bacterial/organelle type

Human Gut Intersection
Network

8.2 13 49 30S ribosomal protein S17; 50S ribosomal protein L3, bacterial; 50S ribosomal protein L4,
bacterial/organelle; Ribosomal protein L14, bacterial/organelle; Ribosomal protein L16,
bacterial/organelle; Ribosomal protein L18, bacterial type; Ribosomal protein L2, bacterial/
organellar; Ribosomal protein L22, bacterial type; Ribosomal protein L24, bacterial/organelle;
Ribosomal protein L29; Ribosomal protein L6, bacterial type; Ribosomal protein S19, bacterial/
organelle; Ribosomal protein S3, bacterial type

Human Gut Difference
Network

7.7 8 27 50S ribosomal protein L14P; 50S ribosomal protein L30P, archaeal; Archaeal ribosomal protein
S17P; Ribosomal protein L24p/L26e, archaeal/eukaryotic; Ribosomal protein L29; Ribosomal
protein S3, eukaryotic/archaeal type; Ribosomal protein S5(archaeal type)/S2(eukaryote
cytosolic type); Translation initation factor SUI1, putative, prokaryotic

The general features of the highest scoring functional module from each network are shown including the source network, the score assigned by MINE, the number of
nodes and edges that compose the module, and the member annotations derived from the nodes. Member annotations are sorted in ascending lexicographical order
and delimited using the semicolon symbol. For all top ranked modules each member is unique.
doi:10.1371/journal.pone.0041283.t002
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presented human gut networks, it becomes possible to speculate

not only on how the gut microbiome interacts among its

constituents but also on how it exerts a collective effect on host

metabolic activities. Currently this is a topic of tremendous interest

and many research ventures could be served by analysis and

interpretation of metamodules recovered from source perspective

networks. For example, metamodules from various human

microbiomes could be compared to functional modules from

disease related functional linkage networks [26] in order to provide

complementary analyses.

The motivation for comparative networks follows logically from

the utility of source perspective networks since modules from

comparative networks can expose commonalities and differences

in functional configurations between different data sources. Such

comparisons can be used to contrast vastly different microbial

environments or to find mutual cores within closely related

habitats, such as the human gut of various individuals. In addition,

the approach taken in the current work differs from past studies

involving comparative metagenomics because it is not affected by

the previously discussed limitations of taxonomy based methods

and it provides information beyond the previously mentioned

gene-centric analyses. In the case of the presented comparative gut

networks, it is possible to see that essential core modules could be

developed for a variety of human microbiomes by deriving

respective intersection networks from sets of multiple participants.

The ability to directly contrast and compare metagenomic

functional repertoires can offer tremendous utility to existing

comparative research areas such as obese versus lean gut

microbiomes [27] and control versus autistic gut microbiomes

[28].

The implementation presented here was based on several

simplifications and assumptions that could be addressed by future

works. The use of transitive functional interactions favoured the

formation of complete subgraphs (i.e. a component where each

node has an edge to every other node). Although this was done to

maximize functional information, it could also have contributed to

an inflation of network edges that can bias module-finding

algorithms. Other implementations should consider the prospect

of constrained transitivity as a comparison. Similarly, the

confidence thresholds for defining operons should be further

tested in a metagenomic context and this could be performed in

conjunction with limits for transitivity in order to characterize the

interaction of these two essential factors. Further still, the operon

reference data obtained from RegulonDB [29] represents knowl-

edge derived from a classic model organism. Given that

metagenomes offer access to the uncultured microbial majority,

the applicability of such reference data remains to be established.

In general, an improved understanding of the properties of

metagenomic operons (e.g. size, composition, frequency, etc.)

would benefit metagenomic annotation networks and related

interests.

Methods

Metagenomic genes were parsed from downloaded raw data

and used in a two-phase protocol consisting of network prediction

followed by network translation. All operations were computa-

tionally implemented in Java and run on a Gateway NV59 laptop

using an Intel Core i3-330 M processor.

Data Preparation
The raw data consisted of the complete set of public

metagenomes available from the Integrated Microbial Genomes

with Microbiome samples (IMG/M) metagenomics database [13]

as of late August 2011. This included 224 data sets comprised of

40,189,394 total genes, distributed across 40,325,419 scaffolds.

The simulated data sets (simLC, simMC, simHC) were removed,

as well as any datasets that did not contain gene coordinate

information (DRU, VLU, Yorkshire Pig Fecal Sample 266,

Yorkshire Pig Fecal Sample 267), since these coordinates are

required for the network prediction phase (see Network Predic-

tion). The remaining 217 datasets included 39,660,386 total genes,

from which 207,097 rRNA genes were excluded, leaving an

aggregate working data set of 39,453,289 protein-coding genes.

We selected the IMG/M as data source for three reasons: (i) it

offered a very large amount of data from a diverse range of

environments (Figure 1); (ii) virtually all of the annotated genes

(.99.5%) included information about their position and strand

within the scaffolds in which they occurred; (iii) there was a high

proportion of sufficiently assembled scaffolds such that multiple

genes could occur within a single scaffold. This is in stark contrast

to repositories that primarily offer data from short reads that

frequently lack a single gene, let alone multiple genes. Overall,

these factors are indicative of a current dichotomy in sequence

databases: submitter-biased, such as MG-RAST [30], which cater

to needs of authors that require a public depository of their data;

versus query-biased, such as the IMG/M, which are focused on

offering the expedient retrieval of data.

Network Prediction
Operons were predicted in scaffolds containing two or more

adjacent genes in the same strand (Figure 2, Panel A) using a

Figure 5. Thematic Set Diagram. The annotative themes for the top
ranked MetaCyc module are depicted where the numeric values
indicate the number of annotations belonging to a thematic category.
Specifically, amino acid categories are represented vertically and
metabolic categories are represented horizontally. Note, the vertical
themes are encapsulatory while the horizontal themes are mutually
exclusive. A variety of functional perspectives can be simultaneously
visualized by way of the interacting and overlapping thematic sets.
doi:10.1371/journal.pone.0041283.g005
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previously published method based on intergenic distances [D =

gene2_start 2 (gene1_end +1)], where the likelihood for two genes to

be in the same operon given the distance between them is assigned

based on the ratio of known genes in operons to known genes in

different transcription units found at such distance [31,32,33]. A

minimum threshold of confidence was selected that is equivalent to

a positive predictive value of 0.85 (meaning that 85% of the

predictions are expected to consist of true positives), as evaluated

against known operons of Escherichia coli K12 found in RegulonDB

[29]. Next, functional interactions were defined in a pairwise

manner for all members of a predicted operon. For example, an

operon with the consecutive gene members a, b, and c would yield

predicted functional interactions for the adjacent pairs ab and bc,

plus an additional transitive functional interaction, namely ac. In

the case of target perspective networks (see Results) operons were

filtered according to the presence or absence of a target annotation

by requiring a minimum number of member genes to contain a

specific keyword descriptor (Figure 2, Panel B). The effects of

target stringency (i.e. the size of the minimum number) were also

tested (see Results).

Figure 6. Human Gut Networks. The source perspective networks for human gut functional interactions are shown where large node diameter
represents high node degree within each respective network. Panel A shows a network constructed using KEGG annotations where the highlighted
nodes represent the top ranking module which is enlarged in Panel B. Panel C shows a network constructed using TIGRFAM annotations where the
highlighted nodes represent the top ranking module which is enlarged in Panel D.
doi:10.1371/journal.pone.0041283.g006
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Network Translation
Each gene in a given operon was mined for the following types

of functional annotations: MetaCyc pathways [34], COGs [35],

KEGG pathways [36], and TIGRFAMs [37]. A gene may have

multiple annotation types and also have multiple values for a given

type (Figure 2, Panel C). For each operon, the obtained functional

annotations were used to infer functional interactions for

annotations having the same type but different values. Translated

interactions were inferred directly for immediately adjacent gene

pairs but also transitively for downstream members within the

same operon (Figure 2, Panel D). Note that the use of transitive

translations is necessarily a reflection of the transitivity imple-

mented in the network prediction phase.

The interactions were sorted by annotation type in order to

derive a collection of discrete annotation networks for any given

data source where each network had a particular annotative basis,

such as MetaCyc or COG. This was possible because the

translation of interacting genes into interacting annotations

Figure 7. Comparative Gut Networks. The comparative networks for human gut functional interactions are shown where large node diameter
represents high node degree within each respective network. Specifically, two networks were constructed using TIGRFAM annotations and compared
for mutual versus exclusive nodes. Panel A shows the intersection of the networks where the highlighted nodes represent the top ranking module
which is enlarged in Panel B. Panel C shows the difference of the networks where the highlighted nodes represent the top ranking module which is
enlarged in Panel D.
doi:10.1371/journal.pone.0041283.g007
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generated a unique set of nodes and edges with respect to each of

the annotative bases. Moreover, specific annotation values (e.g.

COG1363) were considered to be synonymous with their textual

descriptors (e.g. cellulase M and related proteins) thereby

providing a means for the conversion of nodes into a more

verbose form. We note that it would have been possible to use the

descriptors that were already available in the source data, rather

than using the categorized annotations. The raw descriptors were

not used in order to contrast the differences between specific

annotative bases and also to avoid inflation caused by the

redundant duplication of synonymous descriptors that varied only

in terms of minor formatting features (i.e. lexicographical

redundancy). Moreover, using specific categorized annotations

produced connections between otherwise disjoint subgraphs

thereby yielding a more connected network. However, future

works may utilize the raw descriptors if the goal is to create a single

global network of annotation linkages, regardless of annotation

category.

Conclusion
Metagenomic annotation networks offer a novel taxonomy-free

approach for understanding the functional capacity and hierar-

chical organization of integrated microbial communities. In

particular, these networks can be analyzed for functional

metamodules that subsequently provide a systems perspective at

the microbial community level. Modules from target perspective

networks can be used to infer interactions for a given gene or

protein of interest. In turn, these interactions can be instrumental

in revealing novel metabolic relationships that can subsequently

assist in the hunt for new biocatalyst candidates. Modules from

source perspective networks reveal how particular microbial

environments orchestrate functional interactions to achieve

specific functional capacities and hierarchical organization. This

offers a mechanism of functional characterization that goes

beyond gene-centric analyses. Modules from comparative net-

works can expose commonalities and differences between func-

tional configurations from different data sources. These compar-

isons can be used to contrast vastly different microbial

environments or to find mutual cores within closely related

habitats, such as the human gut of various individuals. Comparing

the functional repertoire of human microbiomes will be especially

informative for future works of medical interest.

Supporting Information

Table S1 Functional keys of genes in clusters analyzed in this

work.

(XLS)

Table S2 Functional annotations for clusters analyzed in this

work.

(XLS)
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