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Background: Degenerative cervical myelopathy (DCM), also known as cervical

spondylotic myelopathy is the leading cause of spinal cord compression in adults.

The mainstay of treatment is surgical decompression, which leads to partial recovery

of symptoms, however, long term prognosis of the condition remains poor. Despite

advances in treatment methods, the underlying pathobiology is not well-known. A better

understanding of the disease is therefore required for the development of treatments to

improve outcomes following surgery.

Objective: To systematically evaluate the pathophysiology of DCM and the mechanism

underlying recovery following decompression.

Methods: A total of 13,808 published articles were identified in our systematic search of

electronic databases (PUBMED, WEB OF SCIENCE). A total of 51 studies investigating

the secondary injury mechanisms of DCM or physiology of recovery in animal models of

disease underwent comprehensive review.

Results: Forty-seven studies addressed the pathophysiology of DCM. Majority of the

studies demonstrated evidence of neuronal loss following spinal cord compression.

A number of studies provided further details of structural changes in neurons

such as myelin damage and axon degeneration. The mechanisms of injury to cells

included direct apoptosis and increased inflammation. Only four papers investigated

the pathobiological changes that occur in spinal cords following decompression. One

study demonstrated evidence of axonal plasticity following decompressive surgery.
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Another study demonstrated ischaemic-reperfusion injury following decompression,

however this phenomenon was worse when decompression was delayed.

Conclusions: In preclinical studies, the pathophysiology of DCM has been poorly

studied and a number of questions remain unanswered. The physiological changes

seen in the decompressed spinal cord has not been widely investigated and it is

paramount that researchers investigate the decompressed spinal cord further to enable

the development of therapeutic tools, to enhance recovery following surgery.

Keywords: neuronal loss, apoptosis, pathogenesis, spine, degeneration

INTRODUCTION

Degenerative cervical myelopathy (DCM), previously known
as cervical spondylotic myelopathy (CSM) is a degenerative
condition of the spine leading to mechanical compression of
the spinal cord. Despite the prevalence of this condition, the
pathogenesis underlying mechanical stress induced injury is
poorly understood. Interestingly, to complicate matters further,
the degree of compression of the spinal cord is not related
to the severity of cord compression (Boden et al., 1990; Lebl
et al., 2011). DCM can occur due to both static and dynamic
stressors. The former is related to stenosis of the developmental
canal, intervertebral disc bulging, and hypertrophy of the
ligamentum flavum. Dynamic stressors include invagination of
the ligamentum flavum (Nishida et al., 2012). Histopathological
analysis of DCM suggests that the disease is mainly confined to
the white matter tracts with evidence of wallerian degeneration
of motor axons in the lateral corticospinal tract (McMinn,
1998), leading to clinical symptoms such as spastic gait. Patients
who suffer with symptoms of poor sensation, proprioception
defects or sphincter disturbance typically have degeneration
of the central gray matter and posterior column (Lunsford
et al., 1980). The underlying mechanism of injury includes cell
death, increased inflammation and myelin damage. However,
the exact pathophysiological mechanisms of DCM are not
fully understood, thereby limiting our ability to develop
therapeutics that can be used to improve prognosis. Most patients
with DCM are treated with surgery, which can halt disease
progression. However, many patients relapse and the long term
outcomes are poor. In this review, we discuss the findings
of our systematic analysis of the available literature to enable
us to understand the pathobiology of this condition during
compression and also the cellular and structural changes that take
place following decompression.

OBJECTIVES

To systematically review the literature on the pathophysiology
of DCM and physiology of recovery following
surgical decompression.

Research questions:
What is the pathophysiology of DCM?
What are the physiological and pathological changes
following decompression?

METHODS

An electronic search of the literature was performed by
two reviewers (F.A and X.Y) to identify all studies, on the
pathophysiology of DCM.

The MEDLINE (January 1955 to February 2019) AND Web
Of Science (January 1900 to December 2019) databases were
searched by using a sensitive search strategy (Leenaars et al.,
2012) that combined medical subject headings and terms with
free text words in Ovid; these terms were the following:

[(“cervical spondylotic myelopathy” OR “cervical
myelopathy” OR “spinal cord compression” OR “spinal
cord decompression” OR “degenerative cervical myelopathy”)]
AND (“pathogenesis” OR “pathology” OR “pathobiology” OR
“biology” OR “inflammation” OR “apoptosis” OR “ischemia” OR
“demyelination” OR “axon loss”).

Two reviewers (F.A and X.Y) independently assessed the titles
and key words of all eligible citations to determine if the studies
met our inclusion criteria. If the content of a study was not
obvious from the title and key words, the abstract was retrieved
and evaluated by both reviewers for eligibility. In the second step,
abstracts of articles that were eligible for inclusion in the study
were reviewed independently.We also screened the reference lists
of the included papers for further studies. Finally, the original
studies of the selected articles were evaluated independently
(F.A and X.Y). At any stage, disagreements were discussed and
resolved in a consensus meeting with the senior author before
the next step could be performed.

Inclusion Criteria (See Table 1)
This systematic review includes papers, which investigated the
pathophysiology of DCM in pre-clinical models. Specifically,
we included studies, which reported on the cellular and the
mechanisms of injury seen in DCM. We included studies
involving both in vitromodels and in vivomodels.

Excluded were studies, which looked at acute spinal cord
injury or compression, reviews, and spinal cord injuries induced
at levels other than the cervical region. We also excluded single
case reports and conference proceedings. Articles written in
languages other than English were excluded, however we did not
restrict our search to any particular geographical region.

Data Extraction
Data extraction and quality assessment was performed
independently by the two investigators using “The Animals in
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TABLE 1 | Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

English language Human studies

Experimental pre-clinical animal in vitro

models of chronic spinal cord compression

Acute spinal cord

compression models

Experimental pre-clinical animal in vivo

models of chronic spinal cord compression

Lesions induced below

the 7th cervical vertebra

Studies investigating the pathogenesis of

degenerative cervical myelopathy

Reviews

Studies investigating the physiology of

recovery following decompression of

degenerative cervical myelopathy

Conference proceedings

Research: Reporting in vivo Experiments (ARRIVE)” Guidelines.
The design and methodology of individual studies were extracted
including the type of study, sample size, experimental groups,
animal housing, and length of follow-up. Species of animal
as well as age, strain, weight, sex, and genetic modification
factors were extracted. These results were entered into an
Excel spreadsheet and studies were assessed for heterogeneity
and quality.

Assessment of Risk of Bias and Study
Quality
Risk of bias was assessed by two authors. Discrepancies between
authors were resolved by discussion with the senior author (MK)
until consensus was achieved. The Systematic Review Center for
Laboratory animal Experimentation (SYRCLE) risk of bias tool,
which includes domains for selection bias (sequence generation,
baseline characteristics, allocation concealment), performance
bias (random housing and blinding), detection bias (random
outcome assessment and blinding), attrition bias, reporting bias,
and other biases was used. Studies were subsequently graded as
“low,” “moderate,” or “high” according to quality. This grading
method was designed by the authors to provide an overall quality
rating following an assessment of the overall methodology of the
study. Studies were graded as of “high” quality, when two or
more methods were used to cross validate any findings and thus
increasing the confidence that the stated conclusions of the paper
weremore likely to be a true effect. If a study was conducted using
a robust methodology but not appropriately quantified or cross
validated, it was downgraded to “moderate.” Studies were further
downgraded to “low” if there were significant and unexplained
variability in results or conclusions were made using simple
observational methods without any cross-validation. There is a
considerable amount of subjectivity using this method and thus
any differing conclusions made by the primary authors were
discussed with the senior author to help achieve a consensus
regarding the quality of the paper.

RESULTS

For our research questions, we included 51 studies in our
analysis using our search strategy (Figure 1). Our initial search
produced 13,808 possible publications for review for these three
key questions. After title and abstract review, we excluded 13,700

publications, the majority of which did not discuss DCM or were
review studies. We found 15 additional publications from the
references in-text, giving a total of 108 publications for full-text
review. After full-text review, 57 were excluded for the following
reasons: human studies (n = 8), compression in thoracic level
(n = 12), compression in lumbar region (n = 1), not in English
language (n = 4), paper did not investigate the pathophysiology
of DCM or physiology of recovery (n = 32). Fifty-one studies
were subsequently included in the quantitative analysis. The full
evidence summary for these included studies can be found in
Tables S1–S3. We used our grading method grade the quality of
evidence found (Table 2).

DISCUSSION

Pathophysiology of DCM
Fifty-one studies addressed the pathophysiology of DCM
(Table 2; Tables S1, S2; Figure 2) or physiological changes
following decompression (Table 2; Table S3; Figures 3, 4). The
most common mechanisms involved in the pathophysiology
of compression include cell apoptosis, vascular changes,
inflammatory responses, axon degeneration and myelin changes
(Figure 2). Fourteen papers studied the extrinsic apoptosis
pathway. Fourteen papers studied the role of inflammation,
of which 10 papers explicitly assessed the microglial response
following chronic cord compression. Eight groups studied the
vascular changes seen following chronic compression of the
spinal cord. Sixteen assessed myelin changes after chronic
compression injury. Ten studies investigated axon degeneration
in DCM pathogenesis. Twenty-one papers investigated the

compressive effects on neurons. Seven papers investigated
presence of astrogliosis in DCM. Six studies demonstrated
loss of oligodendrocytes following chronic cord compression.
Four papers investigated the physiological changes following
decompressive surgery (Figure 3).

Structural Changes
Structural damage in pre-clinical DCM models has not been
fully investigated. A number of histological studies describe
structural changes in the compressed spinal cord, which include
vacuolar degeneration (Gooding et al., 1975; Al-mefty et al., 1993;
Klironomos et al., 2011; Long et al., 2014; Jiang et al., 2016),
interstitial oedema (Al-mefty et al., 1993), mitochondrial oedema
(Long et al., 2013), cytoplasmic reduction (Aung et al., 2013)
and cavity formation. Novel imaging techniques such as diffusion
tensor imaging (DTI) with evidence of decreased diffusivity and
fractional anisotropy at the compressed site suggesting reduced
microstructural integrity (Yu et al., 2011).

Cellular Changes

Neuron loss
It has been well-documented in post-mortem studies that spinal
cord compression leads to neuronal and axonal degeneration
in the anterior horn (Yu et al., 2011), with evidence of loss of
interneurons (Ogino et al., 1983) and lower motor (Ito et al.,
1996). Animal studies also demonstrate loss of neurons in the
gray matter of the ventral horns (Kanchiku et al., 2001; Kim
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FIGURE 1 | PRISMA Flow diagram.

et al., 2004; Klironomos et al., 2011; Dhillon et al., 2016; Jiang
et al., 2016; Yoshizumi et al., 2016). Compression occupation
rate is thought to be an important factor in neuronal survival,
with a level >30% reducing levels of cholinergic neurons (Yu
et al., 2011) and large motor neurons (Yato et al., 1997). In
contrast to acute spinal cord injury, DCM patients often have
preserved respiratory function. In one elegant study, it was
shown that an excitatory neural network in the mid-cervical
region is responsible for maintenance of breathing in DCM
providing insight into how excitatory interneurons could be used
to modulate respiratory function in acute spinal cord injury
(Satkunendrarajah et al., 2018). Neuron loss can occur due
to a number of factors, including apoptosis, inflammation or
ischemia. Neuron loss appears to be mediated by various innate
immune responses with evidence of increased levels of pro-
inflammatory cytokines and macrophages (Al-mefty et al., 1993).
The role of the adaptive immune system, if any, has not been
investigated in this model. Moreover, the exact interplay between
the different modes of injury is also not fully understood.

Axon degeneration
Chronic cord progression leads to axonal destruction at the site
of compression (Kubota et al., 2011) and at sites cranial and

caudal to the compression site (Prange et al., 2012). Neuroaxonal
changes in compressed cords can be studied by immunoreactivity
(IR) for amyloid precursor protein (APP) and phosphorylated
neurofilaments (SMI312, SMI31, SMI32). Chronic compression
is associated with increased APP at the compressed site
(Dhillon et al., 2016). APP is transported by axoplasmic flow
and accumulates when there are cytoskeletal defects (Dhillon
et al., 2016). However, the mechanism underlying this is
not well-known.

There is evidence of both retrograde degeneration and
Wallerian degeneration of axons (Karadimas et al., 2013b) and
this leads to irreversible damage to structural components of
axons such as neurofilaments (Wang et al., 2012). Phosphorylated
neurofilaments such as SMI-31 are found in normal axons and
can therefore be used as a marker of healthy axons. In chronically
compressed cords, there is evidence of a reduction in SMI-
31–positive fibers (Takano et al., 2013). There is evidence of
widespread axonal damage in the lateral and posterior funiculi
(Kanchiku et al., 2001) and slight axonal damage in the anterior
funiculi of compressed cords in rabbits (Ozawa et al., 2004).
Histological analysis reveals evidence of Wallerian degeneration
in the lateral funiculi at sites caudal to the compressed region
in sheep (Penny et al., 2007). Early studies in dogs show
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TABLE 2 | Summary of pathophysiological changes following chronic spinal cord compression.

Findings Strength of evidence References

Cell response

Neuron loss at the epicenter of compression Moderate- poor

Most studies did not cross validate findings. However, a

number of studies used two markers for a single

approach e.g., IH.

Yamaguchi, 1980; Shinomiya et al., 1992; Baba

et al., 1996; Yato et al., 1997; Uchida et al., 2002,

2008; Yamaura et al., 2002; Mallik and Weir, 2005;

Zhao et al., 2005; Kadota et al., 2012; Lee et al.,

2012; Aung et al., 2013; Hirai et al., 2013;

Karadimas et al., 2013a, 2015; Bathina and Das,

2015; Cheng et al., 2015; Dhillon et al., 2016;

Yoshizumi et al., 2016

Oligodendrocyte loss Poor

Most studies used a single approach with one marker ±

no quantification

Liu et al., 2000; Zhao et al., 2005; Takenouchi et al.,

2008; Hu et al., 2011; Moon et al., 2014

Astrogliosis at compressed site or distal to

compressed site

Poor

Single approach with no cross validation

One marker of astrogliosis

Hukuda and Wilson, 1972; Ozawa et al., 2004; Yu

et al., 2009, 2011; Moon et al., 2014; Dhillon et al.,

2016

Structural changes

Vascular insufficiency in spinal arteries Moderate

Limitations: Cross-validation with at least two proven

methods of vascular insufficiency was not performed in

the studies.

Hukuda and Wilson, 1972; Uchida et al., 2003;

Cheung et al., 2009; Kubota et al., 2011; Prange

et al., 2012

Evidence of myelin destruction or

“demyelination” seen in histology

Poor

Unclear whether this reflects axonal degeneration or

primary demyelination. Multiple non-specific stainings

were used.

Quantification not performed

Hukuda and Wilson, 1972; Al-mefty et al., 1993;

Baba et al., 1996; Kanchiku et al., 2001; Lu et al.,

2001; Ozawa et al., 2004; Xu et al., 2006; Yu et al.,

2009; Klironomos et al., 2011; Kadota et al., 2012;

Prange et al., 2012; Karadimas et al., 2013a, 2015;

Long et al., 2014; Jiang et al., 2016

“Axon degeneration” or “injury” using IH, DTI,

histology

“Reduction of axon regeneration and number

of normal axons” using IH (RT-97 and SMI-31)

and DTI

Poor

Most studies did not cross validate findings and did not

perform quantification

Kanchiku et al., 2001; Yamaura et al., 2002; Zhao

et al., 2005; Hu et al., 2011; Kadota et al., 2012;

Long et al., 2013; Karadimas et al., 2015; Dhillon

et al., 2016; Jiang et al., 2016

Mechanisms of injury

Increased apoptosis Moderate

Three studies cross validated findings with a second

approach and two makers and provided strong

evidence. Five studies used two approaches but only

one maker. Five studies used a single approach and one

marker and provided poor evidence for apoptosis.

Gooding et al., 1975; Baba et al., 1996; Liu et al.,

2000; Zhao et al., 2005; Takenouchi et al., 2008; Yu

et al., 2009, 2011; Kurokawa et al., 2011; Dhillon

et al., 2016; Yoshizumi et al., 2016

Increased inflammation

Upregulation of

inflammatory pathways/cytokines

Poor

Single approach to confirm findings with one marker.

Moderate – low

There was no cross validation of results looking at e.g.,

BDNF/NT3. Functional tests in animals where

inflammatory pathways were being investigated

were lacking.

Baba et al., 1996; Yato et al., 1997; Yamaura et al.,

2002; Ozawa et al., 2004; Penny et al., 2007; Uchida

et al., 2008; Kubota et al., 2011; Kurokawa et al.,

2011; Yu et al., 2011; Hirai et al., 2013; Moon et al.,

2014; Dhillon et al., 2016

slight degrees of demyelination in the ventral funiculi and
the dorsal part of the lateral funiculi (Harkey et al., 1995).
To further assess neuronal damage, one study investigated the
serotonergic (5-HT) axons of the descending raphespinal tract
in the spinal cord and found that compression was associated
with a significant loss of 5HT- positive axons at the center of
compression (Dhillon et al., 2016).

Oligodendrocyte loss and demyelination
Oligodendrocytes are supporting cells of the central nervous
system (CNS) involved in myelination of axons. Primary

loss of oligodendrocytes therefore leads to denuded axons,
which display impaired axon conductance (Franklin and
Ffrench-Constant, 2008). Six studies demonstrated apoptosis of

oligodendrocytes in chronic compressionmodels (Liu et al., 2000;
Zhao et al., 2005; Takenouchi et al., 2008; Inukai et al., 2009;
Uchida et al., 2012; Moon et al., 2014). This was predominantly
found in the twy (tiptoe walking—Yoshimura) mouse model, an
autosomal recessive mutant model which leads to calcification of
the C1-C2 region and compression of the spinal cord. However,
these studies typically only confirmed oligodendrocyte loss
using one technique with little evidence of quantitative analysis.
Many studies used techniques such as Luxol Fast Blue (LFB)
staining to demonstrate myelin sheath changes, however electron
microscopy, considered the gold standard in demonstrating
evidence of nude axons and thereby demyelination was not
performed (Franklin and Ffrench-Constant, 2008). A number
of studies cross-validated their data using SEP by measuring
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FIGURE 2 | Pathological changes found in the chronically compressed cervical spinal cord.

FIGURE 3 | Pathological changes in the decompressed spinal cord.
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FIGURE 4 | Pathological changes following decompression.

the amplitude giving useful information about axon density and
latency, which is prolonged following demyelination (Mallik and
Weir, 2005), however these should be performed in addition to
electron microscopy.

Axonal degeneration leads to secondary demyelination, with
consequential loss of oligodendrocytes. More rigorous attempts
are mandated in order to differentiate between primary and
secondary demyelination in DCMmodels.

Astrogliosis
Astrogliosis is a reactive process that occurs in response to
damage to nearby structures such as neurons. It can be typically
demonstrated using immunohistochemistry and the presence of
glial fibrillary acidic protein (GFAP). Chronically compressed
cords appear to be associated with increased expression of
GFAP in a number of different models (Hukuda and Wilson,
1972; Harkey et al., 1995; Yu et al., 2009; Moon et al., 2014).
However, one study found evidence of astrogliosis not in the
compressed region, but in areas proximal and distal to the
maximal compressed site (Long et al., 2014). This may occur
to protect intact regions of the cord from further damage and
separate the damaged region from normal regions. The exact
timing when the studies were performed following compression
may also have an impact on the different results obtained. This
is important to determine as prolonged astrogliosis may have
detrimental effects. An understanding of molecular aberrations
underlying astrogliosis has also not been investigated fully in
these models. Further studies are required to quantify the loss
of astrocytes with multiples markers and at different time points
following compression.

Mechanisms of Injury

Apoptosis
Apoptosis is a form of programmed cell death found in both
acute spinal cord injury and in chronically compressed spinal
cords. It is possible that the mechanical stress associated with
chronic cord compression directly leads to activation of pro-
apoptotic factors, and this has been hypothesized in the case
of traumatic brain injury (Ng and Lee, 2019). Alternatively,
apoptosis may occur as a consequence of other destructive
processes, such as inflammation or hypoxic damage. Apoptosis
can be mediated by various cell signaling processes involving cell
surface death receptors such as those from the tumor necrosis
factor receptor (TNFR) family (Inukai et al., 2009; Uchida et al.,
2012; Takano et al., 2014). Apoptosis can also be activated by
intrinsic pathways initiated by mitochondrial damage and are
characterized by the presence of apoptotic proteins such as Bcl-2
(Yu et al., 2011). Our analysis reveals an important role of the
extrinsic pathway in apoptosis of cells in DCM. A number of
studies have shown evidence of increased apoptosis mediated by
the Fas pathway (Moon et al., 2014) activating caspase (Yu et al.,
2011) which can be used as a therapeutic target. However, a time
course analysis of apoptosis appears to be lacking in the current
studies. Furthermore, other mediators of cellular apoptosis such
as oxidants have also not been investigated.

Vascular changes
Changes in vascularity is commonly seen following acute spinal
cord injuries (Figley et al., 2014) and appears to play a significant
role in DCM. Microvascular swelling has been described
following compression (Yamaguchi, 1980; Jiang et al., 2016),
and proliferation of arterioles has also been described in one
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study (Al-mefty et al., 1993). Venous thickening and sinusoidal
swelling has been described in three papers (Penny et al., 2007;
Wang et al., 2012; Yamamoto et al., 2014). Vascular dysfunction
was demonstrated in both the early studies performed in dogs
and in more recent studies. Damage to the vasculature can
lead to myelin damage (Gooding et al., 1975), glial fibrosis and
necrosis (Ng and Lee, 2019). Early studies however were limited
by small samples and limited quantitative analysis. Modern
imaging techniques have attempted to visualize the exact vascular
damage that occurs in DCM. Chronic cord compression can
lead to damage to anterior spinal artery (ASA) (Long et al.,
2014; Cheng et al., 2015) and ARA (Kurokawa et al., 2011).
Vascular dysfunction appears to be associated with reduced
blood flow to the spinal cord (Franklin and Ffrench-Constant,
2008; Kurokawa et al., 2011) and this can be demonstrated
with various methods such as the microsphere technique which
allows blood flowmeasurement using a fluorescencemicrosphere
and avoids directly manipulating the spinal cord. However,
injection of the microsphere in small animals can itself cause
haemodynamic abnormalities (Prinzen and Bassingthwaighte,
2000). Other methods include the hydrogen clearance method,
used by Al-mefty et al. (1993) and Harkey et al. (1995). This
is an adaptation of the Fick principle where blood is linearly
related to the local hydrogen concentration. Hydrogen clearance
can be detected in any tissue where an electrode can be placed.
Unlike microsphere techniques it allows repeated measurements
of blood flow. However, the hydrogen clearance method often
manipulates the spinal cord, which can affect the blood flow
measurement. If there is a disruption of the gray matter/white
matter interface after compression, this method cannot be used
to determine blood flow in the two areas (Stalberg et al., 1998).

Hypoxia
Hypoxic changes in DCM have not been widely investigated.
Tanabe et al. (2011), demonstrated increase in HIF-1α, a
transcriptional regulator of oxygen homeostasis in the Twy/Twy
model. However, their findings were not substantiated by
investigation of other hypoxia induced factors, angiogenesis
markers or the presence of reactive oxygen species. Furthermore,
HIF-1α activates transcription of genes encoding various other
factors including vascular endothelial growth factor (VEGF)
(Ramakrishnan et al., 2014) and this needs to be investigated in
relation to hypoxia in the DCMmodel.

Inflammation
A number of studies have shown evidence of increased
inflammatory cells such as microglia in DCM (Moon et al., 2014),
which increased with worsening cord compression (Hirai et al.,
2013). Activated microglia in the form of the pro-inflammatory
cells expressing markers such as TNF-α and CD86, are present
in chronically compressed spinal cords (Ng and Lee, 2019). The
role of the anti-inflammatory microglia is less clear with some
studies showing no significant differences between control and
compressed cords (Takano et al., 2013), whilst other studies
showing these are present (Hirai et al., 2013) perhaps as a
mechanism of recovery. Against, the time course when the
activated microglia appear are not fully clear and this may help
us determine the precise role of microglia activation patterns.
Various other cytokines are also increased in compressed cords

such as Th1 cytokines (Hirai et al., 2013) and increased TNFR1,
CD95, and p75NTR due to increased chemokine signals (Takano
et al., 2013). Inflammatory signaling pathways such as the NF-κB
pathway is also upregulated in DCM (Karadimas et al., 2013a).

Changes in the extracellular matrix
The extracellular matrix (ECM) surrounding neurons in the form
of perineuronal nets is composed of hyaluronan, proteoglycans
and tenascin. Hyaluronan is released into the extracellular space
and subsequently localizes around astrocytes, oligodendrocytes
and neuron cell bodies (Eggli et al., 1992; Struve et al., 2005). The
Hyaluronan tetrasaccharide (HA4), (hyaluronan degradation
product), is known to have regenerative properties (Torigoe et al.,
2011), and in a rat model of DCM appears to increase following
3 weeks of compression (Wang et al., 2012). This is associated
with increased cellular inhibitor of apoptosis protein-2 (cIAP2) as
well as a gradual reduction in apoptosis. There was also increased
BDNF and VEGF expression at 4 weeks post-compression
compared with the control group likely induced by astrocytes
to aid in repair of neurons and oligodendrocytes. These results
however have not been fully replicated in other studies, with
some showing evidence of reduced BDNF levels in compressed
cords (Uchida et al., 2003). Matrix metalloproteinases (MMP)
are associated with dysfunction of the blood-brain barrier and
increased levels ofMMP inDCMhas been described in one paper
(Karadimas et al., 2013a).

Mechanisms of Recovery Following Decompression
Surgical decompression of the compressed spinal cord leads
to partial recovery in patients and preclinical models of
DCM. However, the mechanism underlying this recovery has
seldom been investigated. Four studies have investigated the
decompressed state of DCM (Harkey et al., 1995; Karadimas et al.,
2015; Dhillon et al., 2016). Harkey et al. (1995) experimented on
12 dogs, which were compressed with an anterior screw device,
followed by decompression of six dogs. The decompressed
group demonstrated neurological improvement; however, there
were no significant differences in SEP amplitudes and latencies,
spinal cord blood flow, or MRI imaging characteristics between
the compressed and decompressed groups. Histopathology was
carried out on spinal cord tissue from the decompressed
group, and this showed variable changes including necrosis and
cavitation. Despite the use of higher order species, there were
several limitations of the study such as the lack of quantitative
data. Furthermore, majority of the data is descriptive and there
no evidence of any systematic approaches to the study.

Dhillon et al. (2016) performed a study on 15 rats, which
were randomly and equally allocated to control, compressed and
decompressed groups. Evidence of axonal plasticity was observed
following decompression. In the compressed group, increased
levels of axon injury was observed using themarker APP, together
with decreased numbers of serotonergic axons. Following
decompression, there was increased GAP-43, which indicates
increased axon growth rates, and increased 5HT+ axons
and 5HT+/synaptophysin were also demonstrated, providing
evidence for axonal sprouting.

Karadimas et al. (2015) demonstrated evidence of ischemia-
reperfusion injury post decompression in a rat model, and
suggested that this could be one of the reasons why some patients
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don’t fully recover following decompression surgery. They
demonstrated that decompression-induced ischemia-reperfusion
injury however could be prevented by the administration of
Riluzole and this can lead to better long term neurological
outcomes compared to the group that received decompression
surgery alone.

Vidal et al. (2017) investigated the consequences of delayed
surgical management in DCM. Decompression is associated
with various changes such as reduced microglia activation and
reduced astrogliosis. However, when decompression is delayed,
there is increased astrogliosis, microglia activation, and reduced
spinal blood cord flow. Decompression itself is associated with
ischemia reperfusion and elevation of inflammatory cytokines,
however if decompression is delayed, this is prolonged and leads
to worse neurological outcome. This highlights the importance of
a therapeutic window in DCM and also the need to operate early
with or without the use of any medical adjuncts.

Signaling Pathways and Therapeutic Strategies

Explored for Promoting Recovery in DCM
Therapeutic signaling pathways which have been used to
promote recovery in DCM include the brain derived neutrophic
factor (BDNF) signaling pathway (Uchida et al., 2003; Xu
et al., 2006; Hirai et al., 2013), Neurotrophin-3 (NT-3) pathway
(Uchida et al., 1998, 2008; Hirai et al., 2013), Nuclear
factor–[kappa] B (NF-[kappa]B) pathway (Karadimas et al.,
2013a), Mitogen Activated Protein Kinase (MAPK) (Takenouchi
et al., 2008) and phosphodiesterase (PDE)/cylic AMP pathway
(Yamamoto et al., 2014). Other therapeutic agents used include
prostaglandins (Kurokawa et al., 2011), granulocyte-colony
stimulating factor (G-CSF) (Yoshizumi et al., 2016) and Riluzole
(Karadimas et al., 2013a).

Brain-derived neurotrophic factor (BDNF)
BDNF is a member of the neurotrophin family and is important
for survival of neurons (Bathina and Das, 2015). BDNF signaling
is elicited after it binds to TrkB receptor. Chronic cord
compression appears to reduce BDNF at the compressed site
in the Twy/Twy mice model (Uchida et al., 2003). There is
an increase at rostral and caudal sites suggesting that in the
compressed model there is an attempt to promote regeneration.
However other studies have demonstrated that with an increase
in duration of compression, there is increased BDNF intensity
(Hirai et al., 2013). Xu et al. (2006) showed that administration
of BDNF can increase the number of neurons at the compressed
spinal cord. It appears from the above studies that the response
of BDNF in compressed cords is not fully characterized. A
full understanding of its response at different times during
compression and decompression is warranted.

Neurotrophin
Neurotrophin (NT-3) are a family of growth factors involved
in neuron survival and axonal regeneration (Lu et al., 2001).
Compression of the spinal cord appears to downregulate the
levels of NT-3 (Uchida et al., 1998, 2003) at the epicenter and
also downregulates the levels of its receptor, trKC (Uchida et al.,
2003). However, there is upregulation rostral to the compressed

site (Uchida et al., 1998, 2003) and caudal to the compressed site
(Uchida et al., 2003). Targeted retrograde gene delivery of NT-3
has been shown to reduces loss of neurons seen in compressed
cords and improves their morphology (Takenouchi et al., 2008).
Targeted retrograde gene delivery of NT-3 therefore may be used
to promote neuronal survival in compressed spinal cords.

Mitogen-activated protein kinase (MAPK)
TheMAPK signaling pathway is an intracellular signaling system
that controls many basic cellular functions, including apoptosis
(Chang and Karin, 2001), which induces optimal stress responses.
It encompasses a core signaling module, which includes MAPK
kinase kinase (MAPKKK), MAPK kinase, and MAPK (Chang
and Karin, 2001). One of the MAPKKKs is apoptosis signal
related kinase 1 (ASK1), which is activated by reactive oxygen
species and tumor necrosis factor (TNF)-[alpha] (Long et al.,
2013). Other stress-activated MAPK pathways include JNK
and p38. All three pathways were upregulated in chronically
compressed cords and located in apoptotic cells (Takenouchi
et al., 2008). Similar dysregulation of MAPK has been found in
mechanically-induced apoptosis of chondrocytes (Kong et al.,
2013) supporting the notion that inhibitors of ASK1-JNK/-p38-
caspase pathway mediated apoptosis may be a therapeutic target
in DCM.

Phosphodiesterase (PDE)/cyclic AMP
The phosphodiesterase (PDE)/cyclic AMP pathway has been
investigated in one study. Phosphodiesterase are enzymes that
degrade the phosphodiester bond in the secondary messengers,
cAMP and cGMP. PDE inhibitors inhibit degradation of these
messengers and thereby enhance their effects, in part via
modulation of MAPK. The PDE3 inhibitor Cilastazol has been
shown to inhibit platelet aggregation and acts as a vasodilator
by inhibiting activation of myosin light chain kinase, which
contracts smooth muscle cells. Cilastazol has been shown to
improve neurological function, reduce neuron loss and apoptosis
in a rat model of DCM (Yamamoto et al., 2014).

Nuclear factor–[kappa] B (NF-[kappa]B)
Nuclear factor–[kappa] B (NF-[kappa]B) are transcriptional
factors, composed of the Rel family of proteins including RelA
(p65), NF-[kappa]B1 (p50), and NF-[kappa]B2 (p52) (Christian
et al., 2016). The most common form is the NF-[kappa]B1-
RelA that contains the p65 and p50 proteins. Resting NF-
Kb in the cytoplasm becomes activated after phosphorylation
of its inhibitory component, followed by ubiquitination, and
degradation. The NF-[kappa]B then translocate to the nucleus
and binds to target genes involved in various functions (Christian
et al., 2016). The role of NF-KB has been investigated in one study
in rabbits (Karadimas et al., 2013a). Chronic compression of the
spinal cord leads to increased levels of nuclear and cytoplasm
p50 and p60. However, the exact effects of activated NF-Kb in
DCM is not known. The role of these transcriptional factors in
the recovery of DCM has not been investigated.

Prostaglandins
Prostaglandins are lipid compounds found in most tissues with
diverse functions. A prostaglandin PGE1 derivative Limaprost
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has been shown to reduce neuron loss seen in the rat DCMmodel
(Kurokawa et al., 2011). Limaprost is an anti-platelet agent and a
vasodilator and it is thus possible it played a vasodilatory role in
the DCM model. However, how the drug prevented neuron loss
was not clear (Kurokawa et al., 2011).

Granulocyte colony stimulating factor (G-CSF)
Granulocyte colony stimulating factor (G-CSF) is a 19.6-kD
glycoprotein that has neuroprotective effects in experimental
spinal cord injury. It can induce proliferation of oligodendrocyte
precursors, inhibit apoptotic cell death, and suppress
inflammatory cytokines (Kadota et al., 2012). G-CSF has
been shown in one study to reduce the decline in motor
function and loss of motor neurons in a rat model of DCM
(Yoshizumi et al., 2016). G-CSF was also shown to restore motor
function with the effectiveness observed at approximately 8
weeks. The authors suggested that surgical decompression may
be considered during that period to enhance the benefits of
the drug.

Riluzole
Riluzole is a sodium glutamate antagonist, which appears
to be neuroprotective in acute and chronic injuries of the
CNS. Riluzole decreases NMDA receptor phosphorylation in
astrocytes and can reduce microglia activation in the chronically
compressed spinal cord (Moon et al., 2014). In the decompressed
spinal cord, there is evidence for ischemia-reperfusion injury,
which may be responsible for initial post-operative neurological
decline after decompression surgery. This process can be
attenuated using Riluzole, which appears to reduce oxidative
DNA damage in the spinal cord (Karadimas et al., 2015).

Autophagy
Autophagy is a mechanism controlling the turnover of organelles
and proteins in cells. Autophagy can act to prevent apoptosis
and therefore could be exploited therapeutically. One study
investigated the neuroprotective role of autophagy in DCM.
Tanabe et al. (2011) demonstrated increased expression of
autophagy markers in compressed spinal cords and this was
associated with a reduction in neuronal apoptosis.

CONCLUSIONS AND
RECOMMENDATIONS

In this systematic review we were able to delineate some of
the core pathophysiological processes that have been described
in DCM. Our main findings however demonstrate that this
condition is not well-studied, and numerous key questions
remain regarding the pathobiology of this condition thereby
hindering progress in developing therapeutics to improve
outcomes. We have highlighted the key processes involved in
this condition such as axonal degeneration, apoptosis of cells,
and vascular dysfunction. However, how these process lead to
cellular and molecular changes in the condition has not been
well-studied. We have demonstrated the lack of understanding of
the changes that occur following decompression. In addition to

early surgery, there is a therapeutic window in which outcomes
can be improved. Further studies investigating the mechanisms
of injury and recovery in the decompressed spinal cord and how
these can be modulated for patient benefit is warranted.

RECOMMENDATIONS

We recommend the following based on the results of our
systematic review

1. Define standardized protocols for pre-clinical DCM models,
including outcome measures that are relevant to the
clinical setting.

2. Delineate the intrinsic and extrinsic mechanisms responsible
for axonal degeneration and cell death in DCM, and in
particular howmechanical stress translates into cellular injury.

3. In human patients the extent of cord compression correlates
poorly with neurological function. It is therefore important
to determine mechanisms, genes and pathways that are able
to modulate the neurological decline caused by chronic spinal
cord compression.

4. Investigate whether intra-cellular repair mechanisms
such as autophagy can prevent neuronal and axonal
loss, halt disease progression or promote outcomes
in DCM.

5. Investigate the role of key cellular elements of the CNS in
the decline of neurology caused by cord compression and
the recovery following decompression, including the role of
oligodendrocytes, astrocytes, microglia, pericytes, etc.

6. Investigate the role of inflammation, and in particular the
innate immune response, cytokine profiles and signaling
during compression and following decompression.
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