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Abstract: Understanding of quorum-sensing peptides (QSPs) in their functional mechanism plays an
essential role in finding new opportunities to combat bacterial infections by designing drugs. With
the avalanche of the newly available peptide sequences in the post-genomic age, it is highly desirable
to develop a computational model for efficient, rapid and high-throughput QSP identification purely
based on the peptide sequence information alone. Although, few methods have been developed for
predicting QSPs, their prediction accuracy and interpretability still requires further improvements.
Thus, in this work, we proposed an accurate sequence-based predictor (called iQSP) and a set of
interpretable rules (called IR-QSP) for predicting and analyzing QSPs. In iQSP, we utilized a powerful
support vector machine (SVM) cooperating with 18 informative features from physicochemical
properties (PCPs). Rigorous independent validation test showed that iQSP achieved maximum
accuracy and MCC of 93.00% and 0.86, respectively. Furthermore, a set of interpretable rules IR-QSP
was extracted by using random forest model and the 18 informative PCPs. Finally, for the convenience
of experimental scientists, the iQSP web server was established and made freely available online. It is
anticipated that iQSP will become a useful tool or at least as a complementary existing method for
predicting and analyzing QSPs.

Keywords: quorum sensing peptides; physicochemical properties; support vector machine; random
forest; machine learning; classification

1. Introduction

It is widely known that bacteria can interconnect within its population using cell—cell
communication tools. One such tool, quorum sensing (QS) is a molecular mechanism that depends
on the population density to trigger cell-cell signaling which changes the behavior of the bacterial
community when the population reaches a critical level [1,2]. Genes directing the beneficial activities
performed synchronously by a bacterial population are controlled by the QS mechanism (i.e.,
bioluminescence, sporulation, competence, antibiotic production, biofilm formation, and virulence
factor secretion) [3]. Furthermore, in order to orchestrate these collective behaviors, QSPs (quorum
sensing peptides or autoinducing (AlI) peptides) are secreted by the bacteria to respond to extracellular
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signaling molecules. Typically, in a fresh culture, bacteria continually generate the signal starting
at a low concentration, which accumulates as the population density increases. Upon reaching
a threshold concentration, receptor protein interaction occurs which activates receptor kinase by
phosphorylation thus, inducing a coordinated change in gene expression via transcription of target
genes in the population [4]. QSPs have been widely studied in Gram-positive bacteria and are shown
to be species specific (i.e., Staphylococcus spp., Clostridium spp., or Enterococcus spp) [5]. On the
other hand, Gram-negative bacteria (i.e., Pseudomonas spp., Acinetobacter spp., or Burkholderia spp.)
reportedly produce a different class of autoinducers known as, acyl-homoserine lactones (AHLSs)
which comprise of a lactone ring coupled with an aliphatic acyl chain with varying length and
modifications [6]. In addition, a wide-ranging variety of other signaling molecules have also been
identified [7], including fatty acids used by Xanthomonas spp., Burkholderia spp., Xylella spp. [8],
ketones (Vibrio spp. and Legionella spp. [9]), epinephrine, norepinephrine and AI-3 (enterohemorrhagic
bacteria; [10]) or quinolones (Pseudomonas aeruginosa; [11]). Additionally, Al-2, a furanosyl borate diester,
is used by both Gram-negative and Gram-positive bacteria [12]. Finally, QSPs are well understood
at the molecular level in many bacterial species, and have been extensively reviewed [13-17]. An
example of experimentally elucidated QSP structures are shown in Figure 1.
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Figure 1. Structures of selected quorum sensing peptides that have been experimentally elucidated,
where red and yellow colors represent alpha-helix and loop structures, respectively. Each structure
is labelled by a common name followed by the Protein Data Bank identification number (PDB ID) in
parenthesis on the subsequent line.

As previously mentioned, QSPs control the production of virulence factors in bacteria including
many antibiotic resistant bacteria such as lectin, exotoxin A, pyocyanin, and elastase in Pseudomonas
aeruginosa [15,18,19] and hemolysins, protein A, enterotoxins, lipases, and fibronectin proteins in
Staphylococcus aureus [20,21]. These virulence factors allow the bacteria to evade the host immune
responses. In addition, the overuse and abuse of antibiotics coupled with increased resistance, has
prompted the discovery of various anti-QS agents as alternatives to traditional antibiotics [4]. These
anti-QS agents can abolish the QS signaling pathways and prevent the formation or accumulation of
virulence factors, therefore reducing bacterial virulence without causing drug-resistance. However,
no such drug in currently approved by the FDA. At present, the combination of anti-QS agents with
antibiotics provides the most effective strategy to combat bacterial infections [22,23]. As such, many
studies have successfully demonstrated the synergistic effects of combining antibiotics with anti-QS
agents [24-27]. Thus, it is promising to discover novel therapeutic agents to help boost research in
this area.

Although, experimental approaches are known as an objective way to identify the biological
activities of QSPs, it is time-consuming and costly. Meanwhile, with the avalanche of the
peptide sequences in many free-access databases, the development of fast, efficient, and intelligent
computational models for predicting and analyzing QSPs is urgently need to serve clinical application,
drug development, and basic research. Currently, there are only two computational methods [28,29]
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developed for discriminating QSPs from Non-QSPs using the information of peptide sequences
as summarized in Table 1. The first QSP predictor was proposed by Akanksha et al. [29] named
QSPpred. This method was developed by using support vector machine (SVM) cooperating with
four types of peptide features, i.e., amino acid composition (AAC), dipeptide composition (DPC),
binary pattern of N- and C-terminal residues and physicochemical properties (PCP). In 2018, Leyi et al.
proposed a second QSP predictor named QSPpred-FL. This predictor was a two-layer prediction
framework, where the first layer was used to establish initial features derived from 10 different types
of peptide features and generate a new feature vector having 99-dimensional feature vector, while
the final QSP predictor (QSPpred-FL) was construct in the second layer by using random forest (RF)
with the top four features consisting of g-gap dipeptide composition (GDP), overlapping property
features (OVP), composition—transition—distribution (CTD) and adaptive skip dipeptide composition
(ASDC). Although, the two above-mentioned methods could provide quite promising prediction
results, there is still room for improvement in the performance and interpretability of the predictors.
First, QSPpred and QSPpred-FL were constructed with 630D and 913D feature vectors, respectively.
The prediction model constructed with high-dimensional feature spaces could be prone to overfitting
and might yield overestimated prediction results [30-33]. Second, QSPpred-FL was not evaluated on
an independent set therefore, its predictive ability on unknown peptides could not be determined.
Third, QSPpred and QSPpred-FL was performed on the benchmark and independent datasets with a
single random sampling procedure. Hence, these two methods might tend to find the possible bias of
the random sampling process and provided a good predictive result by chance. Finally, the mechanism
of QSPpred and QSPpred-FL suffers from their low interpretable ability for experimental and related
researchers as it is not easy to identify and assess which features provide crucial contribution to the
high prediction results.

Table 1. Summary of existing methods for predicting quorum sensing peptides.

Method Classifier Sequence Feature ® No. of Independent
Features Test
QSPpred SVM AAC, DPC, N5C5Bin, PCP 630 Yes
QSPpred-FL RF GDP, OVP, CTD, ASDC 913 No
iQSP (this study) SVM PCP 18 Yes

2 RF: random forest, SVM: support vector machine. ® AAC: amino acid composition, ASDC: adaptive skip dipeptide
composition, DPC: dipeptide composition, CTD: composition—-transition—distribution, GDP: g-gap dipeptide
composition, NCBin: binary pattern of N- and C-terminal residues, OVP: overlapping property features, PCP:
physicochemical properties.

To improve the prediction and interpretability performances, we proposed a systematic effort via
Chou’s 5-steps rule [34,35] for predicting and analyzing QSPs called the iQSP. The development of
iQSP consists of five main parts: (i) Collecting the benchmarking dataset, (ii) representing a peptide
sequence with PCPs from the AAindex database, (iii) selecting m informative PCPs from 531 PCPs,
(iv) developing the QSP predictor using SVM model with the m informative PCPs, and (v) extracting
interpretable rules by using the RF method with the m informative PCPs called IR-QSP. In this study,
the m informative PCPs were identified using the SVM model in cooperating with the genetic algorithm
utilizing self-assessment-report (GA-SAR). The performance comparisons showed that iQSP achieved
an accuracy, MCC and auROC of 93.00%, 0.91% and 0.96%, respectively, as assessed by the rigorous
independent validation test, which showed a significant improvement as compared with QSPpred.
Amongst a set of interpretable rules, there were seven out of eight interpretable rules that could yield a
prediction accuracy of greater than 80%. Finally, iQSP was developed as a user-friendly and publicly
accessible web server that allow robust predictions to be made without the need to develop in-house
prediction models.



Int. ]. Mol. Sci. 2020, 21,75 40f 24

2. Results and Discussion

In this study, we developed a sequence-based model for predicting and analyzing QSPs named iQSP.
Firstly, the sequence logo representation and Gini index of amino acids were used for characterizing
the informative properties between QSPs and Non-QSPs. Secondly, the GA-SAR algorithm was used
to generate ten feature subsets, where each subset consisted of m informative features of PCPs. Thirdly,
SVM models were individually constructed using the mentioned feature subsets. After that, the
if-then interpretable rules (called IR-QSP) were generated by using the RF method and the optimal
feature subset. Finally, iQSP is deployed as a free prediction web server so as to afford easy and rapid
classification of query protein sequence as being QSPs and Non-QSPs. The overall framework of the
proposed model, iQSP is shown in Figure 2.
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Figure 2. Schematic framework of iQSP. Arrows in the figure represents the direction that data flows
from one process to the next process.

2.1. Composition Analysis

The analysis of feature importance can provide valuable information for predicting its function
and activity. Previously, AAC has been used for analyzing the inherent characteristics and patterns
of many therapeutic peptides [36—41] and protein functions [42—44]. In this study, the mean decrease
of Gini index (MDGI) was utilized to rank the importance of each AAC feature. Features with the
largest MDGI value are considered to be important as they significantly contribute to the prediction
performance. In order to increase the reliability and validity for determining the feature importance,
100 RF models were constructed by varying the mtry parameter settings from 1 to 100 (mtry =1, 2, 3,
..., 100) and fixing the ntree parameter with 500 [36,39,42,45]. Finally, the average value of MDGI
on 100 runs of feature importance estimations were used in this study. Table 2 lists the percentage
values of the twenty amino acids for both QSPs and Non-QSPs along with amino acid compositional
differences between the two classes as well as their MDGI values. Furthermore, the sequence logo [46]
of the first and last ten residues at the N- and C-terminal regions of both QSPs and Non-QSPs were
created to visualize the positional information for each amino acid as shown in Figure 3.
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Table 2. Amino acid compositions (%) of quorum sensing (QSP) and non-quorum sensing (Non-QSP)

peptides along with their mean decrease of Gini index (MDGI) values.

Amino Acid QSP (%) Non-QSP (%) Difference p-Value MDGI
F 0.109 0.049 0.059 (1) 0.000 41.94 (1)
K 0.047 0.093 —0.045 (20) 0.000 19.37 (2)
L 0.076 0.106 —0.030 (18) 0.002 17.57 (3)
\Y% 0.043 0.054 —0.011 (14) 0.114 15.56 (4)
w 0.034 0.015 0.019 (4) 0.000 10.99 (5)
I 0.063 0.067 —0.004 (11) 0.629 10.15 (6)
A 0.053 0.084 —0.032 (19) 0.000 9.15 (7)
Y 0.042 0.020 0.022 (3) 0.000 8.69 (8)
R 0.039 0.050 —0.011 (15) 0.128 7.99 (9)
C 0.049 0.061 —0.013 (16) 0.091 7.82 (10)
S 0.079 0.062 0.017 (5) 0.023 6.70 (11)
G 0.078 0.094 —0.016 (17) 0.032 6.56 (12)
P 0.041 0.043 —0.001 (10) 0.846 6.25 (13)
N 0.070 0.043 0.026 (2) 0.009 5.24 (14)
T 0.051 0.041 0.010 (7) 0.098 4.38 (15)
D 0.033 0.029 0.004 (8) 0.411 4.37 (16)
E 0.026 0.030 —0.004 (12) 0.423 3.64 (17)
M 0.028 0.016 0.012 (6) 0.013 2.84 (18)
H 0.010 0.017 —0.007 (13) 0.048 2.71 (19)
Q 0.029 0.026 0.003 (9) 0.484 2.49 (20)
1 @ 1 )
£ F
=S = T
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N el
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Figure 3. Sequence logo representations, where x- and y-axis represent the first and last 10 residues at

N- and C-terminal regions from QSPs (a,b) and Non-QSPs (c,d), and proportional to the propensities of
amino acids, respectively. Colors are: red for hydrophobic (A, I, L, M, E V, C, G), green for charged (R,

D, E, K), orange for polar (Q, H, S, T), and black for the remaining amino acids (P, Y, W, N).

Table 2 shows that the ten top-ranked important amino acids according to MDGI values are Phe,
Lys, Leu, Val, Trp, lle, Ala, Tyr, Arg, and Cys. There are 6 out of 10 top-ranked important amino acids
having an MDGI value larger than 10, i.e., Phe, Lys, Leu, Val, Trp, and Ile. As seen, amongst the
ten informative amino acids, the analysis of AAC with the percentage of certain residues for QSPs
suggests that Phe, Trp, and Tyr are dominant in QSPs, while Lys, Leu, Ala, Arg, and Cys are dominant
in Non-QSP peptides at a significance level of p-value < 0.05. Furthermore, the four sequence logo
representations were created to visualize the positional information for each amino acid as shown in
Figure 3. The overall stack height of each position indicates its sequence conservation while the size of
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the residue represents its propensity. Figure 3a,b reveal that Ser, Gly, Phe, and Arg as well as Phe and
Lys are abundant in the first ten residues from the N- and C-terminal regions, respectively, of QSPs.
Meanwhile, Figure 3c,d show that Met, Leu, Lys, Ala, and Gly as well as Leu and Cys are abundant in
the first ten residues from the N- and C-terminal regions, respectively, of Non-QSPs. Therfore, the
information gathered from the analysis of feature importance and the sequence logo illustrations in
Table 2 and Figure 3, respectively, can be briefly summarized as follows: (i) Phe, Lys, Leu, Ala, and Arg
are crucial amino acid residues that could potentially be used for discriminating QSPs from Non-QSPs;
(ii) Phe and Ser as well as Lys and Leu are seen to be favored by QSPs and Non-QSPs, respectively,
which are found in the first and last ten residues at the N- and C-terminal regions; and (iii) These
observations were in good consistency with the feature importance as estimated using MDGI values
where Phe, Lys, Leu and Ser are ranked 1, 2, 3, and 11, respectively. Moreover, our analysis were quite
compatible with previous works [29,47].

2.2. Prediction Capabilities of the Different Subset of Physicochemical Properties

To make a fair comparison with the existing methods, a series of comparative experiments were
carried out, while the same benchmark (200 QSPs and 200 Non-QSPs) and independent (20 QSPs
and 20 Non-QSPs) datasets were used to develop and investigate the efficiency and effectiveness
of our proposed QSP predictor. However, previous studies [28,29,48] performed these two datasets
using a single random sampling procedure. As elaborated in [39,40,42,43,45,49,50], this procedure
might find a possible bias of the random sampling process and provided a good predictive result
by chance. Therefore, we repeated this construction procedure with ten independent rounds to
alleviate the aforementioned problems [36,39,41-43,45]. In this study, the proposed GA-SAR algorithm
was used to identify m informative features from 531 PCPs, where the number of m is in the range
of 5-20. We hypothesize that if a feature is selected by GA-SAR, it is considered to be beneficial
for QSP prediction [51-53]. Due to the non-deterministic characteristics of the GA-SAR algorithm,
ten individual experiments were performed to generate ten different feature subsets. The lists of
m informative features in the ten different feature subset are demonstrated in Table Al. In our
experimental setting, each feature subset was used as the input feature to construct 10 SVM models
based on random sampling with ten independent rounds. Therefore, the final prediction results of
10-fold CV and independent validation tests of each feature set were obtained by averaging the five
statistical parameters (Ac, Sn, Sp, MCC, and auROC) on the benchmark and independent datasets, as
shown in Tables 3 and 4, respectively.

Table 3. Performance comparisons of SVM models built with various subsets of physicochemical
properties evaluated by means of ten-fold cross-validation subjected to ten rounds of random splits.

Subset # Feature Ac (%) Sn (%) Sp (%) MCC AUC
1 14 91.23 £ 1.31 91.17 £ 2.65 88.23 +£3.03 0.82 £0.03 0.95 + 0.05
2 17 90.69 + 1.26 92.08 +2.82 87.04 +£2.89 0.82 +£0.03 0.95 + 0.05
3 16 91.58 +1.77 92.79 £ 2.73 88.45 +£2.97 0.83 +£0.04 0.94 + 0.05
4 17 91.63 £ 1.75 91.49 +£2.73 89.55 £3.71 0.84 £ 0.04 0.92 + 0.05
5 17 92.01 +1.40 91.43 + 3.64 90.27 £ 2.39 0.84 +0.03 0.92 £ 0.08
6 18 91.07 £ 1.77 90.06 + 2.69 88.79 + 3.40 0.82 +£0.04 0.91 £0.10
7 15 89.28 +1.99 88.78 + 3.88 86.44 +2.67 0.79 £ 0.04 0.93 £ 0.07
8 17 88.24 +2.15 85.04 + 3.61 86.81 + 3.86 0.76 + 0.05 0.92 + 0.07
9 18 90.54 + 1.26 90.60 + 4.12 87.57 £2.68 0.81 £ 0.03 0.93 £ 0.09
10 17 92.19 = 1.09 90.12 + 2.98 92.16 £ 1.96 0.84 £0.02 0.93 £ 0.07

# Feature represents the number of features used for constructing a model.
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Table 4. Performance comparisons of SVM models built with various subsets of physicochemical
properties evaluated by means of independent validation test subjected to ten rounds of random splits.

Subset # Feature Ac (%) Sn (%) Sp (%) MCC AUC
1 14 92.50 + 1.67 95.50 + 3.69 89.50 + 4.97 0.85+0.03 0.95 + 0.03
2 17 91.50 +3.58  98.00+3.50  85.00 +7.07 0.84 +0.07 0.96 + 0.03
3 16 92.00 + 2.58 92.50 + 5.40 91.50 + 5.80 0.84 +0.05 0.95 +0.02
4 17 92.25+2.19 93.00 + 4.83 91.50 +£4.12 0.85+0.04 0.97 £ 0.01
5 17 9250+236  94.00+5.68  91.00 +6.15 0.86 + 0.05 0.96 +0.02
6 18 93.00 £ 1.97 92.50 + 5.40 93.50 +£4.12 0.86 £ 0.04 0.96 + 0.02
7 15 92.00 £1.97 94.00 £ 5.16 90.00 + 7.45 0.85+0.04 0.96 + 0.02
8 17 91.75+290 94.00+516  89.50 +6.43 0.84 +0.06 0.95 + 0.04
9 18 91.50 + 3.38 90.50 + 7.62 9250 £ 791 0.84 £ 0.06 0.97 £ 0.04
10 17 92.50 + 1.67 95.00 + 3.33 90.00 + 4.08 0.85+0.03 0.95 + 0.04

# Feature represents the number of features used for constructing a model.

Amongst the ten different feature subsets, Table 3 shows that the subsets with the five highest
Ac over 10-fold CV are subsets 10, 5, 4, 3, and 1 (92.19 + 1.09%, 92.01 + 1.40%, 91.63 + 1.75%, 91.58
+ 1.77%, and 91.23 + 1.31%, respectively). Meanwhile, the subsets with the five highest Ac over the
independent validation test are subset 6, 10, 5, 1, and 4 (93.00 £ 1.97%, 92.50 + 1.67%, 92.50 + 2.36%,
92.50 + 1.67%, and 92.25 + 2.19%, respectively), as summarized in Table 4. As noticed in Tables 3 and 4,
subsets 10, 5, 4, 1, and 6 showed good predictive powers with their ranks (10-fold CV, independent
validation test) at (1, 2), (2,3), (3, 5), (5, 4), and (6,1) respectively. Although, subset 6 having a 91.07 +
1.77% Ac was ranked at 5, its prediction result over independent validation test with 93.00 + 1.97% Ac
outperformed that of other subsets. Due to the fact that the independent test is an effective way to
demonstrate the robustness and reliability of the model in real-world applications [36,39-43,45,49,50],
it could be stated that subset 6 having eighteen informative PCPs provided a crucial contribution to
the prediction performance. This feature subset yielded a prediction performance (Ac/MCC/auROC)
over the 10-fold CV and independent validation test of 91.07 + 1.77%/0.82 + 0.04/0.91 + 0.10 and 93.00
+ 1.97%/0.86 + 0.04/0.96 + 0.02, respectively.

Furthermore, the performance comparisons between SVM models with 531 PCPs as well as
eighteen informative PCPs were conducted to investigate the effectiveness of our selected feature
subset, which is illustrated in Figure 4. As noticed in Figure 4c, the values of Ac, Sn, Sp, MCC, and
auROC derived from using the eighteen informative PCPs are higher than using the 531 PCPs by
7%, 2%, 11%, 8%, and 3%, respectively. These results demonstrated that the inclusion of numerous
redundant and uninformative features caused poor prediction results. For convenience, the best QSP
predictor based on SVM model in conjunction with the eighteen informative PCPs will be referred to
as iQSP.

2.3. Comparison with Existing Methods

To demonstrate the effectiveness and power of our method, we conducted a comparative study of
our final model (named iQSP) with the existing methods. To date, there are only two existings methods
developed for the prediction of QSPs, i.e., QSPpred [29] and QSPpred-FL [28,48], performing on the
benchmark and independent datasets over 10-fold CV and independent validation test. Table 5 lists
the preformance comparisons of iQSP and the existing methods. From Table 5, we can observe that
QSPpred-FL yields the highest prediction performance of 94.30% Ac and 0.885 MCC over 10-fold CV,
while our proposed model iQSP gave a 91.07 + 1.77% Ac and 0.82 + 0.04 MCC. On the other hand, based
on the independent validation test, iQSP outperformed that other methods with 93.00 + 1.97% Ac,
0.86 + 0.04 MCC and 0.96 + 0.02 auROC, which was better than the existing QSP predictors [28,29,48].
Although, iQSP achieved slightly better than QSPpred-FL, our proposed model showed significant
improvement than QSPpred-FL considering the two objectives: using the less complexity of prediction
methods (1 SVM vs. 99 RFs) and a minimum number of features used (18D vs. 913D).
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Figure 4. Performance comparisons of SVM models in conjunction with 531 PCPs and the eighteen
informative PCPs assessed by 10-fold cross-validation (a,b) and independent validation test (c,d).

Table 5. Performance comparisons between iQSP and existing methods assessed by 10-fold
cross-validation and independent validation tests.

Method # Feature 10-Fold CV Independent Test
Ac (%) MCC auROC Ac (%) MCC auROC
QSPpred ? 430 91.25 0.830 0.960 90.00 0.800 0.950
QSPpred-FL P 913 94.30 0.885 N/A 92.50 0.860 0.962
iQsP 18 91.07+177 082+0.04 091+0.10 93.00+1.97 0.86+0.04 0.96+0.02

2 Results were reported from the work of QSPpred. P Results were obtained by feeding the peptide sequences in the
independent set to the webserver of QSPpred-FL. # Feature represents the number of features used for constructing
amodel. N/A symbol represents the authors did not provide the result.

To further investigate the power of the proposed iQSP, we compared its performance with other
conventional classifiers, i.e., k-nearest neighbor (k-NN), decision tree (rpart), and random forest (RF).
The k-NN, rpart and RF classifiers were performed on the same datasets and implemented using the
caret R package [54]. Rigorous 10-fold CV and independent validation test with ten independent rounds
of these classifiers based on the optimal feature subset are reported in Table 6 and Figure 5. The more
details of the parameter optimization of these three classifiers were described in the works [37,38,55-61].
Based the independent validation test, we noticed that the Ac, MCC and auROC values of iQSP were
higher than those of other classifiers by >2%, >4%, and >2%, respectively, suggesting that iQSP holds
very high potential to provide an accurate and reliable result in unseen peptides when compared to
the existing methods and the conventional classifiers developed in this study.
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Table 6. Performance comparison of iQSP with other conventional classifiers by using the optimal
feature subset. Models were evaluated by means of 10-fold cross-validation and independent validation
test subjected to ten rounds of random splits.

” 10-Fold CV Independent Test
Classifier
Ac (%) MCC auROC Ac (%) MCC auROC
k-NN 85.13 + 0.27 0.72 £ 0.01 0.86 +0.00 85.75 +1.21 0.73 £ 0.02 0.91 £0.03
DT 83.57 + 2.74 0.67 + 0.06 0.87 + 0.03 83.75 + 3.39 0.68 = 0.07 0.86 + 0.05
RF 87.93 +0.48 0.76 +£ 0.01 0.95 + 0.01 91.00 + 3.16 0.82 + 0.06 0.94 +0.02
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Figure 5. ROC curves of the proposed model iQSP with the conventional classifiers evaluated by
10-fold cross-validation (a) and the independent validation test (b) with ten independent rounds, where
the bar represents the standard deviation of prediction results from ten independent round.

Based on Tables 3-6 and Figure 3, the superior performance of our proposed model iQSP over
10-fold CV and independent validation test might mainly be due to the following reasons: (i) Performing
with multiple random sampling procedure to protect against the risk of having good predictive result
by chance [39-43,49,50]; (ii) using an efficient feature selection method (GA-SAR) to identify m
informative features from 531 PCPs. Using eighteen informative PCPs could provide faster and more
cost-effective models, while model developers could gain an insight into the underlying prediction
processes [58,62—-64]; (iii) selecting a powerful method for QSP prediction. Although, iQSP displayed a
superior performance over the existing methods assessed by the rigorous cross-validation methods,
there is still room for further improvements, including increasing the size of QSPs by gathering peptide
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sequences from various data sources, utilizing an interpretable learning algorithm, such as scoring
card method [44,53], improving the interpretation of important features responsible for the biological
activity [50,64] and exploring different ML algorithms, such as extreme gradient boosting [65] or deep
learning [66].

2.4. Feature Contribution Analysis

Informative features play a vital role for developing an accurate predictor as well as providing
a better understanding of QSPs. In this section, the eight informative PCPs utilized to analyze and
characterize QSPs are explored. In addition, the MDGI score was used to rank the importance of those
informative PCPs. Table 6 summarizes the detailed information of the eighteen informative PCPs and
their corresponding MDGI scores. As noticed in Table 7, the top seven important PCPs are QIANS80137,
AURR980102, ROBB760113, PRAMS820101, GRAR740101, PALJ810111, and PONP800102 having an
MDGI value of greater than 10. The most important PCP is the AAindex ID QIAN880137 with an
MDGI value of 32.50 denoting ‘weights for coil’. In the analysis, two out of the eighteen informative
PCPs are related to AAC and composition, i.e., DAYM780101 (MDGI = 8.64) and GRAR740101 (MDGI
=12.26). Akanksha et al. [29] reported that using AAC and DPC as input features yield Ac values as
high as 89.00% and 87.50%, respectively, as evaluated by the independent validation test. Furthermore,
amongst the eighteen informative PCPs, there are two informative PCPs, i.e., PONP800102 (MDGI =
10.96) and MANP780101 (MDGI = 8.36), related to hydrophobicity. In 2007, Raymond et al. [47] tested
their hypothesis that the hydrophobic face of 21-amino-acid signaling peptide might be important
for receptor binding by replacing a hydrophobic residue (Phe) with a hydrophilic residue (GIn).
In this study, three peptides, i.e., F7Q, F11Q, and F15Q, were synthesized and assessed for their
abilities to activate quorum sensing. Their results indicated that the substitution of Phe with GIn
significantly affected the activity of the signal peptide in activation of quorum sensing. Additionally,
Akanksha et al. [29] also mentioned the importance of Phe in QSPs whereby Phe was dominant in the
first and last 5 residues at N- and C-terminal regions. As noticed in Table 2, these results are consistent
with our analysis results which show that Phe and GIn are ranked at 1 and 20, respectively.

2.5. Interpretable Rules Acquisition

In this work, the if-then interpretable rules called IR-QSP were constructed by using the RF method
in conjunction with the optimal subset consisting of 18 informative PCPs (Table 7), as mentioned
above. The main advantages of these constructed rules are twofold: (i) To demonstrate which PCP
or which combination of PCPs are effective for QSP prediction, and (ii) to simply discriminate QSPs
from Non-QSPs without the need to go through the mathematical and computational details. Tables 8
and A2 list eight interpretable rules that were important for QSP and twelve that were important for
Non-QSP. If a query peptide meets all of the criteria in at least one of the eight rules, then it is identified
as QSP. As observed in Tables 8 and A2, almost all the rules can yield a prediction accuracy of greater
than 80%, except for rule #7. Interestingly, these four rules can achieve an Ac value of greater than 90%,
i.e., rules #1, #2, #3, and #4. Thus, these results indicate that the construction of rules are reliable and
easy-to-use, both in terms of their accuracy and interpretability for predicting and characterizing QSPs.
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Table 7. The eighteen informative physicochemical properties [58] derived from the genetic algorithm
utilizing self-assessment-report (GA-SAR) algorithm and their MDGI.

Rank AAindex ID MDGI Description
Weights for coil at the window position of 4
! QIANS80137 3255 (Qian-Sejnowski, 1988)
Normalized positional residue frequency at helix
2 AURR980102 16.62 termini N’ (Aurora-Rose, 1998)
3 ROBB760113 13.56 Information measure for loop (Robson-Suzuki, 1976)
Intercept in regression analysis
4 PRAM820101 12.62 (Prabhakaran-Ponnuswamy, 1982)
5 GRAR740101 12.26 Composition (Grantham, 1974)
Normalized frequency of beta-sheet in alpha + beta
6 PALJ810111 171 class (Palau et al., 1981)
7 PONPS00102 10.96 Average gain in surrounding hydrophobicity
(Ponnuswamy et al., 1980)
Free energy in beta-strand conformation
8 MUNV940103 9:07 (Munoz-Serrano, 1994)
9 DAYM?780101 8.64 Amino acid composition (Dayhoff et al., 1978a)
Average surrounding hydrophobicity
10 MANP780101 8.36 (Manavalan-Ponnuswamy, 1978)
Distribution of amino acid residues in the alpha-helices
1 KUMS000103 8.23 in thermophilic proteins (Kumar et al., 2000)
Information measure for C-terminal helix
12 ROBB760104 8.18 (Robson-Suzuki, 1976)
13 1SOY800107 8.09 Normalized relatlve.frequency of double bend
(Isogai et al., 1980)
14 GEIMS800101 7.80 Alpha-helix indices (Geisow-Roberts, 1980)
15 PRAM900102 7.59 Relative frequency in alpha-helix (Prabhakaran, 1990)
Hydropathy scale based on self-information values in
16 NADHO010104 7.20 the two-state model (20% accessibility)
(Naderi-Manesh et al., 2001)
Interior composition of amino acids in intracellular
17 FUKS010106 6.47 proteins of mesophiles (percent)
(Fukuchi-Nishikawa, 2001)
18 WIMW960101 554 Free energies of transfer of AcWI-X-LL peptides from

bilayer interface to water (Wimley-White, 1996)

2.6. iQSP Web Server

In an effort to maximize the full potential usage of the predictive model proposed in this study, the
model along with optimal parameter settings were embedded inside an R powered website by means
of the Shiny package. The resulting iQSP web server is publicly available at http://codes.bio/igsp/.
The server accepts an input the query peptide sequence in FASTA format that it submits for feature
calculation and further fed into the predictive model for prediction of the class label as to whether it is
a QSP or Non-QSP. Screenshots of the iQSP web server are shown in Figure 6.
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Table 8. Fourteen if-then rules for the prediction of quorum sensing peptides using random forest and
the 18 informative physicochemical properties.

Cover Misclassified

No. Rule Samples Samples

Ac (%)

1 GRAR740101 < 0.9055 & MANP780101 > 0.7495 & 10 0 100.00
PRAMO900102 > 0.848 & QIANS880137 < 0.237 '

PONP800102 > —0.751 & PONP800102 < 1.0025 &
2 QIANS880137 < —0.104 & ROBB760104 < 0.3645 & 61 1 98.36
ROBB760104 > —0.5205

PALJ810111 < 1.369 & QIANS80137 > —0.104 &

3 QIANS80137 < 0.417 & ROBB760113 < 0.5975 & 21 2 90.48
AURR980102 < 0.6955
GEIMS800101 > —0.3135 & GRAR740101 > —0.176 &
4 1SOY800107 < 1.367 & MANP780101 > —0.3325 & 94 6 93.62

PALJ810111 < 1.0905 & QIAN880137 < —0.0985

PALJ810111 > —-0.786 & QIANS880137 > 0.237 &
5 QIANS80137 > 0.403 & ROBB760113 > 0.5975 & 45 7 84.44
AURR980102 < 0.811 & KUMS000103 < 0.793

GRAR?740101 < 0.341