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Abstract: Understanding of quorum-sensing peptides (QSPs) in their functional mechanism plays an
essential role in finding new opportunities to combat bacterial infections by designing drugs. With
the avalanche of the newly available peptide sequences in the post-genomic age, it is highly desirable
to develop a computational model for efficient, rapid and high-throughput QSP identification purely
based on the peptide sequence information alone. Although, few methods have been developed for
predicting QSPs, their prediction accuracy and interpretability still requires further improvements.
Thus, in this work, we proposed an accurate sequence-based predictor (called iQSP) and a set of
interpretable rules (called IR-QSP) for predicting and analyzing QSPs. In iQSP, we utilized a powerful
support vector machine (SVM) cooperating with 18 informative features from physicochemical
properties (PCPs). Rigorous independent validation test showed that iQSP achieved maximum
accuracy and MCC of 93.00% and 0.86, respectively. Furthermore, a set of interpretable rules IR-QSP
was extracted by using random forest model and the 18 informative PCPs. Finally, for the convenience
of experimental scientists, the iQSP web server was established and made freely available online. It is
anticipated that iQSP will become a useful tool or at least as a complementary existing method for
predicting and analyzing QSPs.

Keywords: quorum sensing peptides; physicochemical properties; support vector machine; random
forest; machine learning; classification

1. Introduction

It is widely known that bacteria can interconnect within its population using cell–cell
communication tools. One such tool, quorum sensing (QS) is a molecular mechanism that depends
on the population density to trigger cell–cell signaling which changes the behavior of the bacterial
community when the population reaches a critical level [1,2]. Genes directing the beneficial activities
performed synchronously by a bacterial population are controlled by the QS mechanism (i.e.,
bioluminescence, sporulation, competence, antibiotic production, biofilm formation, and virulence
factor secretion) [3]. Furthermore, in order to orchestrate these collective behaviors, QSPs (quorum
sensing peptides or autoinducing (AI) peptides) are secreted by the bacteria to respond to extracellular
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signaling molecules. Typically, in a fresh culture, bacteria continually generate the signal starting
at a low concentration, which accumulates as the population density increases. Upon reaching
a threshold concentration, receptor protein interaction occurs which activates receptor kinase by
phosphorylation thus, inducing a coordinated change in gene expression via transcription of target
genes in the population [4]. QSPs have been widely studied in Gram-positive bacteria and are shown
to be species specific (i.e., Staphylococcus spp., Clostridium spp., or Enterococcus spp) [5]. On the
other hand, Gram-negative bacteria (i.e., Pseudomonas spp., Acinetobacter spp., or Burkholderia spp.)
reportedly produce a different class of autoinducers known as, acyl-homoserine lactones (AHLs)
which comprise of a lactone ring coupled with an aliphatic acyl chain with varying length and
modifications [6]. In addition, a wide-ranging variety of other signaling molecules have also been
identified [7], including fatty acids used by Xanthomonas spp., Burkholderia spp., Xylella spp. [8],
ketones (Vibrio spp. and Legionella spp. [9]), epinephrine, norepinephrine and AI-3 (enterohemorrhagic
bacteria; [10]) or quinolones (Pseudomonas aeruginosa; [11]). Additionally, AI-2, a furanosyl borate diester,
is used by both Gram-negative and Gram-positive bacteria [12]. Finally, QSPs are well understood
at the molecular level in many bacterial species, and have been extensively reviewed [13–17]. An
example of experimentally elucidated QSP structures are shown in Figure 1.
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As previously mentioned, QSPs control the production of virulence factors in bacteria including
many antibiotic resistant bacteria such as lectin, exotoxin A, pyocyanin, and elastase in Pseudomonas
aeruginosa [15,18,19] and hemolysins, protein A, enterotoxins, lipases, and fibronectin proteins in
Staphylococcus aureus [20,21]. These virulence factors allow the bacteria to evade the host immune
responses. In addition, the overuse and abuse of antibiotics coupled with increased resistance, has
prompted the discovery of various anti-QS agents as alternatives to traditional antibiotics [4]. These
anti-QS agents can abolish the QS signaling pathways and prevent the formation or accumulation of
virulence factors, therefore reducing bacterial virulence without causing drug-resistance. However,
no such drug in currently approved by the FDA. At present, the combination of anti-QS agents with
antibiotics provides the most effective strategy to combat bacterial infections [22,23]. As such, many
studies have successfully demonstrated the synergistic effects of combining antibiotics with anti-QS
agents [24–27]. Thus, it is promising to discover novel therapeutic agents to help boost research in
this area.

Although, experimental approaches are known as an objective way to identify the biological
activities of QSPs, it is time-consuming and costly. Meanwhile, with the avalanche of the
peptide sequences in many free-access databases, the development of fast, efficient, and intelligent
computational models for predicting and analyzing QSPs is urgently need to serve clinical application,
drug development, and basic research. Currently, there are only two computational methods [28,29]
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developed for discriminating QSPs from Non-QSPs using the information of peptide sequences
as summarized in Table 1. The first QSP predictor was proposed by Akanksha et al. [29] named
QSPpred. This method was developed by using support vector machine (SVM) cooperating with
four types of peptide features, i.e., amino acid composition (AAC), dipeptide composition (DPC),
binary pattern of N- and C-terminal residues and physicochemical properties (PCP). In 2018, Leyi et al.
proposed a second QSP predictor named QSPpred-FL. This predictor was a two-layer prediction
framework, where the first layer was used to establish initial features derived from 10 different types
of peptide features and generate a new feature vector having 99-dimensional feature vector, while
the final QSP predictor (QSPpred-FL) was construct in the second layer by using random forest (RF)
with the top four features consisting of g-gap dipeptide composition (GDP), overlapping property
features (OVP), composition–transition–distribution (CTD) and adaptive skip dipeptide composition
(ASDC). Although, the two above-mentioned methods could provide quite promising prediction
results, there is still room for improvement in the performance and interpretability of the predictors.
First, QSPpred and QSPpred-FL were constructed with 630D and 913D feature vectors, respectively.
The prediction model constructed with high-dimensional feature spaces could be prone to overfitting
and might yield overestimated prediction results [30–33]. Second, QSPpred-FL was not evaluated on
an independent set therefore, its predictive ability on unknown peptides could not be determined.
Third, QSPpred and QSPpred-FL was performed on the benchmark and independent datasets with a
single random sampling procedure. Hence, these two methods might tend to find the possible bias of
the random sampling process and provided a good predictive result by chance. Finally, the mechanism
of QSPpred and QSPpred-FL suffers from their low interpretable ability for experimental and related
researchers as it is not easy to identify and assess which features provide crucial contribution to the
high prediction results.

Table 1. Summary of existing methods for predicting quorum sensing peptides.

Method Classifier a Sequence Feature b No. of
Features

Independent
Test

QSPpred SVM AAC, DPC, N5C5Bin, PCP 630 Yes
QSPpred-FL RF GDP, OVP, CTD, ASDC 913 No

iQSP (this study) SVM PCP 18 Yes
a RF: random forest, SVM: support vector machine. b AAC: amino acid composition, ASDC: adaptive skip dipeptide
composition, DPC: dipeptide composition, CTD: composition–transition–distribution, GDP: g-gap dipeptide
composition, NCBin: binary pattern of N- and C-terminal residues, OVP: overlapping property features, PCP:
physicochemical properties.

To improve the prediction and interpretability performances, we proposed a systematic effort via
Chou’s 5-steps rule [34,35] for predicting and analyzing QSPs called the iQSP. The development of
iQSP consists of five main parts: (i) Collecting the benchmarking dataset, (ii) representing a peptide
sequence with PCPs from the AAindex database, (iii) selecting m informative PCPs from 531 PCPs,
(iv) developing the QSP predictor using SVM model with the m informative PCPs, and (v) extracting
interpretable rules by using the RF method with the m informative PCPs called IR-QSP. In this study,
the m informative PCPs were identified using the SVM model in cooperating with the genetic algorithm
utilizing self-assessment-report (GA-SAR). The performance comparisons showed that iQSP achieved
an accuracy, MCC and auROC of 93.00%, 0.91% and 0.96%, respectively, as assessed by the rigorous
independent validation test, which showed a significant improvement as compared with QSPpred.
Amongst a set of interpretable rules, there were seven out of eight interpretable rules that could yield a
prediction accuracy of greater than 80%. Finally, iQSP was developed as a user-friendly and publicly
accessible web server that allow robust predictions to be made without the need to develop in-house
prediction models.
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2. Results and Discussion

In this study, we developed a sequence-based model for predicting and analyzing QSPs named iQSP.
Firstly, the sequence logo representation and Gini index of amino acids were used for characterizing
the informative properties between QSPs and Non-QSPs. Secondly, the GA-SAR algorithm was used
to generate ten feature subsets, where each subset consisted of m informative features of PCPs. Thirdly,
SVM models were individually constructed using the mentioned feature subsets. After that, the
if–then interpretable rules (called IR-QSP) were generated by using the RF method and the optimal
feature subset. Finally, iQSP is deployed as a free prediction web server so as to afford easy and rapid
classification of query protein sequence as being QSPs and Non-QSPs. The overall framework of the
proposed model, iQSP is shown in Figure 2.
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Figure 2. Schematic framework of iQSP. Arrows in the figure represents the direction that data flows
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2.1. Composition Analysis

The analysis of feature importance can provide valuable information for predicting its function
and activity. Previously, AAC has been used for analyzing the inherent characteristics and patterns
of many therapeutic peptides [36–41] and protein functions [42–44]. In this study, the mean decrease
of Gini index (MDGI) was utilized to rank the importance of each AAC feature. Features with the
largest MDGI value are considered to be important as they significantly contribute to the prediction
performance. In order to increase the reliability and validity for determining the feature importance,
100 RF models were constructed by varying the mtry parameter settings from 1 to 100 (mtry = 1, 2, 3,
. . . , 100) and fixing the ntree parameter with 500 [36,39,42,45]. Finally, the average value of MDGI
on 100 runs of feature importance estimations were used in this study. Table 2 lists the percentage
values of the twenty amino acids for both QSPs and Non-QSPs along with amino acid compositional
differences between the two classes as well as their MDGI values. Furthermore, the sequence logo [46]
of the first and last ten residues at the N- and C-terminal regions of both QSPs and Non-QSPs were
created to visualize the positional information for each amino acid as shown in Figure 3.
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Table 2. Amino acid compositions (%) of quorum sensing (QSP) and non-quorum sensing (Non-QSP)
peptides along with their mean decrease of Gini index (MDGI) values.

Amino Acid QSP (%) Non-QSP (%) Difference p-Value MDGI

F 0.109 0.049 0.059 (1) 0.000 41.94 (1)
K 0.047 0.093 −0.045 (20) 0.000 19.37 (2)
L 0.076 0.106 −0.030 (18) 0.002 17.57 (3)
V 0.043 0.054 −0.011 (14) 0.114 15.56 (4)
W 0.034 0.015 0.019 (4) 0.000 10.99 (5)
I 0.063 0.067 −0.004 (11) 0.629 10.15 (6)
A 0.053 0.084 −0.032 (19) 0.000 9.15 (7)
Y 0.042 0.020 0.022 (3) 0.000 8.69 (8)
R 0.039 0.050 −0.011 (15) 0.128 7.99 (9)
C 0.049 0.061 −0.013 (16) 0.091 7.82 (10)
S 0.079 0.062 0.017 (5) 0.023 6.70 (11)
G 0.078 0.094 −0.016 (17) 0.032 6.56 (12)
P 0.041 0.043 −0.001 (10) 0.846 6.25 (13)
N 0.070 0.043 0.026 (2) 0.009 5.24 (14)
T 0.051 0.041 0.010 (7) 0.098 4.38 (15)
D 0.033 0.029 0.004 (8) 0.411 4.37 (16)
E 0.026 0.030 −0.004 (12) 0.423 3.64 (17)
M 0.028 0.016 0.012 (6) 0.013 2.84 (18)
H 0.010 0.017 −0.007 (13) 0.048 2.71 (19)
Q 0.029 0.026 0.003 (9) 0.484 2.49 (20)
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Figure 3. Sequence logo representations, where x- and y-axis represent the first and last 10 residues at
N- and C-terminal regions from QSPs (a,b) and Non-QSPs (c,d), and proportional to the propensities of
amino acids, respectively. Colors are: red for hydrophobic (A, I, L, M, F, V, C, G), green for charged (R,
D, E, K), orange for polar (Q, H, S, T), and black for the remaining amino acids (P, Y, W, N).

Table 2 shows that the ten top-ranked important amino acids according to MDGI values are Phe,
Lys, Leu, Val, Trp, Ile, Ala, Tyr, Arg, and Cys. There are 6 out of 10 top-ranked important amino acids
having an MDGI value larger than 10, i.e., Phe, Lys, Leu, Val, Trp, and Ile. As seen, amongst the
ten informative amino acids, the analysis of AAC with the percentage of certain residues for QSPs
suggests that Phe, Trp, and Tyr are dominant in QSPs, while Lys, Leu, Ala, Arg, and Cys are dominant
in Non-QSP peptides at a significance level of p-value ≤ 0.05. Furthermore, the four sequence logo
representations were created to visualize the positional information for each amino acid as shown in
Figure 3. The overall stack height of each position indicates its sequence conservation while the size of
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the residue represents its propensity. Figure 3a,b reveal that Ser, Gly, Phe, and Arg as well as Phe and
Lys are abundant in the first ten residues from the N- and C-terminal regions, respectively, of QSPs.
Meanwhile, Figure 3c,d show that Met, Leu, Lys, Ala, and Gly as well as Leu and Cys are abundant in
the first ten residues from the N- and C-terminal regions, respectively, of Non-QSPs. Therfore, the
information gathered from the analysis of feature importance and the sequence logo illustrations in
Table 2 and Figure 3, respectively, can be briefly summarized as follows: (i) Phe, Lys, Leu, Ala, and Arg
are crucial amino acid residues that could potentially be used for discriminating QSPs from Non-QSPs;
(ii) Phe and Ser as well as Lys and Leu are seen to be favored by QSPs and Non-QSPs, respectively,
which are found in the first and last ten residues at the N- and C-terminal regions; and (iii) These
observations were in good consistency with the feature importance as estimated using MDGI values
where Phe, Lys, Leu and Ser are ranked 1, 2, 3, and 11, respectively. Moreover, our analysis were quite
compatible with previous works [29,47].

2.2. Prediction Capabilities of the Different Subset of Physicochemical Properties

To make a fair comparison with the existing methods, a series of comparative experiments were
carried out, while the same benchmark (200 QSPs and 200 Non-QSPs) and independent (20 QSPs
and 20 Non-QSPs) datasets were used to develop and investigate the efficiency and effectiveness
of our proposed QSP predictor. However, previous studies [28,29,48] performed these two datasets
using a single random sampling procedure. As elaborated in [39,40,42,43,45,49,50], this procedure
might find a possible bias of the random sampling process and provided a good predictive result
by chance. Therefore, we repeated this construction procedure with ten independent rounds to
alleviate the aforementioned problems [36,39,41–43,45]. In this study, the proposed GA-SAR algorithm
was used to identify m informative features from 531 PCPs, where the number of m is in the range
of 5–20. We hypothesize that if a feature is selected by GA-SAR, it is considered to be beneficial
for QSP prediction [51–53]. Due to the non-deterministic characteristics of the GA-SAR algorithm,
ten individual experiments were performed to generate ten different feature subsets. The lists of
m informative features in the ten different feature subset are demonstrated in Table A1. In our
experimental setting, each feature subset was used as the input feature to construct 10 SVM models
based on random sampling with ten independent rounds. Therefore, the final prediction results of
10-fold CV and independent validation tests of each feature set were obtained by averaging the five
statistical parameters (Ac, Sn, Sp, MCC, and auROC) on the benchmark and independent datasets, as
shown in Tables 3 and 4, respectively.

Table 3. Performance comparisons of SVM models built with various subsets of physicochemical
properties evaluated by means of ten-fold cross-validation subjected to ten rounds of random splits.

Subset # Feature Ac (%) Sn (%) Sp (%) MCC AUC

1 14 91.23 ± 1.31 91.17 ± 2.65 88.23 ± 3.03 0.82 ± 0.03 0.95 ± 0.05
2 17 90.69 ± 1.26 92.08 ± 2.82 87.04 ± 2.89 0.82 ± 0.03 0.95 ± 0.05
3 16 91.58 ± 1.77 92.79 ± 2.73 88.45 ± 2.97 0.83 ± 0.04 0.94 ± 0.05
4 17 91.63 ± 1.75 91.49 ± 2.73 89.55 ± 3.71 0.84 ± 0.04 0.92 ± 0.05
5 17 92.01 ± 1.40 91.43 ± 3.64 90.27 ± 2.39 0.84 ± 0.03 0.92 ± 0.08
6 18 91.07 ± 1.77 90.06 ± 2.69 88.79 ± 3.40 0.82 ± 0.04 0.91 ± 0.10
7 15 89.28 ± 1.99 88.78 ± 3.88 86.44 ± 2.67 0.79 ± 0.04 0.93 ± 0.07
8 17 88.24 ± 2.15 85.04 ± 3.61 86.81 ± 3.86 0.76 ± 0.05 0.92 ± 0.07
9 18 90.54 ± 1.26 90.60 ± 4.12 87.57 ± 2.68 0.81 ± 0.03 0.93 ± 0.09
10 17 92.19 ± 1.09 90.12 ± 2.98 92.16 ± 1.96 0.84 ± 0.02 0.93 ± 0.07

# Feature represents the number of features used for constructing a model.
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Table 4. Performance comparisons of SVM models built with various subsets of physicochemical
properties evaluated by means of independent validation test subjected to ten rounds of random splits.

Subset # Feature Ac (%) Sn (%) Sp (%) MCC AUC

1 14 92.50 ± 1.67 95.50 ± 3.69 89.50 ± 4.97 0.85 ± 0.03 0.95 ± 0.03
2 17 91.50 ± 3.58 98.00 ± 3.50 85.00 ± 7.07 0.84 ± 0.07 0.96 ± 0.03
3 16 92.00 ± 2.58 92.50 ± 5.40 91.50 ± 5.80 0.84 ± 0.05 0.95 ± 0.02
4 17 92.25 ± 2.19 93.00 ± 4.83 91.50 ± 4.12 0.85 ± 0.04 0.97 ± 0.01
5 17 92.50 ± 2.36 94.00 ± 5.68 91.00 ± 6.15 0.86 ± 0.05 0.96 ± 0.02
6 18 93.00 ± 1.97 92.50 ± 5.40 93.50 ± 4.12 0.86 ± 0.04 0.96 ± 0.02
7 15 92.00 ± 1.97 94.00 ± 5.16 90.00 ± 7.45 0.85 ± 0.04 0.96 ± 0.02
8 17 91.75 ± 2.90 94.00 ± 5.16 89.50 ± 6.43 0.84 ± 0.06 0.95 ± 0.04
9 18 91.50 ± 3.38 90.50 ± 7.62 92.50 ± 7.91 0.84 ± 0.06 0.97 ± 0.04
10 17 92.50 ± 1.67 95.00 ± 3.33 90.00 ± 4.08 0.85 ± 0.03 0.95 ± 0.04

# Feature represents the number of features used for constructing a model.

Amongst the ten different feature subsets, Table 3 shows that the subsets with the five highest
Ac over 10-fold CV are subsets 10, 5, 4, 3, and 1 (92.19 ± 1.09%, 92.01 ± 1.40%, 91.63 ± 1.75%, 91.58
± 1.77%, and 91.23 ± 1.31%, respectively). Meanwhile, the subsets with the five highest Ac over the
independent validation test are subset 6, 10, 5, 1, and 4 (93.00 ± 1.97%, 92.50 ± 1.67%, 92.50 ± 2.36%,
92.50 ± 1.67%, and 92.25 ± 2.19%, respectively), as summarized in Table 4. As noticed in Tables 3 and 4,
subsets 10, 5, 4, 1, and 6 showed good predictive powers with their ranks (10-fold CV, independent
validation test) at (1, 2), (2,3), (3, 5), (5, 4), and (6,1) respectively. Although, subset 6 having a 91.07 ±
1.77% Ac was ranked at 5, its prediction result over independent validation test with 93.00 ± 1.97% Ac
outperformed that of other subsets. Due to the fact that the independent test is an effective way to
demonstrate the robustness and reliability of the model in real-world applications [36,39–43,45,49,50],
it could be stated that subset 6 having eighteen informative PCPs provided a crucial contribution to
the prediction performance. This feature subset yielded a prediction performance (Ac/MCC/auROC)
over the 10-fold CV and independent validation test of 91.07 ± 1.77%/0.82 ± 0.04/0.91 ± 0.10 and 93.00
± 1.97%/0.86 ± 0.04/0.96 ± 0.02, respectively.

Furthermore, the performance comparisons between SVM models with 531 PCPs as well as
eighteen informative PCPs were conducted to investigate the effectiveness of our selected feature
subset, which is illustrated in Figure 4. As noticed in Figure 4c, the values of Ac, Sn, Sp, MCC, and
auROC derived from using the eighteen informative PCPs are higher than using the 531 PCPs by
7%, 2%, 11%, 8%, and 3%, respectively. These results demonstrated that the inclusion of numerous
redundant and uninformative features caused poor prediction results. For convenience, the best QSP
predictor based on SVM model in conjunction with the eighteen informative PCPs will be referred to
as iQSP.

2.3. Comparison with Existing Methods

To demonstrate the effectiveness and power of our method, we conducted a comparative study of
our final model (named iQSP) with the existing methods. To date, there are only two existings methods
developed for the prediction of QSPs, i.e., QSPpred [29] and QSPpred-FL [28,48], performing on the
benchmark and independent datasets over 10-fold CV and independent validation test. Table 5 lists
the preformance comparisons of iQSP and the existing methods. From Table 5, we can observe that
QSPpred-FL yields the highest prediction performance of 94.30% Ac and 0.885 MCC over 10-fold CV,
while our proposed model iQSP gave a 91.07 ± 1.77% Ac and 0.82 ± 0.04 MCC. On the other hand, based
on the independent validation test, iQSP outperformed that other methods with 93.00 ± 1.97% Ac,
0.86 ± 0.04 MCC and 0.96 ± 0.02 auROC, which was better than the existing QSP predictors [28,29,48].
Although, iQSP achieved slightly better than QSPpred-FL, our proposed model showed significant
improvement than QSPpred-FL considering the two objectives: using the less complexity of prediction
methods (1 SVM vs. 99 RFs) and a minimum number of features used (18D vs. 913D).
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Figure 4. Performance comparisons of SVM models in conjunction with 531 PCPs and the eighteen
informative PCPs assessed by 10-fold cross-validation (a,b) and independent validation test (c,d).

Table 5. Performance comparisons between iQSP and existing methods assessed by 10-fold
cross-validation and independent validation tests.

Method # Feature
10-Fold CV Independent Test

Ac (%) MCC auROC Ac (%) MCC auROC

QSPpred a 430 91.25 0.830 0.960 90.00 0.800 0.950
QSPpred-FL b 913 94.30 0.885 N/A 92.50 0.860 0.962

iQSP 18 91.07 ± 1.77 0.82 ± 0.04 0.91 ± 0.10 93.00 ± 1.97 0.86 ± 0.04 0.96 ± 0.02
a Results were reported from the work of QSPpred. b Results were obtained by feeding the peptide sequences in the
independent set to the webserver of QSPpred-FL. # Feature represents the number of features used for constructing
a model. N/A symbol represents the authors did not provide the result.

To further investigate the power of the proposed iQSP, we compared its performance with other
conventional classifiers, i.e., k-nearest neighbor (k-NN), decision tree (rpart), and random forest (RF).
The k-NN, rpart and RF classifiers were performed on the same datasets and implemented using the
caret R package [54]. Rigorous 10-fold CV and independent validation test with ten independent rounds
of these classifiers based on the optimal feature subset are reported in Table 6 and Figure 5. The more
details of the parameter optimization of these three classifiers were described in the works [37,38,55–61].
Based the independent validation test, we noticed that the Ac, MCC and auROC values of iQSP were
higher than those of other classifiers by >2%, >4%, and >2%, respectively, suggesting that iQSP holds
very high potential to provide an accurate and reliable result in unseen peptides when compared to
the existing methods and the conventional classifiers developed in this study.
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Table 6. Performance comparison of iQSP with other conventional classifiers by using the optimal
feature subset. Models were evaluated by means of 10-fold cross-validation and independent validation
test subjected to ten rounds of random splits.

Classifier
10-Fold CV Independent Test

Ac (%) MCC auROC Ac (%) MCC auROC

k-NN 85.13 ± 0.27 0.72 ± 0.01 0.86 ± 0.00 85.75 ± 1.21 0.73 ± 0.02 0.91 ± 0.03
DT 83.57 ± 2.74 0.67 ± 0.06 0.87 ± 0.03 83.75 ± 3.39 0.68 ± 0.07 0.86 ± 0.05
RF 87.93 ± 0.48 0.76 ± 0.01 0.95 ± 0.01 91.00 ± 3.16 0.82 ± 0.06 0.94 ± 0.02

iQSP 91.07 ± 1.77 0.82 ± 0.04 0.91 ± 0.10 93.00 ± 1.97 0.86 ± 0.04 0.96 ± 0.02
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Based on Tables 3–6 and Figure 3, the superior performance of our proposed model iQSP over
10-fold CV and independent validation test might mainly be due to the following reasons: (i) Performing
with multiple random sampling procedure to protect against the risk of having good predictive result
by chance [39–43,49,50]; (ii) using an efficient feature selection method (GA-SAR) to identify m
informative features from 531 PCPs. Using eighteen informative PCPs could provide faster and more
cost-effective models, while model developers could gain an insight into the underlying prediction
processes [58,62–64]; (iii) selecting a powerful method for QSP prediction. Although, iQSP displayed a
superior performance over the existing methods assessed by the rigorous cross-validation methods,
there is still room for further improvements, including increasing the size of QSPs by gathering peptide
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sequences from various data sources, utilizing an interpretable learning algorithm, such as scoring
card method [44,53], improving the interpretation of important features responsible for the biological
activity [50,64] and exploring different ML algorithms, such as extreme gradient boosting [65] or deep
learning [66].

2.4. Feature Contribution Analysis

Informative features play a vital role for developing an accurate predictor as well as providing
a better understanding of QSPs. In this section, the eight informative PCPs utilized to analyze and
characterize QSPs are explored. In addition, the MDGI score was used to rank the importance of those
informative PCPs. Table 6 summarizes the detailed information of the eighteen informative PCPs and
their corresponding MDGI scores. As noticed in Table 7, the top seven important PCPs are QIAN880137,
AURR980102, ROBB760113, PRAM820101, GRAR740101, PALJ810111, and PONP800102 having an
MDGI value of greater than 10. The most important PCP is the AAindex ID QIAN880137 with an
MDGI value of 32.50 denoting ‘weights for coil’. In the analysis, two out of the eighteen informative
PCPs are related to AAC and composition, i.e., DAYM780101 (MDGI = 8.64) and GRAR740101 (MDGI
= 12.26). Akanksha et al. [29] reported that using AAC and DPC as input features yield Ac values as
high as 89.00% and 87.50%, respectively, as evaluated by the independent validation test. Furthermore,
amongst the eighteen informative PCPs, there are two informative PCPs, i.e., PONP800102 (MDGI =

10.96) and MANP780101 (MDGI = 8.36), related to hydrophobicity. In 2007, Raymond et al. [47] tested
their hypothesis that the hydrophobic face of 21-amino-acid signaling peptide might be important
for receptor binding by replacing a hydrophobic residue (Phe) with a hydrophilic residue (Gln).
In this study, three peptides, i.e., F7Q, F11Q, and F15Q, were synthesized and assessed for their
abilities to activate quorum sensing. Their results indicated that the substitution of Phe with Gln
significantly affected the activity of the signal peptide in activation of quorum sensing. Additionally,
Akanksha et al. [29] also mentioned the importance of Phe in QSPs whereby Phe was dominant in the
first and last 5 residues at N- and C-terminal regions. As noticed in Table 2, these results are consistent
with our analysis results which show that Phe and Gln are ranked at 1 and 20, respectively.

2.5. Interpretable Rules Acquisition

In this work, the if–then interpretable rules called IR-QSP were constructed by using the RF method
in conjunction with the optimal subset consisting of 18 informative PCPs (Table 7), as mentioned
above. The main advantages of these constructed rules are twofold: (i) To demonstrate which PCP
or which combination of PCPs are effective for QSP prediction, and (ii) to simply discriminate QSPs
from Non-QSPs without the need to go through the mathematical and computational details. Tables 8
and A2 list eight interpretable rules that were important for QSP and twelve that were important for
Non-QSP. If a query peptide meets all of the criteria in at least one of the eight rules, then it is identified
as QSP. As observed in Tables 8 and A2, almost all the rules can yield a prediction accuracy of greater
than 80%, except for rule #7. Interestingly, these four rules can achieve an Ac value of greater than 90%,
i.e., rules #1, #2, #3, and #4. Thus, these results indicate that the construction of rules are reliable and
easy-to-use, both in terms of their accuracy and interpretability for predicting and characterizing QSPs.
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Table 7. The eighteen informative physicochemical properties [58] derived from the genetic algorithm
utilizing self-assessment-report (GA-SAR) algorithm and their MDGI.

Rank AAindex ID MDGI Description

1 QIAN880137 32.55 Weights for coil at the window position of 4
(Qian-Sejnowski, 1988)

2 AURR980102 16.62 Normalized positional residue frequency at helix
termini N’ (Aurora-Rose, 1998)

3 ROBB760113 13.56 Information measure for loop (Robson-Suzuki, 1976)

4 PRAM820101 12.62 Intercept in regression analysis
(Prabhakaran-Ponnuswamy, 1982)

5 GRAR740101 12.26 Composition (Grantham, 1974)

6 PALJ810111 11.71 Normalized frequency of beta-sheet in alpha + beta
class (Palau et al., 1981)

7 PONP800102 10.96 Average gain in surrounding hydrophobicity
(Ponnuswamy et al., 1980)

8 MUNV940103 9.07 Free energy in beta-strand conformation
(Munoz-Serrano, 1994)

9 DAYM780101 8.64 Amino acid composition (Dayhoff et al., 1978a)

10 MANP780101 8.36 Average surrounding hydrophobicity
(Manavalan-Ponnuswamy, 1978)

11 KUMS000103 8.23 Distribution of amino acid residues in the alpha-helices
in thermophilic proteins (Kumar et al., 2000)

12 ROBB760104 8.18 Information measure for C-terminal helix
(Robson-Suzuki, 1976)

13 ISOY800107 8.09 Normalized relative frequency of double bend
(Isogai et al., 1980)

14 GEIM800101 7.80 Alpha-helix indices (Geisow-Roberts, 1980)

15 PRAM900102 7.59 Relative frequency in alpha-helix (Prabhakaran, 1990)

16 NADH010104 7.20
Hydropathy scale based on self-information values in

the two-state model (20% accessibility)
(Naderi-Manesh et al., 2001)

17 FUKS010106 6.47
Interior composition of amino acids in intracellular

proteins of mesophiles (percent)
(Fukuchi-Nishikawa, 2001)

18 WIMW960101 5.54 Free energies of transfer of AcWl-X-LL peptides from
bilayer interface to water (Wimley-White, 1996)

2.6. iQSP Web Server

In an effort to maximize the full potential usage of the predictive model proposed in this study, the
model along with optimal parameter settings were embedded inside an R powered website by means
of the Shiny package. The resulting iQSP web server is publicly available at http://codes.bio/iqsp/.
The server accepts an input the query peptide sequence in FASTA format that it submits for feature
calculation and further fed into the predictive model for prediction of the class label as to whether it is
a QSP or Non-QSP. Screenshots of the iQSP web server are shown in Figure 6.

http://codes.bio/iqsp/
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Table 8. Fourteen if–then rules for the prediction of quorum sensing peptides using random forest and
the 18 informative physicochemical properties.

No. Rule Cover
Samples

Misclassified
Samples Ac (%)

1 GRAR740101 ≤ 0.9055 & MANP780101 > 0.7495 &
PRAM900102 > 0.848 & QIAN880137 ≤ 0.237 10 0 100.00

2
PONP800102 > −0.751 & PONP800102 ≤ 1.0025 &
QIAN880137 ≤ −0.104 & ROBB760104 ≤ 0.3645 &

ROBB760104 > −0.5205
61 1 98.36

3
PALJ810111 ≤ 1.369 & QIAN880137 > −0.104 &
QIAN880137 ≤ 0.417 & ROBB760113 ≤ 0.5975 &

AURR980102 ≤ 0.6955
21 2 90.48

4
GEIM800101 > −0.3135 & GRAR740101 > −0.176 &
ISOY800107 ≤ 1.367 & MANP780101 > −0.3325 &
PALJ810111 ≤ 1.0905 & QIAN880137 ≤ −0.0985

94 6 93.62

5
PALJ810111 > −0.786 & QIAN880137 > 0.237 &
QIAN880137 > 0.403 & ROBB760113 > 0.5975 &
AURR980102 ≤ 0.811 & KUMS000103 ≤ 0.793

45 7 84.44

6
GRAR740101 ≤ 0.341 & ISOY800107 ≤ −0.089 &
PALJ810111 ≤ 1.2455 & QIAN880137 > −0.009 &

ROBB760113 ≤ −0.0285
17 3 82.35

7
GRAR740101 > −0.708 & PRAM900102 ≤ 1.2985 &
QIAN880137 > −0.104 & QIAN880137 ≤ 1.105 &
AURR980102 ≤ 0.6585 & KUMS000103 ≤ 0.974

94 28 70.21

8
PONP800102 ≤ 1.1095 & PRAM900102 ≤ 0.8295 &
QIAN880137 ≤ 0.2625 & QIAN880137 > −0.9055 &

ROBB760113 > −0.5875 & ROBB760113 ≤ 1.031
121 15 87.60

The procedure for using the iQSP web server for predicting the class label can be summarized
as follows:

Step 1. Proceed to the iQSP web server by going to the URL, http://codes.bio/iqsp/ and wait until
the text box below the “Status/Output” (found on the right hand side) returns the message [1] “Server
is ready for prediction”.

Step 2. Enter the query peptide sequence (in FASTA format) into the text box found below the
text “Enter your input sequence(s) in FASTA format”. Alternatively, the user can also save the FASTA
sequences into a text file and upload this text file to the server by clicking on the “Choose File” found
below the text “or upload file”.

Step 3. Finally, click on the “Submit” button to start the prediction process. Shortly after, the
prediction results will be displayed in the text box found below the “Status/Output”. This will return
the prediction results as a 4 column verbatim text for which the first, second, third and fourth column
corresponds to an arbitrary sequence identification number (1, 2, 3, etc.), predicted class label (i.e.,
as either QSP or Non-QSP), the probability score of the query peptide being a Non-QSP and the
probability score of the query peptide being a QSP, respectively.

http://codes.bio/iqsp/
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3. Materials and Methods

In order to establish a robust sequence-based tool for modeling the investigated QSPs, we
followed Chou’s five-step guidelines as mentioned in a series of recent publications [67–72] and
summarized in two comprehensive review papers [34,35]: (i) Compilation of a reliable dataset that
contains experimentally validated sequences for training and validating the model; (ii) quantifying
peptides sequences to describe their physicochemical properties; (iii) developing the prediction model
using robust algorithm; (iv) assess the prediction model using standard cross-validation tests; and
(v) constructing a user-friendly web-server for obtaining the prediction without the need to understand
complex mathematical and statistical details. Furthermore, Figure 2 shows the workflow of iQSP
which works in discriminating peptides as QSPs or Non-QSPs.
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3.1. Benchmark Dataset

To make a fair comparison with the existing methods, the same benchmark and independent
datasets derived from the work [29] were taken to develop and validate the proposed model. In this
study, the benchmark dataset consists of 200 QSPs and 200 Non-QSPs, while the independent dataset
consists of 20 QSPs and 20 Non-QSPs. The benchmark (STR) and independent (STS) datasets used in
this study can be summarized by the following formula:

STR = S+
TR ∪ S−TR (1)

STS = S+
TS ∪ S−TS (2)

where S+ and S− represent peptide sequences of QSPs and Non-QSPs, respectively, while the symbol
∪ represents the union from the set theory. However, these two datasets were constructed with a single
random sampling procedure. Therefore, to alleviate the impact of the random sampling procedure, we
repeated this construction procedure with ten independent rounds and the final prediction results
were obtained by averaging the five statistical parameters.

3.2. Feature Representation

PCP is one of the most intuitive features associated with biophysical and biochemical reactions
and is also referred to as an available, easy and interpretable feature. In fact, a total of 531 PCPs without
NA values were derived from version 9.0 of the Amino acid index database (AAindex) [58], which is a
collection of the published literature pertaining to different physicochemical and biophysical properties
of amino acids and pairs of amino acids (http://www.genome.jp/aaindex/). Each PCP consisted of a set
of 20 numerical values for amino acids. The PCP feature has been extensively used for the prediction
and analysis of various protein [42,52,53] and peptide [36,39–41,45] functions. To utilize PCP features
for extracting a peptide sequence, peptide with the length of L amino acid residues is encoded into an
L-dimensional vector of 531 PCPs (531D). In this study, the number of L is in the range of 5–20, i.e., 5, 6,
7, . . . , 20. Additional details on how to obtain a minimum number of L can be found in the sub-section
of Identification of Informative Physicochemical Properties.

3.3. Support Vector Machine

SVM method is an effective ML algorithm for supervised pattern and has been widely
used in various biological problems [36–39,41,43,45,52,73–80]. This method is based on the
Vapnik–Chervonenkis theory of statistical learning [81–83]. The basic idea of this method is to
map the original feature vectors having p-dimensional vector into a higher Hilbert space with
n-dimensional vector, where p < n, and then determine a separate hyper plane with the largest
distance between the two classes. In this work, each sample on the benchmark (STR) and independent
(STS) datasets have a corresponding label (−1 and 1) where +1 and −1 represent QSP and Non-QSP,
respectively. In this study, the kernlab R package [84] was used to implement the SVM model. To
enhance the performance of the SVM model, the regularization parameter C and kernel parameter γ
were tuned by using grid search method with a cross-validation technique, of which the search space
for C and γ are [2−8, 28] and [2−8, 28] with steps of 2 and 2, respectively.

3.4. Performance Evaluation

In statistical predictions, there are three testing methods most often used to assess the predictive
ability of the model: (i) Sub-sampling test (2-, 5- or 10-fold cross-validation), (ii) jackknife test also
known as leave-one-out cross-validation (LOO-CV), and (iii) independent (or external) validation test.
The sub-sampling test is one of the most popular cross-validation methods to assess the predictive
capability of a model. As described in [35,85] and investigated by Equation (50) of [86], among
those testing methods, the jackknife test is considered as one of the most rigorous that can provide a

http://www.genome.jp/aaindex/
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unique result for a given benchmark dataset. However, to perform a fair comparison with the existing
methods and reduce the computational time, the 10-fold cross-validation (10-fold CV) and independent
validation test were used to evaluate the prediction performance of our models. The former set (10-fold
CV) makes use of data from the training set where the data set is separated into ten subsets. Practically,
one subset from a total of ten subsets is left out as the testing set while the remaining are used for
training the model. This process is repeated iteratively until all data samples have had the chance to be
left out as the testing set.

In order to evaluate the prediction ability of the model, the following sets of four metrics are used:

Ac =
TP + TN

(TP + TN + FP + FN)
(3)

Sn =
TP

(TP + FN)
(4)

Sp =
TN

(TN + FP)
(5)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

where Ac, Sn, Sp, and MCC represent accuracy, sensitivity, specificity and Matthews coefficient
correlation, respectively. TP, TN, FP, and FN represent the instances of true positive, true negative, false
positive, and false negative, respectively. Moreover, in order to evaluate the prediction performance of
models using threshold-independent parameters, receiver operating characteristic (ROC) curves were
plotted using the pROC package in the R software [87]. The area under the ROC curve (AUC) was
used to measure the prediction performance, where AUC values of 0.5 and 1 are indicative of perfect
and random models, respectively.

3.5. Identification of Informative Physicochemical Properties

In order to determine a minimal number of informative features while maximizing prediction
accuracy of SVM model, the customized implementation of genetic algorithm (GA), called genetic
algorithm utilizing self-assessment-report (GA-SAR), was developed to elucidate the mentioned
problem by taking an advantage of an inheritable GA [88] to select an informative feature. GA-SAR
utilizes a self-assessment-report (SAR) approach to construct a profile used for reporting the usefulness
of 531 PCPs based on the assumption that a good feature will be highly correlated with the output
variable, but uncorrelated to each other [51,89]. Before starting the GA-SAR process, the usefulness
of 531 PCPs are calculated. After that, the profile is applied in a mutation function of GA to create
a chance of adding/deleting features. During the process of GA optimization, features having low
usefulness scores are deleted, while a minimal number of informative PCPs are specified.

The chromosome of GA-SAR consisted of binary genes indicating an occurrence of each feature in
the feature set and the parameter of model genes for tuning the parameters of the classifier. Herein, the
binary genes contain 531 genes and two 4-bit for encoding the parameters C (2−8, 2−7, . . . , 28) and γ

(2−8, 2−7, . . . , 28) of the SVM model. The identification of informative PCPs using GA-SAR algorithm
is described as follows:

(1) Randomly generate 50 chromosomes with randomly assigned values of binary genes to make
the number of features (m) equal to our preferred number, where m is in the range from 5 to 20.
(Initialization)

(2) Assess the prediction performances for each chromosome over 10-fold CV procedure.
(Evaluation)

(3) Implement a tournament selection to prepare a mating pool. (Selecting)
(4) Perform a 20-point crossover on the selected parents. (Crossover)
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(5) Apply the SAR mutation operator and if the number of chosen genes are greater than the
specified number of features, delete some genes. In contrast, if the number of chosen genes are less
than the specified number of features, add some genes. The probability of genes to be added or deleted
is referred to as SAR. (Mutation)

(6) Stop if the number of generation is equal to 50; otherwise go to Step 2. (Termination)

3.6. Construction of Interpretable Rules

This work presents an interpretable rule extraction of QSPs (IR-QSP) based on the RF method
cooperating with the m informative PCPs for determining the biophysical and biochemical properties
of QSPs. A set of rules from an individual tree is derived from the root to the leaves. In this study,
only 100 decision trees were used to extract the if–then interpretable rules for explaining the prediction
results by means of RF method, inTrees and xtable packages in the R software [90–92]. More details of
the rule extraction process can be found in previous related works [36,61,93].

3.7. Construction of the iQSP Web Server

The best performing model described in this study is used as the basis for deployment as a web
server. Particularly, the underlying machine learning model is encapsulated inside a website by means
of the Shiny package in an R programming environment. By default of the Shiny package, the user
interface follows a responsive web design principle in which the website can display optimally in
various device platform whether it be a mobile phone, tablet or desktop computers of various screen
resolutions. The code and data used to operate the iQSP web server is hosted on Digital Ocean and is
publicly available at http://codes.bio/iqsp/. In fact, user-friendly and publicly accessible web-servers
that can display the findings manipulated by users according to their need might significantly enhance
their impacts, driving medicinal chemistry into an unprecedented revolution [34,94–107]. Keeping
this point in our mind, we shall make efforts in our future work to provide a web-server to provide
such functionality.

4. Conclusions

An accurate tool for predicting and analyzing QSPs is essential for understanding their roles
in clinical applications and providing a promising way to combat bacterial infections. Thus, in
this study, we developed an efficient and interpretable sequence-based predictor for predicting and
analyzing QSPs, called iQSP, by utilizing a set of m informative physicochemical properties (PCPs)
in conjunction with a powerful support vector machine (SVM). Performance comparisons for both
rigorous cross-validation and independent validation tests demonstrated the superiority of iQSP over
the existing QSP predictors. Moreover, feature selection and interpretable rule extraction were carried
out to construct easy-to-use if–then rules (IR-QSP) for discriminating QSPs from Non-QSPs by using
random forest (RF) model and the m informative PCPs. Finally, to help potential users of iQSP, a
web server named iQSP was implemented and made freely available online at https://codes.bio/iqsp/.
It is anticipated that iQSP may become a powerful and cost-effective approach for predicting and
analyzing peptides on a large scale. Due to various potential application of our systematic approach
employed in this study, we could extend this for predicting and analyzing many other types of protein
and peptide functions such as S-palmitoylation sites in proteins [68], lysine crotonylation sites [108],
and phosphotyrosine sites [109]. Furthermore, our method could be integrated with other beneficial
peptide features such as pseudo amino acid composition [110–112] or amphiphilic pseudo amino acid
composition as proposed [113] by Chou [35,114] for further improving the QSP prediction
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Appendix A

Table A1. Ten different feature subsets and their corresponding physicochemical properties in the
AAindex database.

Subset # Feature AAindex

1 14
FASG760103, ISOY800102, KYTJ820101, LIFS790103, MEIH800102,

OOBM850101, PALJ810113, QIAN880137, ROSG850101, TANS770101,
AURR980116, VINM940104, NADH010107, FUKS010106

2 17

ANDN920101, GRAR740102, JANJ780103, LIFS790101, NAGK730102,
PALJ810102, QIAN880137, RACS820102, ROBB760109, ROBB760111,

SUEM840102, TANS770104, TANS770108, AURR980115, VINM940103,
BLAM930101, PUNT030102

3 16

EISD860101, GEIM800105, HOPA770101, LIFS790101, MEIH800103,
OOBM770101, PALJ810111, QIAN880128, RACS770101, ROBB760107,
ROBB790101, AURR980110, VINM940101, KIMC930101, FUKS010106,

TSAJ990102,

4 17

DAYM780101, ISOY800108, MEIH800102, NAKH900104, PALJ810111,
PALJ810113, PRAM820102, RACS770101, ROBB760111, SNEP660104,

AURR980118, VINM940101, PARS000101, NADH010106, FUKS010106,
TSAJ990101, GEOR030107

5 17

ANDN920101, FINA910102, GEIM800102, GRAR740102, ISOY800101,
LIFS790102, NOZY710101, PALJ810106, QIAN880138, ROBB760107,

ROBB760112, ZIMJ680101, AURR980113, MUNV940102, MUNV940105,
MONM990201, FUKS010109

6 18

DAYM780101, GEIM800101, GRAR740101, ISOY800107, MANP780101,
PALJ810111, PONP800102, PRAM820101, PRAM900102, QIAN880137,

ROBB760104, ROBB760113, AURR980102, MUNV940103,
WIMW960101, KUMS000103, NADH010104, FUKS010106

7 15
GRAR740101, ISOY800108, LIFS790103, MIYS850101, OOBM850105,
PALJ810114, QIAN880137, RACS820109, ROBB760108, ROSG850101,

TANS770107, AURR980116, VINM940104, PARS000102, GEOR030108

8 17

ANDN920101, ARGP820103, BIGC670101, BULH740101, BUNA790102,
CHOC760104, CHOP780211, CHOP780212, DESM900101, FASG760101,
GRAR740101, NAKH900101, RADA880107, ROBB790101, TANS770109,

GUOD860101, PONJ960101

9 18

FAUJ880112, FINA910103, GRAR740101, JOND750102, NISK860101,
PALJ810108, PONP800104, PRAM820101, QIAN880125, QIAN880134,

ROBB760108, WERD780104, AURR980113, VINM940101, VINM940102,
PARS000102, FUKS010108, WOLR790101

10 17

ANDN920101, BROC820102, BUNA790101, CHAM830104,
CHOP780207, CIDH920101, CIDH920104, DESM900102, FASG760101,

FINA910102, JANJ780101, LEWP710101, PALJ810110, QIAN880125,
VASM830101, AURR980108, COSI940101

# Feature represents the number of features used for constructing a model.
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Table A2. Twenty if–then rules for discriminating QSPs from Non-QSPs using random forest model in
conjunction with the eighteen informative physicochemical properties.

% Covered Samples Rule Prediction Result

3.57 GRAR740101 ≤ 0.9055 & MANP780101 > 0.7495 &
PRAM900102 > 0.848 & QIAN880137 ≤ 0.237 QSP

14.03
PONP800102 > −0.751 & PONP800102 ≤ 1.0025 &
QIAN880137 ≤ −0.104 & ROBB760104 ≤ 0.3645 &

ROBB760104 > −0.5205
QSP

4.08
PALJ810111 ≤ 1.369 & QIAN880137 > −0.104 &
QIAN880137 ≤ 0.417 & ROBB760113 ≤ 0.5975 &

AURR980102 ≤ 0.6955
QSP

9.95
GEIM800101 > −0.3135 & GRAR740101 > −0.176 &
ISOY800107 ≤ 1.367 & MANP780101 > −0.3325 &
PALJ810111 ≤ 1.0905 & QIAN880137 ≤ −0.0985

QSP

9.95
PALJ810111 > −0.786 & QIAN880137 > 0.237 &
QIAN880137 > 0.403 & ROBB760113 > 0.5975 &
AURR980102 ≤ 0.811 & KUMS000103 ≤ 0.793

QSP

2.81
GRAR740101 ≤ 0.341 & ISOY800107 ≤ −0.089 &
PALJ810111 ≤ 1.2455 & QIAN880137 > −0.009 &

ROBB760113 ≤ −0.0285
QSP

2.81
GRAR740101 > −0.708 & PRAM900102 ≤ 1.2985 &
QIAN880137 > −0.104 & QIAN880137 ≤ 1.105 &
AURR980102 ≤ 0.6585 & KUMS000103 ≤ 0.974

QSP

1.53
PONP800102 ≤ 1.1095 & PRAM900102 ≤ 0.8295 &
QIAN880137 ≤ 0.2625 & QIAN880137 > −0.9055 &

ROBB760113 > −0.5875 & ROBB760113 ≤ 1.031
QSP

11.73 GEIM800101 > −0.547 & PONP800102 > 0.9625 &
PRAM900102 ≤ 1.026 Non-QSP

3.57 QIAN880137 > −0.0985 & QIAN880137 ≤ 0.482 &
ROBB760113 > 0.5975 & AURR980102 > −0.1535 Non-QSP

2.30 QIAN880137 > 0.257 & ROBB760113 > 0.613 &
ROBB760113 > 0.7775 & AURR980102 > 0.584 Non-QSP

1.79 DAYM780101 ≤ 0.1035 & MANP780101 > 0.5635 &
QIAN880137 ≤ 0.2625 & ROBB760113 > 0.5215 Non-QSP

1.53 GRAR740101 > −0.045 & PALJ810111 > 1.0905 &
QIAN880137 ≤ −0.0985 Non-QSP

6.12
MANP780101 > −0.5985 & ROBB760104 > −0.3545 &

AURR980102 ≤ 0.5935 & AURR980102 ≤ 0.5125 &
KUMS000103 > 0.663

Non-QSP

3.57
PONP800102 > 0.5045 & QIAN880137 > −0.039 &
ROBB760104 > −0.1345 & ROBB760113 ≤ 0.5975 &

AURR980102 ≤ 1.22 & FUKS010106 ≤ 1.1985
Non-QSP

1.28
QIAN880137 > 0.2625 & QIAN880137 ≤ 0.7795 &

ROBB760104 > −0.3885 & AURR980102 ≤ 0.6585 &
AURR980102 ≤ 0.515 & NADH010104 > −0.023

Non-QSP

3.06
GEIM800101 ≤ 1.636 & PONP800102 ≤ 0.6385 &

PRAM900102 > −0.017 & PRAM900102 > 0.627 &
QIAN880137 > −0.009

Non-QSP

2.55 PALJ810111 ≤ 0.436 & PRAM900102 > 0.1605 &
QIAN880137 > −0.009 & AURR980102 ≤ 0.6525 Non-QSP

1.53 GEIM800101 ≤ −0.3305 & GRAR740101 > −0.2425 &
PONP800102 ≤ 0.98 & QIAN880137 ≤ 0.237 Non-QSP

12.24 Else Non-QSP



Int. J. Mol. Sci. 2020, 21, 75 19 of 24

References

1. Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: The LuxR-LuxI family of cell
density-responsive transcriptional regulators. J. Bacteriol. 1994, 176, 269–275. [CrossRef]

2. Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev.
Biol. 2005, 21, 319–346. [CrossRef]

3. Rutherford, S.T.; Bassler, B.L. Bacterial quorum sensing: Its role in virulence and possibilities for its control.
Cold Spring Harb. Perspect. Med. 2012, 2, a012427. [CrossRef]

4. Remy, B.; Mion, S.; Plener, L.; Elias, M.; Chabriere, E.; Daude, D. Interference in bacterial quorum sensing: A
biopharmaceutical perspective. Front. Pharm. 2018, 9, 203. [CrossRef]

5. Monnet, V.; Juillard, V.; Gardan, R. Peptide conversations in Gram-positive bacteria. Crit. Rev. Microbiol.
2016, 42, 339–351. [CrossRef]

6. Schuster, M.; Sexton, D.J.; Diggle, S.P.; Greenberg, E.P. Acyl-homoserine lactone quorum sensing: From
evolution to application. Annu. Rev. Microbiol. 2013, 67, 43–63. [CrossRef]

7. Hazan, R.; Que, Y.A.; Maura, D.; Strobel, B.; Majcherczyk, P.A.; Hopper, L.R.; Wilbur, D.J.; Hreha, T.N.;
Barquera, B.; Rahme, L.G. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule
favors biofilm formation and antibiotic tolerance. Curr. Biol. 2016, 26, 195–206. [CrossRef]

8. Zhou, S.; Zhang, A.; Yin, H.; Chu, W. Bacillus sp. QSI-1 modulate quorum sensing signals reduce aeromonas
hydrophila level and alter gut microbial community structure in fish. Front. Cell. Infect. Microbiol. 2016, 6,
184. [CrossRef]

9. Tiaden, A.; Hilbi, H. alpha-Hydroxyketone synthesis and sensing by Legionella and Vibrio. Sensors 2012, 12,
2899–2919. [CrossRef]

10. Kendall, M.M.; Sperandio, V. Quorum sensing by enteric pathogens. Curr. Opin. Gastroenterol. 2007, 23,
10–15. [CrossRef]

11. Heeb, S.; Fletcher, M.P.; Chhabra, S.R.; Diggle, S.P.; Williams, P.; Camara, M. Quinolones: From antibiotics to
autoinducers. FEMS Microbiol. Rev. 2011, 35, 247–274. [CrossRef]

12. Chen, X.; Schauder, S.; Potier, N.; Van Dorsselaer, A.; Pelczer, I.; Bassler, B.L.; Hughson, F.M. Structural
identification of a bacterial quorum-sensing signal containing boron. Nature 2002, 415, 545–549. [CrossRef]

13. Mukherjee, S.; Bassler, B.L. Bacterial quorum sensing in complex and dynamically changing environments.
Nat. Rev. Microbiol. 2019, 17, 371–382. [CrossRef]

14. Whiteley, M.; Diggle, S.P.; Greenberg, E.P. Progress in and promise of bacterial quorum sensing research.
Nature 2017, 551, 313–320. [CrossRef]

15. Jiang, Q.; Chen, J.; Yang, C.; Yin, Y.; Yao, K. Quorum Sensing: A prospective therapeutic target for bacterial
diseases. Biomed. Res. Int. 2019, 2019, 2015978. [CrossRef]

16. Papenfort, K.; Bassler, B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev.
Microbiol. 2016, 14, 576–588. [CrossRef]

17. Verbeke, F.; De Craemer, S.; Debunne, N.; Janssens, Y.; Wynendaele, E.; Van de Wiele, C.; De Spiegeleer, B.
Peptides as quorum sensing molecules: Measurement techniques and obtained levels in vitro and in vivo.
Front. Neurosci. 2017, 11, 183. [CrossRef]

18. De Kievit, T.R.; Gillis, R.; Marx, S.; Brown, C.; Iglewski, B.H. Quorum-sensing genes in Pseudomonas
aeruginosa biofilms: Their role and expression patterns. Appl. Environ. Microbiol. 2001, 67, 1865–1873.
[CrossRef]

19. Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015, 6,
26–41. [CrossRef]

20. Eickhoff, M.J.; Bassler, B.L. SnapShot: Bacterial quorum sensing. Cell 2018, 174, 1328–1328.e1. [CrossRef]
21. Gallardo-Garcia, M.M.; Sanchez-Espin, G.; Ivanova-Georgieva, R.; Ruiz-Morales, J.; Rodriguez-Bailon, I.;

Vinuela Gonzalez, V.; Garcia-Lopez, M.V. Relationship between pathogenic, clinical, and virulence factors of
Staphylococcus aureus in infective endocarditis versus uncomplicated bacteremia: A case-control study. Eur.
J. Clin. Microbiol. Infect. Dis. 2016, 35, 821–828. [CrossRef]

22. Liu, J.; Yu, H.; Huang, Y.; Yu, Z.; Fan, G.; Jin, J.; Liu, X.; Wang, G. Complete genome sequence of a novel
bacteriophage infecting Bradyrhizobium diazoefficiens USDA110. Sci. China Life Sci. 2018, 61, 118–121.
[CrossRef]

http://dx.doi.org/10.1128/jb.176.2.269-275.1994
http://dx.doi.org/10.1146/annurev.cellbio.21.012704.131001
http://dx.doi.org/10.1101/cshperspect.a012427
http://dx.doi.org/10.3389/fphar.2018.00203
http://dx.doi.org/10.3109/1040841X.2014.948804
http://dx.doi.org/10.1146/annurev-micro-092412-155635
http://dx.doi.org/10.1016/j.cub.2015.11.056
http://dx.doi.org/10.3389/fcimb.2016.00184
http://dx.doi.org/10.3390/s120302899
http://dx.doi.org/10.1097/MOG.0b013e3280118289
http://dx.doi.org/10.1111/j.1574-6976.2010.00247.x
http://dx.doi.org/10.1038/415545a
http://dx.doi.org/10.1038/s41579-019-0186-5
http://dx.doi.org/10.1038/nature24624
http://dx.doi.org/10.1155/2019/2015978
http://dx.doi.org/10.1038/nrmicro.2016.89
http://dx.doi.org/10.3389/fnins.2017.00183
http://dx.doi.org/10.1128/AEM.67.4.1865-1873.2001
http://dx.doi.org/10.1007/s13238-014-0100-x
http://dx.doi.org/10.1016/j.cell.2018.08.003
http://dx.doi.org/10.1007/s10096-016-2603-2
http://dx.doi.org/10.1007/s11427-017-9112-0


Int. J. Mol. Sci. 2020, 21, 75 20 of 24

23. Han, M.; Gu, J.; Gao, G.F.; Liu, W.J. China in action: National strategies to combat against emerging infectious
diseases. Sci. China Life Sci. 2017, 60, 1383–1385. [CrossRef]

24. Vadekeetil, A.; Saini, H.; Chhibber, S.; Harjai, K. Exploiting the antivirulence efficacy of an ajoene-ciprofloxacin
combination against Pseudomonas aeruginosa biofilm associated murine acute pyelonephritis. Biofouling
2016, 32, 371–382. [CrossRef]

25. Bahari, S.; Zeighami, H.; Mirshahabi, H.; Roudashti, S.; Haghi, F. Inhibition of Pseudomonas aeruginosa
quorum sensing by subinhibitory concentrations of curcumin with gentamicin and azithromycin. J. Glob.
Antimicrob. Resist. 2017, 10, 21–28. [CrossRef]

26. Furiga, A.; Lajoie, B.; El Hage, S.; Baziard, G.; Roques, C. Impairment of pseudomonas aeruginosa biofilm
resistance to antibiotics by combining the drugs with a new quorum-sensing inhibitor. Antimicrob. Agents
Chemother. 2015, 60, 1676–1686. [CrossRef]

27. Brackman, G.; Cos, P.; Maes, L.; Nelis, H.J.; Coenye, T. Quorum sensing inhibitors increase the susceptibility
of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother. 2011, 55, 2655–2661.
[CrossRef]

28. Wei, L.; Hu, J.; Li, F.; Song, J.; Su, R.; Zou, Q. Comparative analysis and prediction of quorum-sensing
peptides using feature representation learning and machine learning algorithms. Brief. Bioinform. 2018, 10,
1–14. [CrossRef]

29. Rajput, A.; Gupta, A.K.; Kumar, M. Prediction and analysis of quorum sensing peptides based on sequence
features. PLoS ONE 2015, 10, e0120066. [CrossRef]

30. Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.-C. iACP: A sequence-based tool for identifying anticancer
peptides. Oncotarget 2016, 7, 16895. [CrossRef]

31. Raiko, T.; Ilin, A.; Karhunen, J. Principal component analysis for large scale problems with lots of missing
values. In Proceedings of European Conference on Machine Learning; Springer: Berlin/Heidelberg, Germany,
2007; pp. 691–698.

32. Subramanian, J.; Simon, R. Overfitting in prediction models—Is it a problem only in high dimensions?
Contemp. Clin. Trials 2013, 36, 636–641. [CrossRef]

33. Xing, E.P.; Jordan, M.I.; Karp, R.M. Feature selection for high-dimensional genomic microarray data. ICML
2001, 1, 601–608.

34. Chou, K.-C. Advance in predicting subcellular localization of multi-label proteins and its implication for
developing multi-target drugs. Curr. Med. Chem. 2019, 26, 4918–4943. [CrossRef]

35. Chou, K.-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol.
2011, 273, 236–247. [CrossRef]

36. Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. ACPred: A computational tool
for the prediction and analysis of anticancer peptides. Molecules 2019, 24, 1973. [CrossRef]

37. Simeon, S.; Li, H.; Win, T.S.; Malik, A.A.; Kandhro, A.H.; Piacham, T.; Shoombuatong, W.; Nuchnoi, P.;
Wikberg, J.E.; Gleeson, M.P. PepBio: Predicting the bioactivity of host defense peptides. RSC Adv. 2017, 7,
35119–35134. [CrossRef]

38. Simeon, S.; Shoombuatong, W.; Anuwongcharoen, N.; Preeyanon, L.; Prachayasittikul, V.; Wikberg, J.E.;
Nantasenamat, C. osFP: A web server for predicting the oligomeric states of fluorescent proteins. J.
Cheminform. 2016, 8, 72. [CrossRef]

39. Win, T.S.; Schaduangrat, N.; Prachayasittikul, V.; Nantasenamat, C.; Shoombuatong, W. PAAP: A web server
for predicting antihypertensive activity of peptides. Future Med. Chem. 2018, 10, 1749–1767. [CrossRef]

40. Laengsri, V.; Nantasenamat, C.; Schaduangrat, N.; Nuchnoi, P.; Prachayasittikul, V.; Shoombuatong, W.
TargetAntiAngio: A sequence-based tool for the prediction and analysis of anti-angiogenic peptides. Int. J.
Mol. Sci. 2019, 20, 2950. [CrossRef]

41. Shoombuatong, W.; Schaduangrat, N.; Pratiwi, R.; Nantasenamat, C. THPep: A machine learning-based
approach for predicting tumor homing peptides. Comput. Biol. Chem. 2019, 80, 441–451. [CrossRef]

42. Pratiwi, R.; Malik, A.A.; Schaduangrat, N.; Prachayasittikul, V.; Wikberg, J.E.; Nantasenamat, C.;
Shoombuatong, W. CryoProtect: A web server for classifying antifreeze proteins from nonantifreeze
proteins. J. Chem. 2017, 2017, 15. [CrossRef]

43. Hongjaisee, S.; Nantasenamat, C.; Carraway, T.S.; Shoombuatong, W. HIVCoR: A sequence-based tool for
predicting HIV-1 CRF01_AE coreceptor usage. Comput. Biol. Chem. 2019, 80, 419–432. [CrossRef]

http://dx.doi.org/10.1007/s11427-017-9141-3
http://dx.doi.org/10.1080/08927014.2015.1137289
http://dx.doi.org/10.1016/j.jgar.2017.03.006
http://dx.doi.org/10.1128/AAC.02533-15
http://dx.doi.org/10.1128/AAC.00045-11
http://dx.doi.org/10.1093/bib/bby107
http://dx.doi.org/10.1371/journal.pone.0120066
http://dx.doi.org/10.18632/oncotarget.7815
http://dx.doi.org/10.1016/j.cct.2013.06.011
http://dx.doi.org/10.2174/0929867326666190507082559
http://dx.doi.org/10.1016/j.jtbi.2010.12.024
http://dx.doi.org/10.3390/molecules24101973
http://dx.doi.org/10.1039/C7RA01388D
http://dx.doi.org/10.1186/s13321-016-0185-8
http://dx.doi.org/10.4155/fmc-2017-0300
http://dx.doi.org/10.3390/ijms20122950
http://dx.doi.org/10.1016/j.compbiolchem.2019.05.008
http://dx.doi.org/10.1155/2017/9861752
http://dx.doi.org/10.1016/j.compbiolchem.2019.05.006


Int. J. Mol. Sci. 2020, 21, 75 21 of 24

44. Charoenkwan, P.; Shoombuatong, W.; Lee, H.-C.; Chaijaruwanich, J.; Huang, H.-L.; Ho, S.-Y. SCMCRYS:
Predicting protein crystallization using an ensemble scoring card method with estimating propensity scores
of P-collocated amino acid pairs. PLoS ONE 2013, 8, e72368. [CrossRef]

45. Win, T.S.; Malik, A.A.; Prachayasittikul, V.S.; Wikberg, J.E.; Nantasenamat, C.; Shoombuatong, W. HemoPred:
A web server for predicting the hemolytic activity of peptides. Future Med. Chem. 2017, 9, 275–291. [CrossRef]

46. Crooks, G.E.; Hon, G.; Chandonia, J.-M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res.
2004, 14, 1188–1190. [CrossRef]

47. Syvitski, R.T.; Tian, X.-L.; Sampara, K.; Salman, A.; Lee, S.F.; Jakeman, D.L.; Li, Y.-H. Structure-activity
analysis of quorum-sensing signaling peptides from Streptococcus mutans. J. Bacteriol. 2007, 189, 1441–1450.
[CrossRef]

48. Wei, L.; Zhou, C.; Su, R.; Zou, Q. PEPred-Suite: Improved and robust prediction of therapeutic peptides
using adaptive feature representation learning. Bioinformatics 2019, 35, 4272–4280. [CrossRef]

49. Shoombuatong, W.; Schaduangrat, N.; Nantasenamat, C. Towards understanding aromatase inhibitory
activity via QSAR modeling. EXCLI J. 2018, 17, 688.

50. Shoombuatong, W.; Schaduangrat, N.; Nantasenamat, C. Unraveling the bioactivity of anticancer peptides as
deduced from machine learning. EXCLI J. 2018, 17, 734.

51. Shoombuatong, W.; Prachayasittikul, V.; Prachayasittikul, V.; Nantasenamat, C. Prediction of aromatase
inhibitory activity using the efficient linear method (ELM). EXCLI J. 2015, 14, 452.

52. Shoombuatong, W.; Mekha, P.; Chaijaruwanich, J. Sequence based human leukocyte antigen gene prediction
using informative physicochemical properties. Int. J. Data Min. Bioinform. 2015, 13, 211–224. [CrossRef]

53. Shoombuatong, W.; Huang, H.-L.; Chaijaruwanich, J.; Charoenkwan, P.; Lee, H.-C.; Ho, S.-Y. Predicting
protein crystallization using a simple scoring card method. In Proceedings of the IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Singapore, 16–19 April
2013; pp. 23–30.

54. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
55. Anuwongcharoen, N.; Shoombuatong, W.; Tantimongcolwat, T.; Prachayasittikul, V.; Nantasenamat, C.

Exploring the chemical space of influenza neuraminidase inhibitors. PeerJ 2016, 4, e1958. [CrossRef]
56. Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Prachayasittikul, V.; Nantasenamat, C.

Classification of P-glycoprotein-interacting compounds using machine learning methods. EXCLI J. 2015,
14, 958.

57. Shoombuatong, W.; Mekha, P.; Waiyamai, K.; Cheevadhanarak, S.; Chaijaruwanicha, J. Prediction of human
leukocyte antigen gene using k-nearest neighbour classifier based on spectrum kernel. Sci. Asia 2013, 39,
42–49. [CrossRef]

58. Shoombuatong, W.; Prachayasittikul, V.; Anuwongcharoen, N.; Songtawee, N.; Monnor, T.;
Prachayasittikul, S.; Prachayasittikul, V.; Nantasenamat, C. Navigating the chemical space of dipeptidyl
peptidase-4 inhibitors. Drug Des. Dev. Ther. 2015, 9, 4515.

59. Shoombuatong, W.; Prathipati, P.; Prachayasittikul, V.; Schaduangrat, N.; Ahmad Malik, A.; Pratiwi, R.;
Wanwimolruk, S.; ES Wikberg, J.; Paul Gleeson, M.; Spjuth, O. Towards predicting the cytochrome P450
modulation: From QSAR to proteochemometric modeling. Curr. Drug Metab. 2017, 18, 540–555. [CrossRef]

60. Worachartcheewan, A.; Prachayasittikul, V.; Anuwongcharoen, N.; Shoombuatong, W.; Prachayasittikul, V.;
Nantasenamat, C. On the origins of hepatitis C virus NS5B polymerase inhibitory activity using machine
learning approaches. Curr. Top. Med. Chem. 2015, 15, 1814–1826. [CrossRef]

61. Worachartcheewan, A.; Shoombuatong, W.; Pidetcha, P.; Nopnithipat, W.; Prachayasittikul, V.;
Nantasenamat, C. Predicting metabolic syndrome using the random forest method. Sci. World J. 2015, 2015.
[CrossRef]

62. Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics
2007, 23, 2507–2517. [CrossRef]

63. Shoombuatong, W.; Nabu, S.; Simeon, S.; Prachayasittikul, V.; Lapins, M.; Wikberg, J.E.; Nantasenamat, C.
Extending proteochemometric modeling for unraveling the sorption behavior of compound–soil interaction.
Chemom. Intell. Lab. Syst. 2016, 151, 219–227. [CrossRef]

64. Shoombuatong, W.; Prathipati, P.; Owasirikul, W.; Worachartcheewan, A.; Simeon, S.; Anuwongcharoen, N.;
Wikberg, J.E.; Nantasenamat, C. Towards the revival of interpretable QSAR models. In Advances in QSAR
Modeling; Springer: Cham, Switzerland, 2017; pp. 3–55.

http://dx.doi.org/10.1371/journal.pone.0072368
http://dx.doi.org/10.4155/fmc-2016-0188
http://dx.doi.org/10.1101/gr.849004
http://dx.doi.org/10.1128/JB.00832-06
http://dx.doi.org/10.1093/bioinformatics/btz246
http://dx.doi.org/10.1504/IJDMB.2015.072072
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.7717/peerj.1958
http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39.042
http://dx.doi.org/10.2174/1389200218666170320121932
http://dx.doi.org/10.2174/1568026615666150506151303
http://dx.doi.org/10.1155/2015/581501
http://dx.doi.org/10.1093/bioinformatics/btm344
http://dx.doi.org/10.1016/j.chemolab.2016.01.002


Int. J. Mol. Sci. 2020, 21, 75 22 of 24

65. Liu, K.; Chen, W.; Lin, H. XG-PseU: An eXtreme Gradient Boosting based method for identifying
pseudouridine sites. Mol. Genet. Genom. 2019. [CrossRef]

66. Veltri, D.; Kamath, U.; Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics
2018, 34, 2740–2747. [CrossRef]

67. Awais, M.; Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K.-C. iPhosH-PseAAC: Identify
phosphohistidine sites in proteins by blending statistical moments and position relative features according
to the Chou’s 5-step rule and general pseudo amino acid composition. IEEE/ACM Trans. Comput. Biol.
Bioinform. 2019. [CrossRef]

68. Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K.-C. SPalmitoylC-PseAAC: A sequence-based model
developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins.
Anal. Biochem. 2019, 568, 14–23. [CrossRef]

69. Hussain, W.; Khan, Y.D.; Rasool, N.; Khan, S.A.; Chou, K.-C. SPrenylC-PseAAC: A sequence-based model
developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. J.
Theor. Biol. 2019, 468, 1–11. [CrossRef]

70. Ju, Z.; Wang, S.-Y. Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs
via Chou’s 5-steps rule and general pseudo components. Genomics 2019. [CrossRef]

71. Le, N.Q.K.; Yapp, E.K.Y.; Ho, Q.-T.; Nagasundaram, N.; Ou, Y.-Y.; Yeh, H.-Y. iEnhancer-5Step: Identifying
enhancers using hidden information of DNA sequences via Chou’s 5-step rule and word embedding. Anal.
Biochem. 2019, 571, 53–61. [CrossRef]

72. Le, N.Q.K.; Yapp, E.K.Y.; Ou, Y.-Y.; Yeh, H.-Y. iMotor-CNN: Identifying molecular functions of cytoskeleton
motor proteins using 2D convolutional neural network via Chou’s 5-step rule. Anal. Biochem. 2019, 575,
17–26. [CrossRef]

73. Boopathi, V.; Subramaniyam, S.; Malik, A.; Lee, G.; Manavalan, B.; Yang, D.-C. mACPpred: A support
vector machine-based meta-predictor for identification of anticancer peptides. Int. J. Mol. Sci. 2019, 20, 1964.
[CrossRef]

74. Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. mAHTPred: A sequence-based meta-predictor for
improving the prediction of anti-hypertensive peptides using effective feature representation. Bioinformatics
2018, 35, 2757–2765. [CrossRef]

75. Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. Meta-4mCpred: A Sequence-Based Meta-Predictor for
Accurate DNA 4mC Site Prediction Using Effective Feature Representation. Mol. Ther. Nucleic Acids 2019, 16,
733–744. [CrossRef]

76. Manavalan, B.; Govindaraj, R.G.; Shin, T.H.; Kim, M.O.; Lee, G. iBCE-EL: A new ensemble learning framework
for improved linear B-cell epitope prediction. Front. Immunol. 2018, 9, 1695. [CrossRef]

77. Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. PIP-EL: A new ensemble learning method for improved
proinflammatory peptide predictions. Front. Immunol. 2018, 9, 1783. [CrossRef]

78. Shoombuatong, W.; Hongjaisee, S.; Barin, F.; Chaijaruwanich, J.; Samleerat, T. HIV-1 CRF01_AE coreceptor
usage prediction using kernel methods based logistic model trees. Comput. Biol. Med. 2012, 42, 885–889.
[CrossRef]

79. Srinivasulu, Y.S.; Wang, J.-R.; Hsu, K.-T.; Tsai, M.-J.; Charoenkwan, P.; Huang, W.-L.; Huang, H.-L.; Ho, S.-Y.
Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein
complexes. BMC Bioinform. 2015, 16, S14. [CrossRef]

80. Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. Meta-iAVP: A sequence-based
meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int.
J. Mol. Sci. 2019, 20, 5743. [CrossRef]

81. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Cham, Switzerland, 2013.
82. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
83. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
84. Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab-an S4 package for kernel methods in R. J. Stat.

Softw. 2004, 11, 1–20. [CrossRef]
85. Chou, K.-C.; Shen, H.-B. Cell-PLoc: A package of Web servers for predicting subcellular localization of

proteins in various organisms. Nat. Protoc. 2008, 3, 153. [CrossRef] [PubMed]
86. Chou, K.-C.; Shen, H.-B. Recent progress in protein subcellular location prediction. Anal. Biochem. 2007, 370,

1. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00438-019-01600-9
http://dx.doi.org/10.1093/bioinformatics/bty179
http://dx.doi.org/10.1109/TCBB.2019.2919025
http://dx.doi.org/10.1016/j.ab.2018.12.019
http://dx.doi.org/10.1016/j.jtbi.2019.02.007
http://dx.doi.org/10.1016/j.ygeno.2019.05.027
http://dx.doi.org/10.1016/j.ab.2019.02.017
http://dx.doi.org/10.1016/j.ab.2019.03.017
http://dx.doi.org/10.3390/ijms20081964
http://dx.doi.org/10.1093/bioinformatics/bty1047
http://dx.doi.org/10.1016/j.omtn.2019.04.019
http://dx.doi.org/10.3389/fimmu.2018.01695
http://dx.doi.org/10.3389/fimmu.2018.01783
http://dx.doi.org/10.1016/j.compbiomed.2012.06.011
http://dx.doi.org/10.1186/1471-2105-16-S18-S14
http://dx.doi.org/10.3390/ijms20225743
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/72.788640
http://dx.doi.org/10.18637/jss.v011.i09
http://dx.doi.org/10.1038/nprot.2007.494
http://www.ncbi.nlm.nih.gov/pubmed/18274516
http://dx.doi.org/10.1016/j.ab.2007.07.006
http://www.ncbi.nlm.nih.gov/pubmed/17698024


Int. J. Mol. Sci. 2020, 21, 75 23 of 24

87. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source
package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef] [PubMed]

88. Ho, S.-Y.; Chen, J.-H.; Huang, M.-H. Inheritable genetic algorithm for biobjective 0/1 combinatorial
optimization problems and its applications. IEEE Trans. Syst. ManCybern. Part B (Cybern.) 2004, 34,
609–620. [CrossRef] [PubMed]

89. Hall, M.A. Correlation-Based Feature Selection for Machine Learning; University of Waikato: Hamilton,
New Zealand, 1999.

90. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
91. Hasan, M.M.; Yang, S.; Zhou, Y.; Mollah, M.N.H. SuccinSite: A computational tool for the prediction of

protein succinylation sites by exploiting the amino acid patterns and properties. Mol. Biosyst. 2016, 12,
786–795. [CrossRef]

92. Breiman, L. Classification and Regression Trees; Routledge: London, UK, 2017.
93. Laengsri, V.; Shoombuatong, W.; Adirojananon, W.; Nantasenamart, C.; Prachayasittikul, V.; Nuchnoi, P.

ThalPred: A web-based prediction tool for discriminating thalassemia trait and iron deficiency anemia. BMC
Med. Inform. Decis. Mak. 2019, 19, 212.

94. Cheng, X.; Zhao, S.-G.; Lin, W.-Z.; Xiao, X.; Chou, K.-C. pLoc-mAnimal: Predict subcellular localization of
animal proteins with both single and multiple sites. Bioinformatics 2017, 33, 3524–3531. [CrossRef]

95. Cheng, X.; Xiao, X.; Chou, K.-C. pLoc-mPlant: Predict subcellular localization of multi-location plant proteins
by incorporating the optimal GO information into general PseAAC. Mol. Biosyst. 2017, 13, 1722–1727.
[CrossRef]

96. Cheng, X.; Xiao, X.; Chou, K.-C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins
via incorporating the optimal GO information into general PseAAC. Gene 2017, 628, 315–321. [CrossRef]

97. Liu, B.; Wang, S.; Long, R.; Chou, K.-C. iRSpot-EL: Identify recombination spots with an ensemble learning
approach. Bioinformatics 2016, 33, 35–41. [CrossRef] [PubMed]

98. Cheng, X.; Zhao, S.-G.; Xiao, X.; Chou, K.-C. iATC-mISF: A multi-label classifier for predicting the classes of
anatomical therapeutic chemicals. Bioinformatics 2016, 33, 341–346. [CrossRef] [PubMed]

99. Zhang, C.-J.; Tang, H.; Li, W.-C.; Lin, H.; Chen, W.; Chou, K.-C. iOri-Human: Identify human origin of
replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition.
Oncotarget 2016, 7, 69783. [CrossRef] [PubMed]

100. Qiu, W.-R.; Jiang, S.-Y.; Xu, Z.-C.; Xiao, X.; Chou, K.-C. iRNAm5C-PseDNC: Identifying RNA 5-methylcytosine
sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget 2017,
8, 41178. [CrossRef]

101. Cheng, X.; Zhao, S.-G.; Xiao, X.; Chou, K.-C. iATC-mHyb: A hybrid multi-label classifier for predicting the
classification of anatomical therapeutic chemicals. Oncotarget 2017, 8, 58494. [CrossRef]

102. Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.-C. iRNA-AI: Identifying the adenosine to inosine
editing sites in RNA sequences. Oncotarget 2017, 8, 4208. [CrossRef]

103. Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.-C. iEnhancer-2L: A two-layer predictor for identifying enhancers
and their strength by pseudo k-tuple nucleotide composition. Bioinformatics 2015, 32, 362–369. [CrossRef]

104. Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chen, J.; Chou, K.-C. Identification of real microRNA precursors with a
pseudo structure status composition approach. PLoS ONE 2015, 10, e0121501. [CrossRef]

105. Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H.; Chou, K.-C. iRNA-PseColl: Identifying the occurrence sites
of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther.
Nucleic Acids 2017, 7, 155–163. [CrossRef]

106. Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.-C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther.
Nucleic Acids 2016, 5, e332.

107. Chou, K.-C. Progresses in predicting post-translational modification. Int. J. Pept. Res. Ther. 2019. [CrossRef]
108. Qiu, W.-R.; Sun, B.-Q.; Xiao, X.; Xu, Z.-C.; Jia, J.-H.; Chou, K.-C. iKcr-PseEns: Identify lysine crotonylation

sites in histone proteins with pseudo components and ensemble classifier. Genomics 2018, 110, 239–246.
[CrossRef]

109. Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A.; Chou, K.-C. iPhosY-PseAAC: Identify phosphotyrosine sites
by incorporating sequence statistical moments into PseAAC. Mol. Biol. Rep. 2018, 45, 2501–2509. [CrossRef]
[PubMed]

http://dx.doi.org/10.1186/1471-2105-12-77
http://www.ncbi.nlm.nih.gov/pubmed/21414208
http://dx.doi.org/10.1109/TSMCB.2003.817090
http://www.ncbi.nlm.nih.gov/pubmed/15369097
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1039/C5MB00853K
http://dx.doi.org/10.1093/bioinformatics/btx476
http://dx.doi.org/10.1039/C7MB00267J
http://dx.doi.org/10.1016/j.gene.2017.07.036
http://dx.doi.org/10.1093/bioinformatics/btw539
http://www.ncbi.nlm.nih.gov/pubmed/27531102
http://dx.doi.org/10.1093/bioinformatics/btw644
http://www.ncbi.nlm.nih.gov/pubmed/28172617
http://dx.doi.org/10.18632/oncotarget.11975
http://www.ncbi.nlm.nih.gov/pubmed/27626500
http://dx.doi.org/10.18632/oncotarget.17104
http://dx.doi.org/10.18632/oncotarget.17028
http://dx.doi.org/10.18632/oncotarget.13758
http://dx.doi.org/10.1093/bioinformatics/btv604
http://dx.doi.org/10.1371/journal.pone.0121501
http://dx.doi.org/10.1016/j.omtn.2017.03.006
http://dx.doi.org/10.1007/s10989-019-09893-5
http://dx.doi.org/10.1016/j.ygeno.2017.10.008
http://dx.doi.org/10.1007/s11033-018-4417-z
http://www.ncbi.nlm.nih.gov/pubmed/30311130


Int. J. Mol. Sci. 2020, 21, 75 24 of 24

110. Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.-C. Pse-in-One: A web server for generating various
modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res. 2015, 43, W65–W71.
[CrossRef] [PubMed]

111. Chou, K.-C.; Shen, H.-B. MemType-2L: A web server for predicting membrane proteins and their types by
incorporating evolution information through Pse-PSSM. Biochem. Biophys. Res. Commun. 2007, 360, 339–345.
[CrossRef] [PubMed]

112. Shen, H.-B.; Chou, K.-C. PseAAC: A flexible web server for generating various kinds of protein pseudo
amino acid composition. Anal. Biochem. 2008, 373, 386–388. [CrossRef] [PubMed]

113. Chou, K.-C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.
Bioinformatics 2004, 21, 10–19. [CrossRef] [PubMed]

114. Chou, K.-C. Impacts of bioinformatics to medicinal chemistry. Med. Chem. 2015, 11, 218–234. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/nar/gkv458
http://www.ncbi.nlm.nih.gov/pubmed/25958395
http://dx.doi.org/10.1016/j.bbrc.2007.06.027
http://www.ncbi.nlm.nih.gov/pubmed/17586467
http://dx.doi.org/10.1016/j.ab.2007.10.012
http://www.ncbi.nlm.nih.gov/pubmed/17976365
http://dx.doi.org/10.1093/bioinformatics/bth466
http://www.ncbi.nlm.nih.gov/pubmed/15308540
http://dx.doi.org/10.2174/1573406411666141229162834
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Composition Analysis 
	Prediction Capabilities of the Different Subset of Physicochemical Properties 
	Comparison with Existing Methods 
	Feature Contribution Analysis 
	Interpretable Rules Acquisition 
	iQSP Web Server 

	Materials and Methods 
	Benchmark Dataset 
	Feature Representation 
	Support Vector Machine 
	Performance Evaluation 
	Identification of Informative Physicochemical Properties 
	Construction of Interpretable Rules 
	Construction of the iQSP Web Server 

	Conclusions 
	
	References

