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Abstract: Alkaloids, a category of natural products with ring structures and nitrogen atoms, include
most U.S. Food and Drug Administration approved plant derived anti-cancer agents. Evodiamine is
an alkaloid with attractive multitargeting antiproliferative activity. Its high content in the natural
source ensures its adequate supply on the market and guarantees further medicinal study. To the
best of our knowledge, there is no systematic review about the antiproliferative effects of evodiamine
derivatives. Therefore, in this article the review of the antiproliferative activities of evodiamine will
be updated. More importantly, the antiproliferative activities of structurally modified new analogues
of evodiamine will be summarized for the first time.
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1. Introduction

Nature derived compounds are important for therapeutic leads [1–7]. Especially for anti-cancer
agents, more than half cancer chemotherapy drugs are natural products and their derivatives [8–10].
Natural sources often provide privileged skeletons and define novel drug targets [11,12]. Among
which, alkaloids, containing extra nitrogen atoms compared to other natural products, enrich structural
diversity and some of them show better drug-like properties, such as drug-protein affinity and
bioavailability. Most U.S. Food and Drug Administration approved plant derived anti-cancer agents
are alkaloids, including vincristine, paclitaxel, and homoharringtonine. Evodiamine (1, Figure 1) is a
famous alkaloid with a quinazolinocarboline skeleton. It was isolated from Evodia rutaecarpa, the dried
and nearly ripe fruits of Euodia rutaecarpa (Juss.) Benth., E. rutaecarpa (Juss.) Benth var. officinalis (Dode)
Huang, and E. rutaecarpa (Juss.) Benth var. bodinieri (Dode) Huang, three plants belonging to the family
of Rutaceae. Evodiamine has been traditionally used to cure headache, amenorrhea, postpartum
hemorrhage and gastrointestinal disorders. The biological activities of evodiamine have been
widely investigated, including anti-obesity [13,14], anti-inflammatory [15,16], anti-atherosclerotic [17],
neuroprotective [18,19], anti-gastrointestinal motility [20], and antiproliferative effects [21]. Among
them, the antiproliferative activity of the multitargeting molecule evodiamine is attractive.
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In the past eight years, there have been five reviews on the biological activity of evodiamine.
Evodiamine focusing on antiproliferative activities and molecular mechanisms have been reviewed
by Jiang in 2009 [22], and Lu in 2012 [23]. In 2013, Yu et al. summarized the pharmacokinetics
and the detailed exploration of target-binding properties of evodiamine [24]. Moreover, a patent
review for therapeutic and cosmetic applications of evodiamine and its derivatives was reported by
Gavaraskar in 2015 [25]. In 2016, Tan et al. reviewed the evodiamine functions and mechanisms of
action in various chronic diseases [21]. To the best of our knowledge, there is no systematic review
about the antiproliferative effects of evodiamine derivatives. This article updated the review of the
antiproliferative activities of evodiamine. Moreover, the antiproliferative activities of structurally
modified new analogues of evodiamine were summarized for the first time.
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NSCLC cell. The increased release of cytochrome c to cytosol activated intrinsic apoptotic pathway 
mediated by activation of caspase-9, -3, while increased release of cytochrome c to nuclear activated 
extrinsic apoptotic pathway mediated through activation of caspase-8. These studies indicated that 
evodiamine could induce apoptosis in NSCLC via both intrinsic and extrinsic pathways [28,29]. 
Further, the proliferation inhibition in A549 cells was induced by evodiamine, which was linked 
with the ability of evodiamine to increase the expression of oncoprotein metadherin, promote 
oxidative injury, arrest the cell cycle, and regulate the tumor-associated genes expression by 
controlling protein kinase B/ nuclear factor-κB (AKT/NF-κB) and sonic hedgehog/GLI family zinc 
finger 1 (SHH/GLI1) pathways [30,31]. Su et al. (2018) reported that evodiamine activate DNA 
methyltransferase 3A (DNMT3A)-induced neurogenic locus notch homolog protein 3 (NOTCH3) 
methylation, and subsequently induced growth inhibition in both A549 and H1299 NSCLC cells 
[32]. Moreover, the cytoprotective autophagy was induced by evodiamine in Lewis lung carcinoma 
(LLC) cells, and the combination of evodiamine with autophagy inhibitor therapy increased cell 
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2. Pharmacological Activity

Previous studies evaluated the cytostatic effects of evodiamine in a variety of cancer cell lines.
The cytotoxic effects of evodiamine in cancer cells were related to the induction of apoptosis, as
well as inhibition of proliferation, migration, cell cycle progression, and angiogenesis. In addition,
evodiamine was shown to regulate these cellular behaviors by affecting multi-targets. These works
will be discussed in details.

2.1. Cytotoxic Effects in Lung Cancer Cells

Less than 15% of all lung cancers are small cell lung cancer (SCLC), and nearly 85% of lung cancer
patients were diagnosed as non-small cell lung cancer (NSCLC) [26]. In human SCLC NCI-H1688 and
NCI-H446 cells, G2/M arrest and the subsequent apoptosis were induced by evodiamine through
mitochondria-dependent intrinsic apoptosis pathway rather than death receptor (DR)-induced extrinsic
apoptotic pathway [27]. Moreover, evodiamine was shown to effectively increase the mitochondrial
membrane depolarization and Bax/Bcl-2 ratio in human A549 NSCLC cell. The increased release of
cytochrome c to cytosol activated intrinsic apoptotic pathway mediated by activation of caspase-9, -3,
while increased release of cytochrome c to nuclear activated extrinsic apoptotic pathway mediated
through activation of caspase-8. These studies indicated that evodiamine could induce apoptosis
in NSCLC via both intrinsic and extrinsic pathways [28,29]. Further, the proliferation inhibition
in A549 cells was induced by evodiamine, which was linked with the ability of evodiamine to
increase the expression of oncoprotein metadherin, promote oxidative injury, arrest the cell cycle, and
regulate the tumor-associated genes expression by controlling protein kinase B/ nuclear factor-κB
(AKT/NF-κB) and sonic hedgehog/GLI family zinc finger 1 (SHH/GLI1) pathways [30,31]. Su et al.
(2018) reported that evodiamine activate DNA methyltransferase 3A (DNMT3A)-induced neurogenic
locus notch homolog protein 3 (NOTCH3) methylation, and subsequently induced growth inhibition
in both A549 and H1299 NSCLC cells [32]. Moreover, the cytoprotective autophagy was induced by
evodiamine in Lewis lung carcinoma (LLC) cells, and the combination of evodiamine with autophagy
inhibitor therapy increased cell chemosensitivity [33]. Invasion activity of LLC cells in vitro and
in vivo was shown to be decreased by evodiamine in previous studies [34,35]. As angiogenesis plays
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an important role in the development of lung carcinogenesis [36], the anti-angiogenesis activity of
evodiamine was investigated by Shyu et al. (2006). Evodiamine was shown to decrease the expression
of vascular endothelial growth factor (VEGF), a potent endothelial cell mitogen, in human lung
adenocarcinoma CL1 cells. The conditioned medium derived from CL1 cells induced the formation
of tube-like structures by human umbilical vein endothelial cells (HUVECs), while conditioned
medium produced from evodiamine-pretreated CL1 cells exerted low ability of inducing capillary
tube formation. Consistently, treatment of evodiamine could also decrease blood vessel density in
chick embryo chorioallantoic membrane in vivo [37].

Treatment of erlotinib is not effective in the treatment of NSCLC cells with wild-type epidermal
growth factor receptor (EGFR) [38]. By inactivating mammalian target of rapamycin/p70 ribosomal S6
kinase 1/Mcl-1 (mTOR/S6K1/Mcl-1) pathway, evodiamine and erlotinib acted in synergy in inhibiting
cell proliferation and increasing apoptosis in NSCLC cells (NCI-H460, NCI-H1299, NCI-H1650, and
A549) with wild-type EGFR [39] (Figure 2).
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The low water solubility of evodiamine limited its application [40]. To enhance the bioactivity
of evodiamine in lung cancer cells, a previous study used the fructus bruceae oil-based emulsive
nanosystems to increase the bioavailability of evodiamine in A549 cells [41]. Moreover, the antitumor
effects of evodiamine were also enhanced with the emulsive nanosystems in A549-tumor-bearing
mice [42].

2.2. Cytotoxic Effects in Liver Cancer Cells

Liver cancer ranks second among causes of cancer death, and about 90% of liver cancers
worldwide are hepatocellular carcinoma (HCC) [43]. Yang et al. (2017) reported that evodiamine
downregulated cell viability and inhibited cell cycle progression in human HCC HepG2 cells
by decreasing p-Akt level and increasing the levels of apoptotic proteins Bax, cleaved-caspase-3
and cleaved-PARP (poly (ADP-ribose) polymerase) [44]. Signal transducer and activator of
transcription signaling 3 (STAT3) is involved in the development of HCC, and the impact of STAT3
on evodiamine-induced cell death of HepG2 was determined by Yang et al. (2013). The study
revealed that evodiamine suppressed the phosphorylation of Tyr705 of STAT3 leading to the growth
inhibition of HepG2 cell line. Moreover, the expression of phosphatase shatterproof 1 (SHP-1)
in HepG2 cells was increased by evodiamine treatment, and the inhibition of SHP-1 attenuated
evodiamine-suppressed activation of STAT3 [45]. In another study, evodiamine induced the expression
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of tumor-suppressor WWdomain-containing oxidoreductase (WWOX) in human HepG2 and mouse
Hepa1-6 cells. And the inhibition of WWOX reversed the cytotoxic effect of evodiamine. As such, the
anti-hepatocellular carcinoma activity of evodiamine was linked with the activation of WWOX [46].
Activator protein 1 (AP-1) is required for tumor promotion [47]. Chao et al. (2011) reported that
evodiamine effectively inhibited AP-1 activity and anchorage-independent transformation of human
liver cells [48]. Furthermore, the progression of HCC is promoted under hypoxia stress, and a previous
study evaluated the impact of evodiamine on growth of HCC cells (HepG2, Hep3B, and Huh-7)
subjected to hypoxia. The cytotoxic effects of vorinostat, an anti-HCC drug, were shown to be
increased by co-treatment with evodiamine through the downregulation of hypoxia-inducible factor
1α (HIF-1α) [49]. In addition, the combination of evodiamine with berberine acted in synergy in
inducing cell death of SMMC-7721 human hepatocellular carcinoma cells [50].

Signaling pathways involved in angiogenesis are promising targets for HCC therapy, and
evodiamine was shown to exert cytotoxic effects on HCCs (HepG2, SMMC-7721, H22) by
downregulating angiogenesis, which was linked with inhibition of expressions of β-catenin and
VEGFa [51]. Besides its role in regulating angiogenesis, the activation of β-catenin induced expressions
of target genes that in turn promoted cell proliferation. The results indicated that β-catenin might be
one of the factors that are critical to the development of HCC [52]. Yet, it remains unclear whether the
downregulation of β-catenin expression contributes to evodiamin-induced cytotoxicity in HCC cells.

Qiu et al. (2016) incorporated evodiamine into hydroxypropyl-β-cyclodextrin (EVO/HP-β-CD)
to increase its bioavailability in HCC cells. Compared with evodiamine alone, EVO/HP-β-CD exerted
higher cytotoxic activities in human hepatoma HepG2 cells as evidenced by higher levels of apoptosis
induced by the activation of caspase-3 [53].

2.3. Cytotoxic Effects in Leukemia Cells

Leukemias, characterized by over-proliferation of abnormal blood cells, represent 31% of all
cancers [54]. Evodiamine was shown to exert antiproliferative activity against human leukemia cells
THP-1, K562, CCRF-CEM and camptothecin-resistant CCRF-CEM/C1 by inactivating topoisomerase
I (topo I) and II (topo II). In addition, the formation of cleavage complexes of topoisomerases with
DNA was not affect by evodiamine [55]. Evodiamine was also reported to cause the mitotic arrest
and a consequent apoptosis in CCRF-CEM cells. And the study revealed that evodiamine-induced
apoptosis was correlated with increased ratio of Bax/Bcl-2 and activity of caspase-3 [56]. However,
benzyloxycarbonyl-Val-Ala-Aspfluoromethyl ketone (z-VAD-fmk), pan-caspase inhibitor, only partly
attenuated the anti-apoptotic activity of evodiamine in human leukemic U937 cells, and overexpression
of Bcl-2 failed to completely block the cytotoxic effect of evodiamine [57]. Further study showed that
evodiamine treatment in U937 cells can also activate an apoptosis-inducing factor (AIF)-mediated
apoptosis, which is not downregulated by Bcl-2 overexpression and caspase-independent. In addition,
evodiamine is not toxic to human normal peripheral blood mononuclear cell (PBMC) [57,58]. In another
study, peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway was reported to be
involved in the proliferation inhibition of evodiamine on K562 cells via inhibiting cyclin D1 and
stimulating of p21, the important factors for the regulation of cell cycle progression [59]. Moreover,
evodiamine decreased NF-κB activity and expressions of NF-κB-dependent antiapoptotic, proliferative,
and metastatic genes in human myeloid leukemia KBM-5 cells, which indicated NF-κB might be
another potential target of evodiamine for anti-leukemia therapy [60] (Figure 3).
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2.4. Cytotoxic Effects in Breast Cancer Cells

Breast cancer accounts for 23% of all cancers, and is highly prevalent in females [61]. Evodiamine
was reported to downregulate migration and upregulate apoptosis by inactivating phosphorylation
of extracellular signal-regulated kinase (p-ERK) and activating p38 mitogen-activated protein kinase
(MAPK) in human breast cancer MDA-MB-231 cells [62]. By arresting the cell cycle at G0/G1 phase
and inducing apoptosis, evodiamine could also effectively reduce the viability of human breast cancer
MCF-7 cells. Further, the combination of evodiamine with berberine possesses synergistic cytotoxic
activity [63]. The regulation of expressions of ERα, ERβ, and PPARγ, as well as inactivation of
Ras/MEK/ERK pathway, may also contribute to the growth inhibitory activity of evodiamine in
breast cancer cell lines, such as T47D, MDA-MB-468, MCF-7, and MDA-MB-231 [64,65]. Moreover,
evodiamine has been reported to inhibit topo I activity in MCF-7 cells by inducing stabilization
of the complex of topo I and DNA, and subsequently inhibit the replication and transcription of
DNA [66]. However, the data are controversial to the results published by Pan et al. (2012) showing
that evodiamine interferes with the enzyme catalytic cycle rather than affecting the stabilization of the
covalent complexes of enzyme-DNA [55]. Cancer stem-like cells (CSLCs) play an important role in
tumor progression [67]. Han et al. (2016) enriched the CSLCs in the mammosphere-forming condition
during culture of MDA-MB-231 or MCF-7 cells. Compared with bulk carcinoma cells, CSLCs were
more sensitive to cytotoxic effects of evodiamine treatment. The selective activation of p53 and p21,
and inactivation of Rb in CSLCs led to cell death at the G1/S checkpoint [68].

As the occurrence of multidrug resistance is a major problem for the therapy of breast cancer, the
inhibitory activity of evodiamine against doxorubicin- and adriamycin-resistant human breast cancer
NCI/ADRRES cells was determined in previous studies [69,70]. Evodiamine reversed phenomenon of
apoptosis resistance through inhibition of expression of IAPs, upregulation of Bcl-2, and activation
of Ras/MEK/ERK pathway, which subsequently disrupted the microtubule network and induced
apoptosis of NCI/ADRRES cells.

Zou et al. (2016) developed a nanoparticulate delivery system based on PLGA nanoparticles
(EVO-PLGA NPs) to enhance the uptake of evodiamine by breast cancer. Compared with evodiamine
alone, the antiproliferation effects of EVO-PLGA NPs in MCF-7 cells were even more obvious. However,
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EVO-PLGA NPs failed to enhance the impact of evodiamine on G2/M cell cycle arrest, suggesting that
the nanoparticles sustained evodiamine release [71].

2.5. Cytotoxic Effects in Ovarian Cancer Cells

Ovarian cancer is another common gynecological tumor, and >70% of patients ultimately die
from the disease [72,73]. Chen et al. (2016) evaluate the cytotoxic activities of evodiamine in human
epithelial ovarian cancer cell lines ES-2, SKOV-3, A2780, and A2780CP. Evodiamine induced apoptosis
of these cancer cells via activation of double-stranded RNA-activated protein kinase-like ER kinase
(PERK) and c-Jun N-terminal kinase (JNK), as well as disruption of mitochondrial membrane potential.
The structure-activity relationships (SARs) study demonstrated that the alkyl group at position 14
of evodiamine plays an important role in inducing apoptosis in ovarian cancer cells [74]. Further,
the suppression of PI3K/Akt pathway and downregulation of p38 MAPK and ERK1/2 expressions
might also be correlated with evodiamine-induced cell death of human ovarian cancer cell line
HO8910PM [75]. As chemoresistance is associated with poor prognosis in patients with ovarian cancer,
Zhong et al. (2015) evaluated the impact of evodiamine on cell viability of chemoresistant epithelial
ovarian cancer cells (paclitaxel-resistant A2780/PTXR cells). Evodiamine was shown to enhance
the chemosensitivity potential of paclitaxel-resistant A2780/PTXR cells by downregulating MDR-1
expression, which indicated the potential of evodiamine in the treatment of chemoresistant ovarian
cancer [76]. In addition, evodiamine resulted in G2/M arrest in HER-2/neu-overexpressing SKOV3
cells (taxol resistant ovarian cancer cell line), while the underlying mechanism is still unclear [77].

2.6. Cytotoxic Effects in Cervical Cancer Cells

The number of cervical cancer deaths is higher than any other gynecological tumor, and the
development of cervical cancer is highly correlated with infections with carcinogenic human papilloma
virus [78]. By arresting cell cycle at G2/M, evodiamine was shown to induce apoptosis in human
cervical cancer HeLa cells with caspase-3, -8-dependent pathway [79]. However, a controversy study
reported that evodiamine activated caspase-3 without affecting the activity of caspase-8, -1 in HeLa
cells [80]. In addition, the increased ratios of Bax/Bcl-2 and Bax/Bcl-xL are responsible for apoptosis
triggered by evodiamine-induced productions of reactive oxygen species (ROS) and nitric oxide (NO).
Autophagy was shown to be activated by evodiamine at an early period and reduced at late stages,
and the blockage of autophagy resulted in apoptosis in HeLa cells [81]. Further study also suggested
that G2/M cell cycle arrest in HeLa cells was triggered by ROS/NO productions, which could be
attenuated by the inhibition of protein tyrosine kinase (PTK) [82]. Moreover, DNA topo I was shown
to be associated with poor prognosis in ovarian cancers, and evodiamine exerted inhibitory effect
against topo I catalytic activity. Accordantly, evodiamine effectively decreased the tumor volume in
the subcutaneous xenografts of the human ovarian cancer cell line, A2780R2000, in a mouse model [83].

2.7. Cytotoxic Effects in Glioma Cells

Glioblastomas is the most frequent type of gliomas with highly invasive behavior [84]. In human
glioblastoma U87 cells, evodiamine was reported to increase the intracellular calcium level, and
activate autophagy and apoptosis, while the induction of autophagy blocked the apoptosis. In another
study, evodiamine increased cytosolic calcium level, autophagy and apoptosis in U87 cells, which
was attenuated by the inhibition of endoplasmic reticulum (ER) calcium channel. The study indicated
an important role of calcium in mediating autophagy and apoptosis pathways in U87 cells [85,86].
Consistently, Wu et al. (2017) found that evodiamine induced G2/M arrest and decreased the viability
of both human glioblastoma U87 cells and rat glioblastoma C6 cells, while incubation with JNK
inhibitor attenuated the effects of evodiamine [87]. In addition, the inactivation of PI3K/AKT pathway
and upregulation of phosphorylation of p38 MAPK were also shown to be linked with the cytotoxic
activity of evodiamine in human glioblastoma U251 and LN229 cells [88]. Moreover, evodiamine did
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not reduce cell viability of primary rat astrocytes. A study of SARs further showed that methyl at
position 14 may be important for the cytotoxic effect of evodiamine against glioblastoma cells [87].

The tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) could promote the
apoptosis in cancer cells, while the resistance to TRAIL limits the effects of chemotherapy [89].
TRAIL alone failed to exert cytotoxic effect in human glioblastoma U87 cells. However, evodiamine
increased the apoptosis promoted by TRAIL through the upregulation of expressions of DR4, DR5, and
caspase-8, -3 [90].

2.8. Cytotoxic Effects in Colorectal Carcinoma Cells

Colorectal cancer is a common cancer in the elderly [91]. Evodiamine induced apoptosis of human
colorectal carcinoma cells COLO-205 and HCT-116 via the upregulation of p53 and Bax/Bcl-2 ratio, as
well as decreasing mitochondrial transmembrane potential [92]. In another study, evodiamine exerted
a prominent effect on expression of DNMTs and microRNAs (miRNAs) during early tumorigenesis
in rat malignant colonic tissue stimulated by transforming growth factor-β1 (TGF-β1). Among these
evodiamine-regulated miRNAs, the increase of expression of miR-29a (targets DNMT3A/3B) was
most obvious [93]. Liu et al. (2016) found that the level of miR-429 was upregulated in malignant
human colorectal tissues compared with normal tissues, which was attenuated by evodiamine
administration [94]. These studies indicated that different miRNA plays different roles in mediating
anti-tumor effect of evodiamine. In addition, evodiamine exerted cytotoxic effect in human colon
carcinoma HT-29 cells, which was attributed to the inhibition of Wnt/β-catenin pathway and
telomerase activity [95–97]. Another study reported that the increased JNK activity also contributed
to G2/M cell cycle arrest and apoptosis stimulated by evodiamine in human colon carcinoma cells
COLO-205 and HT-29 [98]. Moreover, S-phase arrest, autophagy and caspase-dependent apoptosis
were increased under the stimulation of evodiamine in human colon carcinoma Lovo cells, and the
evodiamine-induced cell cycle arrest was attributed to the downregulation of the cyclin A and cyclin
A-dependent kinase 2 (CDK2) expressions [99,100]. Further, the alkylation at position 14 was shown to
play an important role in the cytotoxicity of evodiamine in colonic cancer cells [97], which is accordant
with the previous study on ovarian cancer cells [74].

Previous studies showed that evodiamine decreased the invasion activity of colon 26-L5
cells in vitro and suppressed lung-specific metastasis of 26-L5 cells in mice in vivo [34,35,101].
The downregulated migration activity was revealed to be linked with the inactivation of Janus
kinase/STAT3/matrix metalloproteinase 3 (JAK2/STAT3/MMP3) pathway in human colorectal
cancer HCT-116 cells [102,103]. Moreover, the expression of midkine, an important growth factor
for carcinogenesis, was inhibited by evodiamine in human colon cancer SW620 cells, which might
be involved in the inhibitory activities of evodiamine against both invasion ability and anchorage
independence growth of SW620 cells [104].

Breast cancer resistance protein, also called ABCG2, is crucial for multidrug resistance (MDR)
mechanism in colorectal carcinoma. Evodiamine was shown to suppress ABCG2-mediated drug
resistance against oxaliplatin (L-OHP)-resistant HCT-116/L-OHP cells via inactivation of NF-κB
in vitro. And the activation of NF-κB and colorectal tumor growth in a MDR xenograft model were
inhibited in vivo [105] (Figure 4). In contrast, evodiamine was shown to upregulate NF-κB and p53
levels by down-regulating histone deacetylase 3 in HCT-116 xenografts in another study [106].
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Figure 4. Sites of action of evodiamine against colorectal carcinoma cells.

2.9. Cytotoxic Effects in Gastric Cancer Cells

Gastric cancer, a leading cause of cancer death, is frequently diagnosed at advanced stages [107].
Yue et al. (2013) revealed that evodiamine inhibited the viability of cells from gastric tumor
tissues, which was correlated with downregulation of thymidylate synthase (TS) and excision repair
cross-complementing 1 (ERCC1) [108]. Besides, evodiamine increased the beneficial effect of radiation
treatment for human gastric carcinoma BGC-823 cells. The inactivation of Her-2/AKT/Bcl-2 pathway
was further revealed to be correlated with the cytostatic activity of evodiamine [109]. In human
gastric carcinoma SGC-7901 cells, evodiamine promoted proliferation and arrested the cell progression
at G1 and G2/M phases, which further contributed to the cytotoxic and carcinogenic mechanisms
of evodiamine [110–114]. Shen et al. (2015) reported that evodiamine also upregulated apoptosis
through the upregulation of caspase-3 and survivin in SGC-7901 cells [115]. However, z-VAD-fmk
only partially blocked evodiamin-promoted apoptosis in SGC-7901 cells [116]. The upregulation
of acid sphingomyelinase (aSMase) and the downregulation of sphingomyelin were found to be
the caspase-independent mechanism for evodiamine-induced apoptosis in SGC-7901 cells [117].
Moreover, evodiamine exerted inhibitory effect against the invasion activity of SGC-7901 cells
through downregulation of midkine and polo-like kinase 1 (PLK1) expressions [118,119]. Gastric
cancer stem cells were shown to promote tumorigenesis, metastasis and drug resistance [120].
Wen et al. (2015) reported that evodiamine could inactivate the Wnt/β-catenin pathway and
subsequently suppress stem cell potential and proliferation of gastric cancer stem cells and repress the
epithelial-to-mesenchymal transition [121]. However, evodiamine increased the secretion of IL-8, the
cytokine promotes cell invasion, from human gastric cancer AGS cells, while berberine could counteract
this side-effect of evodiamine. The study provides a safe strategy implementing combination therapy
with evodiamine and berberine [122].

2.10. Cytotoxic Effects in Melanoma Cells

Melanoma is the primary skin cancer with ~132,000 cases worldwide annually [123]. The impact
of evodiamine on invasion activity of melanoma was determined in previous studies using B16-F10
melanoma cells [34,35]. And these studies showed that the invasion potential of B16-F10 cells in
transwell migration assay was effectively inhibited by evodiamine treatment.

In A375-S2 melanoma cells, the downregulation of protein kinase C (PKC) and silent information
regulator of transcription (SIRT1), as well as the upregulation of Bax/Bcl-2 ratio, were correlated
with evodiamine-induced increase of apoptosis. Evodiamine could also induce necrosis by
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activating p38 MAPK and inactivating ERK in A375-S2 cells [79,124–127]. During the course
of evodiamine-induced apoptosis, the upregulated intracellular ROS followed by an onset of
mitochondrial depolarization contributes to both Fas-mediated extrinsic and mitochondria-mediated
intrinsic apoptosis pathways [128]. Evodiamine exerted a strong inductive effect on the production
NO in A375-S2 cells, while the inactivation of p38 MAPK and NF-kB blocked evodiamine induced
NO synthesis and cell damage [129]. Wang et al. (2005) found that the inhibition of interleukin 1
(IL-1) receptor in A375-S2 cells effectively attenuated the increased evodiamine-induced expressions of
Fas-ligand (Fas-L), caspas-8, -3, and the phosphorylated p38 MAPK, which indicated IL-1-induced
death cascade might be one of the targets for evodiamine [130]. Moreover, MG132, the inhibitor of
ubiquitin-proteasome, further increased the sensitivity of A375-S2 cell to evodiamine induced cell
death through the upregulation of the expressions of Fas-L, Bcl-2, and caspase-3 [131].

2.11. Cytotoxic Effects in Thyroid Cancer Cells

Thyroid carcinoma accounts for 1.3–1.5% of all cancers [132]. Lv et al. (2016) reported that
evodiamine-treated human papillary thyroid cancer K1 cells underwent apoptosis that was correlated
with inactivation of PI3K/Akt pathway [133]. Moreover, increased levels of G2/M arrest and caspase
cascade-induced apoptosis contributed to evodiamin-induced cytotoxicity in human anaplastic thyroid
cancer ARO cells [134]. Accordantly, the tumorigenesis of ARO in a xenograft mice model was inhibited
by evodiamine in vivo [135]. The changes in protein expression patterns in ARO after evodiamine
stimulation were further determined by Yu et al. (2018). And 77 proteins involved in transcriptional
control, protein folding, and lipid metabolism contributed to evodiamine-induced cytotoxicity in ARO
cells [136].

2.12. Cytotoxic Effects in Nasopharyngeal Carcinoma Cells

Nasopharyngeal carcinoma, the poorly understood cancer, arises from the nasopharynx
epithelium [137]. Peng et al. (2015) reported an inhibitory role of evodiamine on the migration
and invasion of human nasopharyngeal carcinoma HONE1 and CNE1 cells without affecting cell
proliferation. Further investigation revealed that evodiamine downregulated cancer invasion- and
metastasis-associated MMP-2 activity, which was controlled by NF-κB p65 nuclear translocation and
the ERK1/2 phosphorylation [138].

2.13. Cytotoxic Effects in Renal Cancer Cells

Renal cell carcinoma usually develops from the lining of kidney tubules, and it accounts for
~90% of all renal cancer [139]. Evodiamine was shown to induce apoptosis in human renal cell
carcinoma Caki-1, ACHN, A498, and 786-O cells, which was attenuated by stimulation with inhibitors
of PERK or JNK. A methyl at position 14 was shown to be important for evodiamine’s cytotoxic
action in renal carcinoma cells in a structure activity study [140], which is accordant with the previous
study on glioblastoma cells [87]. Moreover, a transcriptome analysis using Caki-1 cells indicated that
evodiamine-regulated genes in Caki-1 cells were mainly involved in apoptosis and cell cycle [141].

2.14. Cytotoxic Effects in Bladder Cancer Cells

Bladder cancer is a common genitourinary cancer with 70% recurrence rate [142,143]. It has
been shown that human bladder cancer cells 253J and T24 underwent apoptosis in response to the
stimulation of evodiamine. In addition, evodiamine enhanced TRAIL-induced apoptosis through the
regulation of mTOR/S6K1/Mcl-1 pathway [144]. On the other hand, evodiamine arrested cell cycle
progression in G2/M phase and increased caspase-dependent apoptosis in bladder tumor cell lines
5637 and HT1197, and the effects of evodiamine was linked with the activations of p38 MAPK and
JNK [145].
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2.15. Cytotoxic Effects in Pancreatic Cancer Cells

Pancreatic cancer is a leading cause of death from cancer with limited effective therapies [146].
Evodiamine was shown to induce apoptosis via inhibition of NF-κB activation, and subsequently
upregulated Bax/Bcl-2 ratio and ultimately induced apoptosis in human pancreatic tumor cell
PANC-1 [147]. Accordantly, evodiamine inactivated NF-κB in human pancreatic tumor cell SW1990,
while gemcitabine was shown to induce the activation of NF-κB. These findings were consistent with a
previous study researching the impact of evodiamine on activation of NF-κB in various carcinoma cell
lines [60]. As the activation of NF-κB is one of the reasons for the development of chemoresistance
during cancer therapy, the inactivation of NF-κB by evodaimine may sensitize pancreatic cancer cells
to anti-tumor therapies [148].

2.16. Cytotoxic Effects in Prostate Cancer Cells

Prostate cancer is one of the leading causes of cancer-related death in males [149]. Through
inhibition of microtubule spindle formation, evodiamine was shown to effectively arrest cell cycle
progression in G2/M phase and subsequent induce apoptosis in human prostate cancer PC-3 and
DU145 cells [150,151]. And the cytotoxic activities of evodiamine may attributed to the activation of
cyclin B1/p34cdc2 complex and caspase-3, -9 [152].

2.17. Cytotoxic Effects in Osteosarcoma Cells

Osteosarcoma is the most common bone sarcoma in children and young adults [153]. Evodiamine
was shown to inhibit the proliferation of human osteosarcoma 143B02 cells through inactivation of
PTEN/PI3K/Akt pathway [154]. By inactivating Raf/MEK/ERK signaling pathway, evodiamine
also induced growth inhibition and inactivated the activities of migration and invasion of U2OS
cells [155,156]. Moreover, the inactivation of Wnt/β-catenin signaling pathway contributed to the
cytotoxic activity of evodiamine in human osteosarcoma MG-63 cells [157].

2.18. Cytotoxic Effects in Oral Cancer Cells

Oral cancer is common in men in developing countries [158]. The apoptosis was induced in
human oral cancer cells (MC3 and HSC4) by evodiamine though activation of caspase-3 and PARP
cleavage. Further studies indicated the AKT/myeloid cell leukemia 1 (Mcl-1) signaling pathway is
responsible for the observed cytotoxicty of evodiamine in oral cancer cells [159].

2.19. Cytotoxic Effects in Salivary Adenoid Cystic Carcinoma Cells

Salivary adenoid cystic carcinoma, the cancer with varied morphologic and clinical manifestations,
is an uncommon salivary gland malignancy [160]. The effect of evodiamine on salivary adenoid cystic
carcinoma SACC-M cell growth regulation was determined by Chen et al. (2012). And the study
revealed that evodiamine significantly decreased SACC-M cell viability through downregulation of
proliferation and upregulation of apoptosis [161].

3. Advances in Antiproliferative Evodiamine Derivatives

Naturally selected chemical scaffolds with bioactivity can be regarded as privileged structures.
However, the probability for direct use of natural product as therapeutic drug is very low. The most
common method is to generate analogues by structural modification approaches [162–167]. Although
evodiamine has been well studied for its antiproliferative effects, it is still unqualified to be approved
for clinical use. The physicochemical properties and antitumor potency remain to be significantly
improved. For better design derivatives and understand the SARs, the existing medicinal chemistry
work of evodiamine is summarized as follows.

In 2010, Dong et al. found evodiamine as human Topo I inhibitor by structure-based virtual
screening and lead optimization [168]. Subsequently, by introducing alkyl, benzoyl and benzyl groups
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and ester at N-13, evodiamine derivatives were synthesized as Topo I inhibitors (Scheme 1). The results
showed that the substituted benzoyl groups were favorable for the antiproliferative activity and
spectrum. Among them, N-benzoyl analogue 7u showed the strongest antiproliferative effects against
A549, HCT-116 and MDA-MB-435 human cancer cell lines with IC50 values of 0.86, 2.6 and 0.049 µM,
respectively. In addition, in vitro Topo I inhibition assay also demonstrated that 7u was stronger
than evodiamine and was active (at 100 µM) against the relaxation of supercoiled DNA, which was
consistent with their docking results.

Two years later, Dong et al. [169] synthesized a library of evodiamine A-ring (8–16), E-ring (17–28),
A, E-ring disubstituted (29–36), and D-ring derivatives (37–40) (Figure 5). Taking the asymmetric center
C-13b into account, they investigated the effects of C-13b chirality on the antiproliferative activity. Both
R- and S-isomers of a highly active derivative 31 were synthesized (Scheme 2). In vitro results indicated
compounds 8, 11, 18, 19 and 31 exerted substantially increased cytostatic activity against HCT-116,
MDA-MB-435 and A549 cell lines, with GI50 values lower than 3 nM. The C13b chirality showed
distinct effects toward HCT-116 and A549 cells, (S)-31 was slightly more active. Furthermore, these
derivatives could induce apoptosis in A549 cells. Together with further computational calculations,
these evodiamine derivatives could be used as dual inhibitors of topo I and topo II.
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Scheme 1. Synthetic route of evodiamine 1 and evodiamine derivatives 7a–x. Reagents and conditions:
(a) HCOOEt, reflux, 12 h; (b) POCl3, 0 ◦C 2 h, then rt, 2 h; (c) ClCOOEt, reflux, 12 h; (d) 4, 30–60 ◦C, 6 h;
(e) RX, NaH, 80 ◦C, 24 h.

The mechanism of Topo I and Topo II inhibition suggested that test compounds (11, 33, 35, and
36, Figure 5) acted as Topo II catalytic inhibitors. Moreover, at the dose of 1 mg/kg or 2 mg/kg,
compounds 11 and 36 showed good antitumor efficacy and low toxicity in vivo. The SARs could be
concluded as follows. Firstly, the 1-, 3-, 10- and 12-positions were favorable to be substituted, chlorine
was more suitable than fluorine for both 3- and 10-positions. Free hydroxyl group was important
for strong antiproliferative potency. Secondly, for the D-ring, changing the carbonyl group to the
thiocarbonyl group at C-5 and the transformation of methyl group to an oxygen atom at N-14 showed
positive effects of antiproliferative activity. Thirdly, some compounds of C-3, C-10 disubstituted possess
synergistic effects. Compounds 31–33 and 36 with hydrophilic groups showed good antiproliferative
activity and water solubility.
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0–5 ◦C, 2 h; (b) KOH, rt, 12 h; (c) rt, 10 h; (d) HCOOH, reflux, 0.5 h; (e) POCl3, reflux, 3 days; (f) cat. A,
HCOOH:Et3N (5:2), 0 ◦C, 8 h; (g) cat. B, HCOOH:Et3N (5:2), 0 ◦C, 8 h; (h) H2, 10% Pd/C, rt, 12 h.

In 2013, Song’s group designed and synthesized a series of evodiamine derivatives at N-13
(Scheme 3) [170]. They tested the cytotoxic activities of all derivatives against prostate cancer DU-145,
PC-3, lung cancer H460, colon cancer HCT-5, glioblastoma SF-268 and MCF-7 cells. The results
showed that 50b, 50c, 50i, 50p and 51b exhibited stronger antiproliferative potency and broader
spectra. Among them, 50p was the strongest with IC50 values below 2 µM. The SARs indicated that the
appropriate N-13 substitution of evodiamine resulted in higher cytotoxicity. The alkyl N-13 substituted
groups decreased antiproliferative potency, and the derivatives with alkylamino-alkyl groups showed
improved water solubility, but only moderate antiproliferative potency. The dimers exhibited moderate
to good activity, and 50m with a benzoylmethyl group was inactive. The apoptosis related mechanisms
of compounds 50c, 50p and 51b were also disclosed. Compounds 50c and 51b drastically induced
apoptosis in MCF-7 cells at the early stage, while 50p and 51b induced apoptosis in HCT-15 cells at the
late stage. Moreover, 50p and 51b induced late apoptosis in NCl-H460 cells with moderate increasing
to 40–50%.
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In the same year, Nguyen’s group successfully isolated evodiamine enantiomers from 13 Evodia
rutaecarpa samples by chiral high-performance liquid chromatographic method [171]. The results
showed that S-(+)-evodiamine was present in higher concentration than R-(−)-evodiamine. Soon
afterwards, Christodoulou et al. prepared the evodiamine enantiomers by chemical synthesis methods
(Scheme 4), and synthesized a series of evodiamine C-ring modified derivatives (Scheme 5) [172].
In vitro antiproliferative assay showed that all compounds had low potency against H460, MCF-7 and
HepG2 cells. However, (S)-evodiamine 1a was the most active compound among them. Furthermore,
in vitro Topo I inhibition of 1a and 1b showed effects only a high concentration of 500 µM. The human
sirtuins SIRT1, SIRT2 and SIRT3 assays indicated S configuration was favorable.
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Scheme 5. Synthetic route of C-ring modified (S)-evodiamine. Reagents and conditions: (a) HCOOH,
(Ac)2O, rt; (b) HCl, dioxane, rt, 2 h; (c) pyridine, reflux, 2 h; (d) LiOH, reflux, 1.5 h; (e) various amines,
HATU, DIPEA, rt.

Compounds 1a, 1b, 56, ent-56, 58 and 59 showed better inhibitory effects on SIRT2 (60–80%) than
SIRT1. In docking studies, they were well-fit to the binding pocket. Due to the steric hindrance, bulky
substituents at position 5 had unfavorable poses, such as 60, 61, 62 and 63. COOH, CONHCH3 and
COOCH3 moieties at position 5 could increase the affinity towards sirtuins by additional hydrogen
bonds. 1a, 56 and ent-56 also showed selectivity of SIRT2 over SIRT3. With this information in hand,
evodiamine can act as a potential scaffold of sirtuins inhibitors.

In late 2013, a series of synthetic evodiamine enantiomer derivatives were synthesized by
De Petrocellis et al. (Figure 6) [173]. The results showed the derivatives of S-(+)-evodiamine were
more potent than R-(−)-evodiamine derivatives at human and rat transient receptor potential vanilloid
type-1 (TRPV1) in transfected HEK-293 cells, with the corresponding EC50 values of 5 µM and 2 nM.
Especially, a new lead analogue (72) was identified as the most potent TRPV1 agonist and better than
the reference capsaicin. Previously, evodiamine was also reported as an agonist of TRPV1 in vitro and
in vivo [174]. This work further confirmed evodiamine would qualify as potent TRPV1 agonists.
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In 2014, sulfonic acid esters and 5-methylene derivatives of evodiamine were designed and
synthesized by Liang et al. (Scheme 6) [175]. 85e exhibited more potent antiproliferative activity than
evodiamine against A549, HepG2, U251, MCF-7 and HeLa cells, and 86a–g showed higher IC50 values
than the parallel compounds 85a–g. The preliminary SARs suggested that N-para benzenesulfonylation
was favorable for antiproliferative activity. The conversion from carbonyl group to methylene at C-5
would decrease the activities, and aromatic sulfonic acid esters were better than alkyl sulfonic acid
esters for the antiproliferative activity. Moreover, when R was nitryl group, the activity decreased
dramatically. In vivo antitumor assessment in the HepS xenograft showed 85e could improve index of
thymus and spleen and possessed less side-effect. Finally, according to in silico molecular docking,
compounds 1 and 85a–g showed high binding affinity with the target. Although 84 and 86a–g had no
binding affinity with the important residues of Topo I, they still exhibited antiproliferative activities.
Between the ligand and the active site of Topo I, besides intermolecular H-bonds, other interactions
might exist.
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Reagents and conditions: (a) LiAlH4, rt, 8 h; (b) NaH, substituted benzenesulfonyl chloride or
cyclopropanesulfonyl chloride, rt, 8–12 h.

In 2015, a library of 11 evodiamine-inspired scaffolds and their derivatives were obtained
(Figure 7) [176]. Most of them showed antiproliferative activities against selected cancer cell lines.
Among them, 104, 3-chloro-10-hydroxyl thio-evodiamine, showed good antitumor efficacy and low
toxicity. The mechanism and target studies indicated that 104 was the first-in-class Topo I/Topo
II/tubulin triple inhibitor. The significance of this work could be concluded, that it provided the
in-depth SAR of evodiamine inspired scaffolds, a series of potent antitumor molecules and the
first-in-class Topo I/Topo II/tubulin inhibitors.

In 2016, Hua’s group published their first work in the field of the structural modification of
evodiamine [177]. A series of nitric oxide donating evodiamine derivatives were designed and
synthesized (Scheme 7). Of which, compound 112 showed good antiproliferative activity against
A549, BGC-823 and human hepatoma Bel-7402 cells with IC50 values of 2.31, 0.07 and 2.10 µM,
respectively. More importantly, 112 exhibited no cytotoxicity (>100 µM) against L-02 human normal
liver cells. In Bel-7402 and BGC-823 cells, all the derivatives could release more than 75 µM/L NO
at 1 h, and below 30 µM/L in L-02 cells. The mechanism study showed that 112 induced apoptosis
and caused S phase cell-cycle arrest in Bel-7402 cells through caspase-dependent mitochondria related
pathways. Western blot analysis revealed 112 could up-regulate proapoptotic Bax, FAS, cytochrome c
and caspase-3, -8, -9, and down-regulate the Bcl-2 expression.
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Scheme 7. Synthetic route of nitric oxide donating evodiamine derivative 112. Reagents and conditions:
(a) ClCH2COOH, NaOH, 140 ◦C, 2 h; (b) H2O2, AcOH, rt, 3 h; (c) fuming HNO3, 90 ◦C, 4 h;
(d) HO(CH2)6Br, NaH, rt, 3 h; (e) 110, DBU, −15 ◦C, 3 h.

In 2017, this group continued structural modifications of evodiamine, and synthesized a series
of nitrogen mustard derivatives of evodiamine (Scheme 8) [178]. The antiproliferative activities
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of 114a–d, 115a–d and 116a–d against PC-3, HepG2, THP-1, HL-60 and PBMCs were tested.
The results showed all the derivatives exhibited antiproliferative activities against tumor cells and
no (>200 µM) antiproliferative activities against PBMCs. Among them, 116c showed the strongest
cytotoxicity against HL-60 and THP-1 cells with IC50 values of 0.50 and 4.05 µM, respectively. Further
mechanism study manifested that 116c could induce apoptosis and arrest cell cycle at G2/M phase via
mitochondria-related pathways in HL-60 cells.

Recently, H2S donating derivatives of evodiamine (121–125) were further designed and
synthesized (Scheme 9) [179]. Resulting hybrids were evaluated against Bel-7402, MCF-7, SGC-7901,
human epithelial colorectal adenocarcinoma Caco-2 and HL-60 cells, and PBMCs for antiproliferative
activities. Among these derivatives, compound 125c showed the strongest potency against Caco-2 and
HL-60 cells with IC50 values of 2.02 and 0.58 µM, respectively. Furthermore, compound 125c possessed
high selectivity between human normal PBMCs and HL-60 cells. The mechanism studies showed
that 125c could arrest HL-60 cell cycle at the G2/M phase and induce apoptosis. Western blot results
confirmed the intrinsic apoptotic pathways.
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Scheme 9. Synthetic route of H2S-donating derivatives (121–125) of evodiamine. Reagents and
conditions: (a) Br(CH2)nBr, potassium carbonate, reflux, 8 h; (b) Br(CH2)nCOOC2H5, NaH, 80 ◦C, 12 h;
(c) potassium hydroxide, rt, 2 h; (d) α-thioctic acid, 117, EDCI, DMAP, rt, 8–12 h; (e) 118a–c, TEA, 80 ◦C,
8 h.

4. Conclusions

The cytotoxic effects of evodiamine were correlated with its inhibitory activities against cell
cycle progression, proliferation, invasion and angiogenesis, as well as apoptosis-induced effect.
A variety of evodiamine derivatives have been synthesized to increase the antiproliferative effects of
evodiamine. However, most of the studies were taken in in vitro and animal models, more clinical
evidences regarding the effectiveness of evodiamine in the treatment of various types of human
cancers are urgently needed. In addition, the low bioavailability limits the anti-cancer efficacy of
evodiamine, novel evodiamine derivatives with enhanced bioavailability are necessary to be designed
and synthesized. Further, development of new evodiamine delivery systems, such as a supermolecular
nanoemulsion [180], or a phospholipid complex [40], might also be the appropriate strategies to
increase the bioavailability of evodiamine in clinical practice.
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Abbreviations

AP-1 Activator protein 1
AIF Apoptosis-inducing factor
AKT Protein kinase B
aSMase Acid sphingomyelinase
CSLCs Cancer stem-like cells
DR Death receptor
DNMT DNA methyltransferase
EGFR Epidermal growth factor receptor
EVO/HP-β-CD Evodiamine into hydroxypropyl-β-cyclodextrin
ERK Extracellular signal-regulated kinase
ER Endoplasmic reticulum
ERCC1 Excision repair cross-complementing 1
Fas-L Fas-ligand
HUVECs Human umbilical vein endothelial cells
HCC Hepatocellular carcinoma
HIF-1α Hypoxia-inducible factor 1α
IL-1 Interleukin 1
JNK c-Jun N-terminal kinase
JAK2 Janus kinase 2
LLC Lewis lung carcinoma
L-OHP Oxaliplatin
mTOR/S6K1 Mammalian target of rapamycin/p70 ribosomal S6 kinase 1
MAPK Mitogen-activated protein kinase
miRNAs microRNAs
MMP3 Matrix metalloproteinase 3
MDR Multidrug resistance
Mcl-1 Myeloid cell leukemia 1
NF-κB Nuclear factor-κB
NPs Natural products
NSCLC Non-small cell lung cancer
NO Nitric oxide
NOTCH3 Neurogenic locus notch homolog protein 3
PARP Poly (ADP-ribose) polymerase
PBMC Peripheral blood mononuclear cell
PERK Double-stranded RNA-activated protein kinase-like ER kinase
PTK Protein tyrosine kinase
PLK1 Polo-like kinase 1
PKC Protein kinase C
PPAR-γ Peroxisome proliferator-activated receptor γ
ROS Reactive oxygen species
SCLC Small cell lung cancer
SHH/GLI1 Sonic hedgehog/GLI family zinc finger 1
STAT3 Signal transducer and activator of transcription signaling 3
SHP-1 Shatterproof 1
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SARs Structure-activity relationships
SIRT1 Silent information regulator of transcription
Topo Topoisomerase
TRAIL Tumor necrosis factor-α-related apoptosis-inducing ligand
TGF-β1 Transforming growth factor-β1
TS Thymidylate synthase
TRPV1 Transient receptor potential vanilloid type-1
VEGF Vascular endothelial growth factor
WWOX WWdomain-containing oxidoreductase
z-VAD-fmk Benzyloxycarbonyl-Val-Ala-Aspfluoromethyl ketone
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