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Generation of gene-modified goats 
targeting MSTN and FGF5 via 
zygote injection of CRISPR/Cas9 
system
Xiaolong Wang1,*, Honghao Yu2,3,*, Anmin Lei4,*, Jiankui Zhou5,6,*, Wenxian Zeng1, 
Haijing Zhu2,3, Zhiming Dong6, Yiyuan Niu1, Bingbo Shi1, Bei Cai1, Jinwang Liu2,3, 
Shuai Huang2,3, Hailong Yan1,2,3, Xiaoe Zhao4, Guangxian Zhou1, Xiaoling He1, Xiaoxu Chen1, 
Yuxin Yang1, Yu Jiang1, Lei Shi2,3, Xiue Tian1, Yongjun Wang1, Baohua Ma4, Xingxu Huang5,6, 
Lei Qu2,3 & Yulin Chen1

Recent advances in the study of the CRISPR/Cas9 system have provided a precise and versatile 
approach for genome editing in various species. However, the applicability and efficiency of this 
method in large animal models, such as the goat, have not been extensively studied. Here, by co-
injection of one-cell stage embryos with Cas9 mRNA and sgRNAs targeting two functional genes 
(MSTN and FGF5), we successfully produced gene-modified goats with either one or both genes 
disrupted. The targeting efficiency of MSTN and FGF5 in cultured primary fibroblasts was as high 
as 60%, while the efficiency of disrupting MSTN and FGF5 in 98 tested animals was 15% and 21% 
respectively, and 10% for double gene modifications. The on- and off-target mutations of the target 
genes in fibroblasts, as well as in somatic tissues and testis of founder and dead animals, were 
carefully analyzed. The results showed that simultaneous editing of several sites was achieved in 
large animals, demonstrating that the CRISPR/Cas9 system has the potential to become a robust 
and efficient gene engineering tool in farm animals, and therefore will be critically important and 
applicable for breeding.

Genome-editing technologies rely on the use of engineered nucleases to induce cellular DNA repair 
mechanisms and introduce programmable, site-specific genetic modifications in diverse systems1. These 
programmable endonucleases include zinc finger nucleases (ZFNs), transcription activator-like effector 
nucleases (TALENs) and, most recently developed, the clustered regularly interspaced short palindromic 
repeats CRISPR-associated 9 (Cas9) system. The CRISPR/Cas9 system uses short, single-guide RNAs 
(sgRNA) that recognize the target DNA, then programmed the Cas9 towards targets that are comple-
mentary to the first 20 nucleotides of the sgRNA2. Compared with ZFNs and TALENs, the RNA-guided 
CRISPR/Cas9 system demonstrates its precious, versatile and robust merits for targeted genome editing 
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in a variety of species, including model organisms, as well as crops and animals that are crucial to 
agriculture.

As one of the first domestic farm animals, the goat is one of the most important livestock species and 
provides a variety of products, including fiber, milk, meat, and hides. Furthermore, goats have also been 
used as a model in biomedical studies3-5. Although specific gene knockout strategies based on homol-
ogous recombination (HR) and somatic cell nuclear transfer (SCNT) have been established in goats6, 
precise gene modification of the goat genome is still challenging. In a previous study on disruption of 
four genes simultaneously in goat primary fibroblasts by the CRISPR/Cas9-mediated approach, only 
the myostatin (MSTN) knockout fibroblasts were achieved and resulted in live-born goats by SCNT7. 
However, an anti-biotic selection cassette is normally essential for isolating single-cell colonies from 
seeded donor cells, and reconstructed embryos have a low developmental potential, leading to a relatively 
low SCNT targeting efficiency (for example, 1–5% in pigs and >10% in cattle)8.

Co-injection of Cas9 mRNA and sgRNA into one-cell stage embryos has been demonstrated to be 
an efficient approach for the generation of genetically modified mice, rats, monkeys and pigs9-12, which 
encourages us to extend the application of this strategy to gene targeting in goats. In the present study, 
through co-injection of one-cell stage embryos of cashmere goats with sgRNAs of two functional genes 
(MSTN and FGF5) and Cas9 mRNA, targeted modifications of one or two genes were achieved at an 
efficiency around 26.5%. We also carefully analyzed the on- and off-target mutations of the targeted genes 
in the somatic tissues and gonads, providing comprehensive evidence for the efficiency and reliability 
of injection of zygotes with Cas9 mRNA and sgRNAs for the generation of gene-modified farm animals.

Results and Discussion
Design of sgRNAs.  The Shannbei cashmere goat is a cultivated dual-purpose breed that provides 
both meat and fibers (fine cashmere). In an attempt to improve the performance of cashmere goats 
considering both meat and cashmere production purposes, two genes that are associated with muscle 
development (MSTN) and hair length (FGF5), were selected as target genes. MSTN is a secreted growth 
differentiation factor that inhibits muscle differentiation and growth. Function loss of MSTN is known 
to cause an increased muscle mass phenotype in several mammals, including mice, dogs, cattle and 
humans13-16. Fibroblast growth factor 5 (FGF5), a secreted signaling protein during the hair growth cycle, 
inhibits hair growth by blocking dermal papilla cell activation17, and is regarded as the causative gene 
underlying the angora phenotype (long hair coat) in mice18. Mutations in FGF5 underlie trichomegaly 
(excessively long eyelashes) in humans19, as well as being associated with hair length in other mam-
mal species such as cats20, dogs21 and donkeys22. MSTN and FGF5 were therefore selected to generate 
gene-modified cashmere goats with both genes disrupted by the CRISPR/Cas9 system. To ensure the 
successful targeting, two sgRNAs independently targeting exons 2 and 3 of MSTN, and two sgRNAs 
targeting the first exon of FGF5, were selected as described23 (Fig. 1a).

Efficiency of the CRISPR/Cas9 System in Fibroblasts.  Although microinjection of zygotes with 
Cas9 mRNA and sgRNA had not previously been tested in goats, the successful application of this system 
in embryos of other species12,24, suggested that this system could work in goat embryos. To verify this 
possibility, we overexpressed the Cas9 nuclease and sgRNAs targeting MSTN and FGF5 in goat fibro-
blasts isolated from goat foetus. Subsequently, genomic DNA was extracted from fibroblasts 72 h after 
transfection, and screened for the presence of site-specific gene modification by PCR amplification of 
the region around the targeted site (Fig. 1b, c and e) using a T7 endonuclease I (T7E1) cleavage assay. 
The T7E1 cleavage bands were visible in the targeted genes (Fig. 1b, c and f). The cleavage was charac-
terized further by Sanger sequencing, which displayed overlapped peaks in the sequencing chromato-
graphs (Fig. 1d,g), suggesting different genotypes from target modifications. Distinguishable indels were 
observed at the target sites of MSTN and FGF5 with a range of mutation sizes (Fig. 1d,g, Supplementary 
Table S1). These data demonstrated that the designed sgRNAs work efficiently with Cas9 on targeted 
genes in the cultured goat fibroblasts.

Generation of Gene-Modified Goats.  To establish target modification in goats, a total of 926 early 
zygotes (one-cell stage) were surgically collected from 79 naturally mated ewes; ~11.72 zygotes were 
obtained from each donor. The Cas9 mRNA and sgRNA mixture targeting MSTN and FGF5 was injected 
into the cytoplasm of the embryos at the one-cell stage. After the injected embryos developed to the 
two-cell stage (~24 h, 37 °C), only 416 (48.25%) of the 862 injected embryos were transferred into 137 
pseudopregnant mothers. On average, 3.04 injected embryos were transferred to each recipient (Table 1). 
Of the 137 recipient ewes, 64 pregnancies (46.7%) were established according to observation of the estrus 
cycles. After full-term gestation, which lasted around 150 days, 93 lambs from surrogates were success-
fully delivered, 14 of which died immediately after birth (Fig. 2a and Table 1).

Genomic DNA was isolated from aborted, dead and live lambs. In total, 98 individuals (including 
93 delivered and 5 aborted) were used for genotyping. The sgRNA:Cas9-mediated genome modifica-
tions were first screened using the genomic DNA as described above. Genotyping was performed by 
PCR amplification, T7E1 assay, and TA-cloning sequencing. The additional bands were observed by 
PCR amplification of the target region in some of the infant goats (Fig.  2b), indicating that genomic 
modification occurred in these goats. Then, the PCR products of all the animals were subjected to the 
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Figure 1.  Evaluation of sgRNA:Cas9-mediated modifications of MSTN and FGF5 in goat fibroblasts.  
(a) Schematic diagram of MSTN and FGF5 partial protein coding region and the targeting loci of 
sgRNA:Cas9. sgRNAs targeting sites are presented in red. PAM sequences are highlighted in green and 
underlined. (b) Left panel, PCR products of the targeted exon 2 of MSTN from goat fibroblasts transfected 
with Cas9 and MSTN sgRNA1. Right panel, detection of sgRNA:Cas9-mediated on-target cleavage of MSTN 
by T7E1 cleavage assay. PCR products from left panel were subjected to T7E1 cleavage assay. M, marker; 
WT, wild type PCR product from fibroblasts that have not treated with CRISPR/Cas9. (c) Left panel, PCR 
products of the targeted exon 3 of MSTN from goat fibroblasts transfected with Cas9 and MSTN sgRNA2. 
Right panel, detection of sgRNA:Cas9-mediated on-target cleavage of MSTN by T7E1 cleavage assay. PCR 
products from left panel were subjected to T7E1 cleavage assay. (d) Sequences of modified MSTN alleles. 
Target sequences complementary to MSTN sgRNAs are in red text; the mutations are blue, lower case; 
insertions (+ ), deletions (− ) or mutation (m) are shown to the right of each allele. (e) PCR products of the 
targeted exon 1 of FGF5 from goat fibroblasts transfected with Cas9 and FGF5 sgRNA1, FGF5 sgRNA2 and 
FGF5 sgRNA1 & 2, respectively. (f) Detection of sgRNA:Cas9-mediated on-target cleavage of FGF5 by T7E1 
cleavage assay. PCR products from (e) were subjected to T7E1 cleavage assay. (g)Sequences of modified 
FGF5 alleles. Target sequences complementary to FGF5 sgRNAs are in red text; the mutations are blue, lower 
case; insertions (+ ), deletions (− ), mutation (m) or turnover (t) i shown to the right of each allele.
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T7E1 cleavage assay (Fig. 2c). Impressively, the cleavage products for MSTN were observed in 15 infants 
(15.3%) and FGF5 in 21 infants (21.4%), with 10 lambs showing disruption of two genes simultaneously 
(Table 2). In total, 26 lambs (26/98, 26.5%) demonstrated the disruption of one or two genes, indicating 
efficient genomic modifications in the infant goats. As expected, different types of indels were observed, 
and further confirmed by Sanger sequencing (Fig. 2d).

Currently, there are two descriptions about generation of genetically modified goat and sheep via 
the CRISPR/Cas9 system. Ni et al. reported the application of the CRISPR/Cas9 system to disrupt four 
genes (MSTN, NUP, PrP, and BLG) in goat primary fibroblasts, and generated live-born goats via SCNT 
approach for the single MSTN gene. Only the MSTN biallelic mutations were used for SCNT; seven 
pregnancies were yielded from 21 transfers, and two live-born goats were eventually obtained7. Through 
co-injection of Cas9 mRNA and sgRNA targeting a single gene-MSTN, Han et al. described the successful 
generation of MSTN knockout sheep at a targeting efficiency of 5.7% (2/35)25. Taken together, our results 
support that direct microinjection of Cas9 mRNA and sgRNAs into one-cell stage embryos is efficient in 
goats, and could be applied to produce gene-modified animals.

Cas9-Mediated Genome Targeting Extensively Integrates into Different Tissues of Goats.  To 
further evaluate the integration of the Cas9-mediated modifications into the derivatives of three germ 
layers, we performed extensive analysis of target mutagenesis in seven different somatic tissues (heart, 
liver, spleen, lung, kidney, skin, and muscle) and testis from the aborted and dead lambs. PCR ampli-
fication and T7E1 cleavage assay showed similar cleavage patterns among different tissue (Fig.  3a,b), 
suggesting that the Cas9-mediated mutations did occur in various goat tissues.

Off-Target Detection.  Previous studies have described that off-target mutagenesis occurred in Cas9 
medicated human cell lines25, mice26 and zebrafish27, suggesting that mismatches between the sgRNA and 
target DNA exist due to Cas9-mediated DNA cleavage25. To verify whether off-target mutations occurred 
in these Cas9 mediated goats, we predicted putative off-target sites using SeqMap28 and assessed the 
off-target mutations in both fibroblasts and founder animals. A total of 13 (6 for MSTN and 7 for FGF5) 
most potential off-target sites were predicted across the goat genome (Supplementary Table S2). Out of 
the 13 off-target sites, two sites (OT5 and OT7) showed off-target modifications in goat fibroblast cells 
(Supplementary Table S3, Fig S1). The remaining 11 off-target sites were therefore excluded for further 
examination in the founder animals. Subsequently, the PCR products at OT5 and OT7 were subjected 
to the T7E1 cleavage assay using the DNA from founder animals, we found that mutations at these two 
sites indeed occurred in some of the founder animals (Fig. 4a,b). To further verify the off-target cleav-
age events, PCR products from MSTN-disrupted animals and FGF5-disrupted animals were subjected 
to Sanger sequencing, showing #43, #70 of MSTN mutated founders and #9, #43, #70, #82, #84, #93 of 
FGF5 mutated founders had off-target modification (Fig.  4c). Except #41 of FGF5, which had a TGG-
------GGA/AGGAGGGGTGGGG SNP 113 bp before OT7, no mutations were found in #53 and #81 
of FGF5 mutated founders, indicating the slight off-target efficiency. In addition, #46 and #47 of FGF5 
showed false positive cut bands due to confirmed poly-T structure. Considering the off-target effects are 
site-dependent, we believe the off-target mutagenesis can be avoided by choosing a single or several sites.

Taken together, we present here the successful generation of gene-modified goats targeting multiple 
genomic loci via the CRISPR/Cas9 approach. We further carefully analyzed the sgRNA:Cas9-mediated 
on- and off-target mutation in various somatic tissues, as well as testis, providing detailed information 
about generating gene-modified goats by injection of zygotes with Cas9 mRNA and sgRNAs.

Materials and Methods
Ethical statement.  Eleven rams (2–3 years old, body weight: 30–50 kg) and 216 ewes (79 donors and 
137 recipients, 2–3 years old, body weight: 24–40 kg) were used in this study. The animals were regularly 
maintained in the Shaanbei Cashmere Goat Farm of Yulin University. All the protocols involving the use 
of animals were in accordance with approved guidelines of the Animal Care and Use Committee of the 
Northwest A&F University (Approval ID: 2011ZX08008-002).

Goats for 
zygote 
collection

Collected 
embryos

Cas9-sgRNA injected 
embryos (one-cell stage)

Recipient 
goatsa Newborns Alive goats Gene-modified goats

Injected 
embryos

Transferred 
embryos

79 926 862 416 137 93 79 26

Table 1.   Summary of production of gene-modified goats via CRISPR-Cas9. aFive surrogate ewes had 
aborted.
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Figure 2.  Detection of sgRNA:Cas9-mediated modifications of MSTN and FGF5 in lambs and tissues. 
(a) Photographs of 30-day-old gene-modified lambs (Photo taken by X.W.). (b) PCR products of the targeted 
region of MSTN and FGF5 from founder goats co-microinjected with a mixture of Cas9 mRNA and sgRNAs. 
(c) Detection of sgRNA:Cas9-mediated on-target cleavage of MSTN and FGF5 by T7E1 cleavage assay. All 
PCR products from (b) were subjected to T7E1 cleavage assay. All the samples were digested by T7E1, 
suggesting that all founders carry MSTN and FGF5 mutations. (d) Sequencing results of modified MSTN 
and FGF5 loci detected in lambs.
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Design of Cas9/sgRNA.  To construct the recombinant vector for the preparation of sgRNA by in 
vitro transcription, the two complementary DNA oligos shown in Supplementary Table S4 were annealed 
to be double-stranded, and then sub-cloned into the pUC57-T7-gRNA vector as described9. The con-
structed recombinant vector was completely linearized by DraI endonuclease and used as the template. 
sgRNAs were produced by in vitro transcription using the MEGAshortscript kit (Ambion) and purified 
using the MEGAClear kit (Ambion) according to the manufacturer’s instructions. Using the Cas9 mRNA  
in vitro transcription vector (Addgene No. 44758) as templates, Cas9 mRNA was produced and purified 
according to description9. The sequence of both the Cas9 and sgRNAs targeting MSTN and FGF5 are 
listed in Supplementary Table S5.

Cas9/sgRNA efficiency test in goat fetal fibroblasts.  We established a fibroblast cell line from 
40-day-old goat fetus trunk tissue. The fibroblasts went through five passages cultured in DMEM medium 
(Gibco) supplemented with 10% FBS (Gibco) and 1% penicillin streptomycin (Gibco) to achieve 80–90% 
confluency on the day of transfection. The transfection procedure was carried out using Lipofectamine 
2000 Reagent (Invitrogen) according to the manufacturer’s instructions. Briefly, goat fibroblasts were 
transfected with MSTN sgRNA1 (0.8 ug), MSTN sgRNA2 (0.8 ug), FGF5 sgRNA1 (0.8 ug), FGF5 sgRNA2 
(0.8 ug) and FGF5 sgRNA1 & 2 (0.4 ug/each), along with 0.8 μ g of Cas9 plasmid by Lipofectamine 2000 
in a 24-well culture plate. 24 h after transfection, 10 mg /mL of blasticidine S hydrochloride was added to 
the medium at a 1:1000 dilution for 24 h. Genomic DNA was extracted from fibroblasts 72 h after trans-
fection using a saturated solution of phenol and chloroform, then the DNA was precipitated with alcohol 
and sodium acetate. Subsequently, a T7E1 cleavage assay was performed as described by Shen et al.9. 
Briefly, the targeted fragments were amplified by PrimerSTAR HS DNA polymerase (TaKaRa, DR010A) 
from the genomic DNA, then purified with a PCR cleanup kit (Axygen, AP-PCR-50). The primers for 
amplifying MSTN and FGF5 targeted fragments are listed in Supplementary Table S6. The purified PCR 
products were denatured and re-annealed in NEBuffer 2 (NEB) using a thermocycler (BioRad). The PCR 
products were digested with T7E1 (NEB, M0302L) for 30 min at 37 °C and then separated on a 2.5% 
agarose gel. The PCR products with mutations detected by the T7E1 cleavage assay were then sub-cloned 
into T vector (Takara). For each sample, the colonies were picked randomly and sequenced with the 
M13F (–47) primer: 5′ -CGC CAG GGT TTT CCC AGT CAC GAC-3′ ).

Target gene Fibroblasts Tested individuals

MSTN 15/26 (57.7%) 15/98 (15.3%)

FGF5 11/18 (61.1%) 21/98 (21.4%)

FGF5&MSTN −  10/98 (10.2%)

Table 2.   The efficacy of Cas9-mediated modifications in goat fibroblasts and tested individuals.

Figure 3.  Detection of sgRNA:Cas9-mediated targeting in different tissues. (a) Dead goat #D24 was 
chose for tissue distribution analysis of on –target mutations. PCR products of the targeted regions of MSTN 
and FGF5 from seven tissues. (b) Detection of sgRNA:Cas9-mediated on-target cleavage of MSTN and FGF5 
by T7E1 cleavage assay. All PCR products from (a) were subjected to T7E1 cleavage assay. All the samples 
were digested by T7E1, suggesting that all the 7 tested tissues carry MSTN and FGF5 mutations.
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Production of gene-modified goats via zygote injection with Cas9/sgRNA.  Healthy ewes with 
regular estrus cycles were selected as donors for zygote collection. Zygotes were collected through sur-
gical oviduct flushing from the donors by estrus synchronization and superovulation treatment as we 
previously described30, 31. In brief, donors were treated with EAZI-BREED CIDR Sheep and Goat Device 
(CIDR, contain progesterone 300 mg) by inserting in vagina for 14 days, and the superovulation was 
performed 60 hours prior to CIDR Device removal. A total of 260 mg follicle stimulating hormone (FSH) 
(Folltropin® -V) was administered by intramuscular injection in 7 dosages, at 12 h intervals (the first 
dose was 70 mg and other doses were decrease progressively to 25 mg). And subsequently injected with 
0.1 mg cloprostenol after 60 hours from FSH was administered. Estrous detection was carried out 12 h 
after CIDR withdrawal and mating were repeated at 8 h intervals.

Goat zygotes at the one-cell stage (around 14 h post-fertilization) were surgically collected and were 
immediately transferred into TCM199 medium (Gibco, NY, USA). Cas9 mRNA (2  ng/μ L) and sgRNAs 
(5 ng/μ L for each sgRNA) targeting MSTN and FGF5 were mixed and injected into the cytoplasm of 
fertilized oocytes using the FemtoJect system (Eppendorf, Hamburg, Germany). The injection pressure, 
injection time and compensatory pressure were 45 kpa, 0.1 s and 7 kpa, respectively. Microinjection was 
conducted in manipulation medium TCM199 on the heated platform of the Olympus micromanipu-
lation system ON3. After injection, the zygotes were cultured in Quinn’s Advantage Cleavage Medium 
(Sage Biopharma, NJ, USA) for 24 h at 37 °C, and then transferred to Quinn’s Advantage Blastocyst 
Medium (Sage Biopharma, NJ, USA) at 37 °C, 5% concentration of carbon dioxide and saturated humid-
ity conditions. The surrogate animals for transfer were determined according to their oestrus cycles. 
About three divisive embryos were transferred into the ampullary-isthmic junction of the oviduct of the 

Figure 4.  Detection of the MSTN and FGF5 sgRNA:Cas9-mediated off-target cleavages in vivo. (a) PCR 
products of the potential off-target sites of MSTN and FGF5 sgRNA:Cas9 from founder lambs. A total of 13 
potential off-target sites most homologous to MSTN and FGF5 sgRNA were named OT1 to OT13. OT5 and 
OT7 were selected and PCR amplified from genomic DNA from founders. (b) Detection of sgRNA:Cas9-
mediated off-target cleavage of MSTN and FGF5 by T7E1 cleavage assay. All PCR products from (a) were 
subjected to T7E1 cleavage assay. (c) Sequencing results of PCR products.
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surrogate ewes. Pregnancy was determined by observing the oestrus behaviors of surrogate ewes every 
ovulation circle.

T7E1 cleavage assay and sequencing.  Samples including blood, heart, liver, spleen, lung, kidney, 
skin, testis, and muscle, were collected and digested in lysis buffer (0.4 M NaCl, 2 μ M EDTA, 1% SDS, 
10 μ M Tris-HCl, and 100 μ g/ml Proteinase K). The genomic DNA of the sample was extracted from the 
lysate by the phenol-chloroform protocol, and recovered by alcohol precipitation. A T7E1 cleavage assay 
was performed as described9. 

Off-target assay.  To determine the site-specific cleavage of the CRISPR-Cas9 system in vivo, the 
potential off-target loci were searched using an open tool, SeqMap29. The mismatch parameter for the 
target sequence was set as 5. ‘NGG’ and ‘NAG’ were chosen as the protospacer adjacent motifs (PAM). 
The sites with 7 bp conserved proximal to PAM and total mismatches < 5, and sites with total mismatches 
<4, were chosen as potential off-target sites for subsequent testing. The selected potential off-target sites 
were initially PCR-amplified using genomic DNA from cultured goat fibroblasts. The PCR products were 
then subjected to a T7E1 cleavage assay. The potential off-target sites yielding the typical cleavage bands 
were considered as candidates and further evaluated in the founder animals by PCR amplification, T7E1 
cleavage assay and TA sequencing. The information on the off-target loci and primer pairs used are listed 
in Supplementary Tables S7.
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