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Abstract

Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes
that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of
genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were
to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157
genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare
polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold
standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through
whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157
strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms.
Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by
cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may
have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H�

(the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question
how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not
surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are
highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including
those associated with the cattle reservoir and human disease.
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Introduction
Shiga toxin-producing Escherichia coli O157 (STEC O157)
are genetically diverse bacteria that cause diarrhea, hemor-
rhagic colitis, and hemolytic uremic syndrome (HUS) in hu-
mans (Griffin and Tauxe 1991; Gunzer et al. 1992). STEC
O157:H7 and STEC O157:H� strains comprise the STEC
O157 serogroup. STEC O157:H7 strains are typically motile,
do not ferment sorbitol (SOR�), and most do not express
b-glucuronidase activity (GUD�), whereas STEC O157:H�

strains are typically nonmotile, SORþ, and GUDþ (fig. 1). Both
subgroups are recently emerged pathogens; however, STEC
O157:H� human infections have been primarily limited to
Europe (Alpers et al. 2009; Pollock et al. 2010). In contrast,
STEC O157:H7 is responsible for a large majority of human
STEC O157 infections throughout the world (Griffin and

Tauxe 1991; Mead and Griffin 1998). Thus, the STEC
O157:H7 subgroup, in particular, is an international concern.

Cattle are a major reservoir for STEC O157:H7 and
a source of human infection (Borczyk et al. 1987; Griffin
and Tauxe 1991; Wells et al. 1991). However, cattle also har-
bor certain STEC O157:H7 genetic subtypes that are rarely
found in clinically ill humans (Kim et al. 1999; Roldgaard
et al. 2004; Besser et al. 2007; Bono et al. 2007; Clawson
et al. 2009; Whitworth et al. 2010). Cattle occasionally har-
bor SORþ STEC O157:H�, although the primary reservoir
for this serotype is unknown (Bielaszewska et al. 2000; Lee
and Choi 2006; Alpers et al. 2009). Consequently, cattle and
human clinical STEC O157 cases represent important focal
points for identifying STEC O157 genetic subtypes, under-
standing STEC O157 evolution and the evolution of genetic
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subtypes associated with human disease, and developing
an STEC O157 typing system for use in STEC O157 out-
break investigations.

A series of signature events point to the origin of STEC
O157 and subsequent evolution within the serogroup (fig.
1). STEC O157 is thought to have evolved from a SORþ,
GUDþ O55:H7 predecessor that acquired a bacteriophage
resulting in Shiga toxin 2 expression (Stx2þ) (fig. 1, sub-
group A2; Feng et al. 2007). The O55:H7 predecessor is
thought to have given rise to an unobserved O157:H7 lin-
eage predicted to be Stx2þ, SORþ, and GUDþ that acquired
an rfb gene cluster that encoded somatic O antigens of the
O157 serogroup through recombination and was trans-
formed with plasmid pO157 (92–104 kb), (fig. 1, predicted
O157:H7; Tarr et al. 2000; Shaikh and Tarr 2003; Feng et al.
2007; Leopold et al. 2009; Lim et al. 2010). The predicted
lineage is thought to have given rise to two extant STEC
O157 lineages: 1) nonmotile O157:H� that are Stx2þ,
SORþ, GUDþ, pO157þ, contain a 12-bp deletion in the fla-
gellar regulatory gene (flhC), and have a temperate stx2-
containing bacteriophage inserted within yecE, a gene with
unknown biological function (fig. 1, subgroup B; Shaikh and
Tarr 2003; Bielaszewska et al. 2006; Feng et al. 2007; Leopold
et al. 2009) and 2) O157:H7 that are Stx2þ, SOR�, GUDþ,
pO157þ, and may be either positive or negative for Shiga
toxin 1 (Stx1) expression (fig. 1, subgroup A5; Monday et al.

2001; Feng et al. 2007). Three extant lineages are thought to
have sequentially evolved from subgroup A5. Subgroup C1
members are Stx2þ, SOR�, GUD�, pO157þ, and contain
truncated temperate bacteriophages that are inserted into
yehV, which encodes a transcriptional regulator for
mannose-resistant hemagglutination and curli production
(Brown et al. 2001; Shaikh et al. 2007; Leopold et al. 2009).
Subgroup C2 members differ from subgroup C1 by having
a temperate stx2-containing phage integrated within wrbA,
which encodes a multimeric flavodoxin-like protein
(Grandori et al. 1998; Shaikh et al. 2007; Leopold et al.
2009). Subgroup C3 members differ from subgroup
C2 by being Stx1þ, with intact stx1-containing temperate
phage inserted into yehV (Shaikh et al. 2007; Leopold et al.
2009). These events, although informative, define STEC
O157 evolution at a relatively low resolution in relation
to the number of nucleotide polymorphisms that are
known within the STEC O157 serogroup (Zhang et al.
2006; Bono et al. 2007; Jackson et al. 2007; Clawson
et al. 2009; Leopold et al. 2009). Additionally, the evolution
of an entire lineage of STEC O157 genetic subtypes that is
maintained in cattle and does not associate with human
disease has not been resolved using these signature events
(Bono et al. 2007; Clawson et al. 2009).

Nucleotide polymorphism–derived genotyping shows
great potential in distinguishing STEC O157 genetic subtypes,

FIG. 1. Model of STEC O157 descent from an STEC O55:H7 progenitor based on previous studies. STEC O157 subgroups within the model are
defined by the presence (þ) or absence (�) of the ability to ferment SOR, b-glucuronidase activity (GUD), Shiga toxin 1 (Stx1), Shiga toxin 2
(Stx2), and pO157; Stx1-encoding temperate bacteriophage in yehV (truncated or complete), Stx2-encoding temperate bacteriophage in wrbA,
and Stx2-encoding temperate bacteriophage in yecE. Subgroups A2, B, and A5 are described by Feng et al. (2007). Subgroups C-1, C-2, and C-3
are described by Shaikh et al. (2007). This model is not to evolutionary scale.
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including those that associate with either the cattle reser-
voir and/or increased human virulence, and in determining
the course of evolution within the serogroup (Manning et al.
2008; Clawson et al. 2009; Leopold et al. 2009). To date,
a clade of genetic subtypes defined by a set of 96 nucleotide
polymorphisms has been associated with a higher pro-
portion of HUS cases in humans (Manning et al. 2008). Ad-
ditionally, a different clade defined by a set of 178
polymorphisms has been identified that does not associate
with human disease (Clawson et al. 2009). Eventually, nu-
cleotide polymorphism–derived genotyping may replace
pulsed field gel electrophoresis (PFGE) as a standard
method for detecting STEC O157 genetic subtypes in out-
break investigations. Unlike PFGE, which is most useful in
analyzing epidemiologically related strains (Davis, Hancock,
Besser, and Call 2003), nucleotide polymorphism–derived
genotyping can be used to determine genetic relatedness
between strains whether they are epidemiologically related
or not (Clawson et al. 2009; Leopold et al. 2009). However,
greater numbers of informative nucleotide polymorphisms
are needed to resolve diverse STEC O157 genetic subtypes
and to map evolution within the serogroup (Clawson et al.
2009).

The main goals of this study were to identify nucleotide
polymorphisms for high-resolution evolutionary analyses
of STEC O157 genetic subtypes typically found in
either cattle or clinically ill humans and to compare
polymorphism-derived genotype diversity directly with
PFGE diversity. Here, we report 584 newly described
polymorphisms that were genotyped in combination with
178 previously characterized polymorphisms (762 total
polymorphisms) in 426 STEC O157 strains (n5 269 cattle,
154 human, 1 pig, 1 soil, and 1 water). One hundred and
seventy-five polymorphism-derived genotypes were
observed that are detectable by a minimal set of 138 poly-
morphisms. Using phylogenetic analyses of the genotypes,
we identified eight major STEC O157 lineages. Seven line-
ages are typically found in cattle, including one that does
not associate with human disease and may be evolving
away from human virulence and two others that account
for a majority of human disease. PFGE diversity surpassed
that from the polymorphism-derived genotypes identified
in this study. However, these results highlight the tremen-
dous utility of nucleotide polymorphism–based genotyp-
ing as a method to determine evolutionary relatedness
within the STEC O157 serogroup.

Materials and Methods

Bacterial Strains
A total of 426 STEC O157 strains (n 5 269 isolated from
cattle, 154 isolated from humans, 1 isolated from pig, 1
isolated from soil, and 1 isolated from water) were used
in this study for nucleotide polymorphism genotyping
and phylogenetic analyses (supplementary table 1, Supple-
mentary Material online) (Whittam 1998; Reid et al. 1999;
Elder et al. 2000; Hayashi et al. 2001; Perna et al. 2001; Iguchi
et al. 2002; Davis, Hancock, Besser, Rice, et al. 2003;

Bono et al. 2004; Keen et al. 2006; Cooley et al. 2007;
Clawson et al. 2009). Moreover, 96 of the 426 strains were
used for PFGE analyses and 96 of the 426 were genotyped for
Stx-encoding bacteriophage insertion (SBI) sites (supplemen-
tary table 1, Supplementary Material online). The 96 strains
used for PFGE analyses originated from routine United States
Department of Agriculture surveys of slaughter plants within
the United States. All 426 strains were verified as STEC O157
via an enzyme-linked immunosorbent assay using an anti-
O157 monoclonal antibody and multiplex polymerase chain
reaction (PCR) for stx1, stx2, the intimin gene (eae), the
plasmid-encoded enterohemolysin gene of enterohemor-
rhagic E. coli (EHEC-hlyA), rfbO157, and the flagellin gene
(fliCH7) (He et al. 1996; Gannon et al. 1997; Westerman et al.
1997; Paton AW and Paton JC 1998). Additionally, each
strain was genotyped for a translocated intimin receptor
gene (tir 255T . A) polymorphism (Bono et al. 2007).
One STEC O55:H7 strain was also used for single-nucleotide
polymorphism genotyping. This strain (815-02) originates
from Germany and was PCR positive for stx2, eae, and
fliCH7; PCR negative for stx1, EHEC-hlyA, and rfbO157 (Gan-
non et al. 1997; Paton AW and Paton JC 1998); and O55
positive via rfb sequence analysis.

Nucleotide Polymorphism Discovery and Selection
All 762 nucleotide polymorphisms genotyped in this study
were originally identified through 1X whole-genome se-
quencing coverage of 189 STEC O157 strains, of which
188 were SOR� STEC O157:H7 (Clawson et al. 2009) (sup-
plementary table 1, Supplementary Material online). These
189 strains are part of the larger set of 426 strains used in
this study. Of the 189 strains, 102 originate from cattle that
were distributed throughout different locations within the
United States. The remaining 87 strains all originate from
clinically ill humans and were selected based on PFGE pat-
terns and/or epidemiological data. Some strains within the
set of 87 are epidemiologically linked and were excluded
from frequency estimates of nucleotide polymorphism al-
leles, polymorphism-derived genotypes, and SBI genotypes
in humans (supplementary table 1, Supplementary Mate-
rial online). The STEC O157 genomes were sequenced in
one of three DNA pools that accounted for host source
(cattle or human) and genotype for the tir 255T . A poly-
morphism. The A allele of this polymorphism is an effective
marker for a lineage of STEC O157 strains that is main-
tained in cattle and rarely observed in clinically ill humans,
whereas the T allele marks several lineages that are found in
both clinically ill humans and cattle (Bono et al. 2007;
Clawson et al. 2009). Genomic libraries were prepared
for each of the three pools in accordance with the manu-
facturer’s protocols (Roche, Nutley, NJ), and the sequenc-
ing was performed on the Roche GS-FLX platform. The first
pool contained DNAs from 51 cattle-isolated STEC
O157:H7 strains with the A allele of tir 255 T . A and pro-
duced 346.2 Mb of sequence. The second pool contained
DNAs from 51 cattle-isolated STEC O157:H7 strains with
the T allele of tir 255 T . A and produced 402.6 Mb of
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sequence. The third pool contained DNAs from 86 STEC
O157:H7 strains with the T allele of tir 255T . A that were
isolated from clinically ill humans and one human-isolated
SORþ STEC O157:H� strain with the T allele of tir 255T . A
and produced 557.5 Mb of sequence (Clawson et al. 2009).
This design allowed for the identification of STEC O157 ge-
netic diversity that was from cattle and not typically found
in clinically ill humans, from cattle and may or may not be
found in clinically ill humans, and from clinically ill humans.
A total of 16,218 putative nucleotide and/or insertion de-
letion polymorphisms were identified across the pools by
mapping individual reads onto the Sakai reference strain
(GenBank: NC_002695) with Roche GS Reference Mapper
Software (version 1.1.03, Roche) (Clawson et al. 2009).

Selection and validation of 762 nucleotide polymor-
phisms from 16,218 putative candidates were based on ge-
nome location and minor allele frequencies within or
across the DNA pools and was conducted over this study
and a previous one (Clawson et al. 2009). In this study, we
genotyped and validated 584 of the putative polymor-
phisms. We also genotyped an additional 178 polymor-
phisms that were previously validated from the list of
16,218 putative polymorphisms (Clawson et al. 2009). Re-
garding the overall selection of 762 nucleotide polymor-
phisms, we primarily targeted those that reside on a 4.1
Mb backbone of STEC O157 that is shared with E. coli
K-12 and other E. coli serogroups (n 5 616) versus those
present on S-loops, which are segments of the STEC O157
genome that are absent in the E. coli K-12 genome (Hayashi
et al. 2001; Perna et al. 2001) (n 5 146) (supplementary
table 2, Supplementary Material online). This allowed us
to identify polymorphisms that would have informativity
that extended beyond the STEC O157 serogroup. To cap-
ture STEC O157 genetic diversity within each of the DNA
pools, 398 nucleotide polymorphisms were selected where
the minor allele was observed exclusively in one pool. Of
these, 77 were selected from the tir 255T . A T human
strain DNA pool, 161 from the tir 255T . A T bovine strain
pool and 160 from the tir 255T . A A bovine strain pool
(fig. 2). Additionally, 340 nucleotide polymorphisms were
selected that shared minor alleles between the human
strain DNA pool and the bovine strain tir 255T . A T
DNA pool, and an additional six were selected with shared
minor alleles between the two bovine DNA pools (fig. 2).
Seventeen selected nucleotide polymorphisms had minor
alleles that were observed across all three pools (fig. 2).

Nucleotide Polymorphism Genotyping
STEC O157 strains (n 5 426) were genotyped for 762
polymorphism alleles either by sequencing on an ABI
3730 capillary sequencer (PE Applied Biosystems, Foster
City, CA) or by matrix-assisted laser desorption ioniza-
tion–time-of-flight (MALDI-TOF) genotyping (Sequenom,
Inc., San Diego, CA). MALDI-TOF assay and multiplexing
design were conducted with MassARRAY assay design soft-
ware as recommended by the manufacturer (Sequenom,
Inc.). Up to 36 polymorphisms were accepted for each mul-

tiplex, and the assays were conducted with iPLEX Gold
chemistry on a MassARRAY genotyping system as per
the instructions of the manufacturer (Sequenom Inc.).
‘‘High confidence’’ genotype calls by the Genotyper soft-
ware were accepted as correct. ‘‘Aggressive’’ calls were in-
spected manually and verified as needed by replicate
MALDI-TOF assays or Sanger Sequencing. Previously de-
signed MALDI-TOF assays were used to genotype 178 of
the 762 polymorphisms (Clawson et al. 2009). Additional
MALDI-TOF assays were developed in this study to score
584 nucleotide polymorphisms. For each of the 426 STEC
O157 strains, all 762 polymorphism alleles were concate-
nated to generate a polymorphism-derived genotype.

Identification of Haplotype Tagging Alleles
The alleles of 762 nucleotide polymorphisms were concat-
enated in order against the Sakai STEC O157 genome (Gen-
Bank: NC_002685) for 426 strains and aligned using
ClustalX (version 1.83) (Thompson et al. 1997). Unique
polymorphism-derived genotypes within the alignment
(n 5 175) were identified in Tree-Puzzle (version 5.2)
(Schmidt et al. 2002) and analyzed for haplotype tagging
alleles in Haploview (version 4.2) (Barrett et al. 2005). Pu-
tative polymorphism combinations that tagged all 175
unique polymorphism-derived genotypes were identified
with the ‘‘Tagger’’ feature of Haploview using options to
capture all alleles through pairwise tagging with r2 5 1
and to accept 32 previously described tagging polymor-
phisms (Clawson et al. 2009). Using only the putative tag-
ging polymorphisms identified by Haploview, a new
alignment of all 175 unique polymorphism-derived geno-
types (based on 762 nucleotide polymorphisms) was con-
structed in ClustalX. To test the actual tagging power of
each polymorphism allele, polymorphism alleles were

FIG. 2. Number of nucleotide polymorphisms validated from the
three STEC O157 DNA pools. The numbers represent nucleotide
polymorphisms with minor allele frequencies greater than zero in
the DNA pools used for their discovery. One of the 762 nucleotide
polymorphisms characterized in this study is not represented in the
figure as the minor allele was only observed in the Sakai reference
genome (GenBank: NC_002695). Strains used for polymorphism
discoveries and validations are listed in supplementary table 1,
Supplementary Material online. Nucleotide polymorphisms charac-
terized in this study and their frequencies in human and cattle strains
are listed in supplementary table 2, Supplementary Material online.
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sequentially subtracted from the alignment and Tree-Puz-
zle was used to search for redundant sequences. If the sub-
traction of a nucleotide polymorphism led to the
identification of redundant sequences in Tree-Puzzle, the
nucleotide polymorphism was accepted as tagging and
added back to the alignment. If the subtraction still yielded
unique sequences, the polymorphism was not truly tagging
and the polymorphism was excluded from further consid-
eration as a tagging polymorphism.

Phylogenetic Analyses
Neighbor joining trees were produced from ClustalX
alignments of 175 distinct full-length STEC O157
polymorphism–derived genotypes and one homologous
full-length STEC O55:H7 polymorphism–derived genotype
(n 5 762 alleles, supplementary table 3, Supplementary
Material online) and from haplotype tagging polymor-
phism–derived genotypes for the same strains (n 5 138
alleles), (supplementary table 4, Supplementary Material on-
line). Rooted trees were constructed for both alignments in
PHYLIP (version 3.69) (Felsenstein J, unpublished data) using
the programs CONSENSE, DNADIST, NEIGHBOR, and SEQ-
BOOT. A distance matrix was produced in DNADIST using
an F84 distance model of substitution and a transition/trans-
version ratio of 2. Neighbor joining trees were constructed in
NEIGHBOR and rooted with the O55:H7 sequence. Boot-
strap values were determined for the trees by generating
1,000 pseudoalignments in SEQBOOT, 1,000 distance matri-
ces in DNADIST, and 1,000 trees in NEIGHBOR. A consensus
tree was generated in CONSENSE. Both consensus and indi-
vidual trees were viewed with Dendroscope (version 2.5)
(Huson et al. 2007).

Pulsed-Field Gel Electrophoresis
Standardized protocols for STEC O157 PFGE (Ribot et al.
2006) were applied to 96 STEC O157 strains isolated from
ground beef (supplementary table 1, Supplementary Mate-
rial online). Two independent digestions were conducted
for each strain: a primary with XbaI and a secondary with
BlnI (Ribot et al. 2006). PFGE patterns were analyzed
semiautomatically with Bionumerics software (v.5.0;
Applied Maths, Austin, TX) and compared with patterns
in the Pulsenet USA database. Matching PFGE names
correspond to indistinguishable PFGE patterns. PFGE
scores and polymorphism-derived genotype scores for
the 96 strains were independently determined.

SBI Genotyping
Most of the SBI genotypes analyzed in this study were avail-
able from the literature, as were their frequencies in STEC
O157 strains of human and/or cattle sources (Besser et al.
2007; Whitworth et al. 2008) (supplementary table 1, Sup-
plementary Material online). Briefly, uniplex PCR assays
were conducted to detect the presence or absence of
stx1 and stx2 genes (Olsvik et al. 1991; Paton AW and Paton
JC 1998; Whitworth et al. 2008) and phage integration, full,
partial, or lack thereof into either yehV (Stx1-encoding bac-

teriophage) or wrbA (Stx2-encoding bacteriophage)
(Shaikh and Tarr 2003; Besser et al. 2007) (supplementary
table 5, Supplementary Material online). The presence or
absence of PCR amplicons was determined via gel electro-
phoresis. Additionally, for 96 strains SBI genotyped in this
study, the uniplex PCRs described above were combined
into a single multiplex PCR (supplementary table 5, Supple-
mentary Material online). Multiplex 25-ll PCRs consisted
of 1.25 units Platinum Taq polymerase (Invitrogen, Carls-
bad, CA), 2.4 mM MgCl2, 0.4 mM deoxynucleoside triphos-
phates, 2.5 ll 10� buffer (Invitrogen), 0.2 lM of primers A,
E, F, B, C, G, H, and D, 0.3 lM of primers SLT1-2 and SLT1-1,
0.1 lM of primers Stx2F and Stx2R (supplementary table 5,
Supplementary Material online), and 5 ng of DNA tem-
plate. The parameters of the thermocycler (iCycler; Bio-
Rad, Hercules, CA) included one 95 �C (5 min) cycle
and 35 cycles at 94 �C (30 s), 58 �C (45 s), and 72 �C
(90 s), followed by a final 72 �C (10 min) cycle. After com-
pletion of the PCR, samples containing 2 ll PCR product,
0.5 ll GeneScan 1200Liz size standard, and 12.5 ll of Hi-Di
formamide were analyzed by capillary electrophoresis using
an ABI-3730 DNA Analyzer (PE Applied Biosystems, Foster
City, CA) at the Laboratory for Biotechnology and Bioanal-
ysis, Washington State University, Pullman, WA. Following
data analysis with GeneMarker 1.70 software (SoftGenetics,
State College, PA), genotypes were inferred based on the
presence or absence of peaks consistent with each of
the six PCR products (Besser et al. 2007; Whitworth
et al. 2008). Resultant PCR products were coded for six
characters (0 for absence and 1 for presence) for the
following concatenated genotypes stx1, stx2, yehV-left
and Stx1-encoding bacteriophage junction, yehV-right
and Stx1-encoding bacteriophage junction, wrbA-left and
Stx2-encoding bacteriophage junction, and wrbA-right
and Stx2-encoding bacteriophage junction (supplementary
table 1, Supplementary Material online).

Results

Polymorphism Validation and Genotyping
A total of 762 nucleotide polymorphisms were genotyped
across 426 STEC O157 strains. Of the 762, the minor alleles
of 183 were observed within the bovine strain tir 255T . A
A DNA pool; the minor alleles of 524 were observed within
the bovine strain tir 255T . A T DNA pool, and the minor
alleles of 434 were observed within the human strain tir
255T . A T DNA pool, with average frequencies of 18.3%,
23.9%, and 23.9%, respectively. Six hundred and twenty-nine
of the 762 polymorphisms reside in open reading frames with
379 predicted nonsynonymous or premature stop codon al-
lele variants and 250 predicted synonymous allele variants
(supplementary table 2, Supplementary Material online).

Identification and Distribution of Polymorphism-
Derived Genotypes in STEC O157 Strains Isolated
from Humans or Cattle
A total of 175 unique polymorphism-derived genotypes
were identified from the 426 STEC O157 strains (fig. 3,
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supplementary tables 3 and 4, Supplementary Material on-
line). Of those, 76 were observed in strains isolated from
humans and 124 were observed in strains isolated from cat-
tle. Ninety-eight genotypes were observed exclusively in
cattle-isolated strains, 50 in human-isolated strains, and
26 were observed in both human- and cattle-isolated strains.
A relatively frequent genotype from human-isolated strains
(genotype #74, frequency 5 0.083) was not observed in any
of the cattle-isolated strains (fig. 3). This genotype is one of
nine (71–79) that were observed in 30 SORþ STEC O157:H�

strains that were isolated from humans in Germany and
one SOR� strain that was also isolated from a human in
Germany. STEC O157 strains isolated from cattle in Germany
were not represented in this study. However, SORþ STEC
O157:H� strains have not been isolated from German cattle
to our knowledge (Alpers et al. 2009), and only a few of these
strains have been isolated from cattle in Europe and Korea to
date (Bielaszewska et al. 2000; Lee and Choi 2006; Orth et al.
2006). Thus, the frequency differences of genotype #74 in
cattle- and human-isolated strains are likely due to cattle
not being a primary reservoir of SORþ STEC O157:H�. In
contrast, genotype #147 was observed in 12 STEC
O157:H7 strains isolated from humans in Germany (fre-
quency in human-isolated strains 5 0.083) and two STEC
O157:H7 strains isolated from cattle, one from the United
States and one from Scotland (frequency in cattle-isolated

strains 5 0.008). The frequency distribution differences of
this genotype in cattle- and human-isolated strains are a likely
result of geographical stratification of this subtype in Ger-
many combined with an absence of STEC O157 strains iso-
lated from German cattle in our sample collection. All 175
polymorphism-derived genotypes can be resolved with
a minimal set of 138 tagging polymorphisms.

Phylogenetic Analysis of Polymorphism-Derived
Genotypes and Identification of Eight Major
Lineages
Neighbor joining trees were generated from the
polymorphism-derived genotypes of all 762 nucleotide
polymorphism alleles (fig. 4) and from only the 138 tagging
polymorphism alleles (fig. 5). Both trees were rooted with
a homologous genotype from STEC O55:H7 and used to
track the alleles of the tir 255 T . A polymorphism, SOR
fermentation, and genotype frequencies in strains isolated
from humans. Both trees yielded similar topologies; however,
as expected, the bootstrap support was reduced in the
phylogenetic tree constructed from the tagging polymor-
phism alleles as it contained reduced phylogenetic signal
(Clawson et al. 2009). The full-length polymorphism–derived
genotype tree in figure 4 depicts strongly supported clades
that represent several lines of descent within the STEC
O157 serogroup. A clade on the tree that branches closely

FIG. 3. Frequencies of 175 polymorphism-derived genotypes in STEC O157 strains isolated from humans and cattle. Individual strain genotypes
and genotype sequences can be found in supplementary tables 1 and 3, Supplementary Material online, respectively.
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to the STEC O55:H7 root is composed of tir 255 T . A T,
SORþ strains. This clade represents polymorphism-derived
genotypes from all SORþ human-isolated strains in this study
(n 5 30) and one atypical SOR-fermenting human-isolated
strain (Lineage VIII). Genotype #80 represents the early diver-
gence of a SOR� STEC O157 lineage on the tree and was iden-
tified from a human-isolated strain and a cattle-isolated
strain, both from the United States (Lineage VII). Genotypes
#81-88 also place in a clade that diverged early in the evolu-
tion of STEC O157 and were identified in 12 cattle-isolated
strains from the United States, 1 cattle-isolated strain from
Japan, and 2 human-isolated strains from Germany (Lineage
VI). Notably, a strongly supported monophyletic clade of
polymorphism-derived genotypes with the tir 255T . A A
allele appears on the tree after the emergence of SOR�

STEC O157. The clade is represented by 87 cattle-isolated
strains that collectively are from the United States, Japan,
and Australia and two human-isolated strains, one from
the United States and one from Germany (Lineage V).

Thus, this clade is commonly represented in cattle and
rarely in humans.

The majority of human-isolated strains placed in one of
two major lineages (I and II) that each contain well-defined
subclades. Lineage I contains genotypes #1–68, which were
identified in 71 of the 154 human-isolated strains geno-
typed in our sample collection (n 5 7 from Germany
and n 5 64 from USA). Lineage II, which is represented
by more tightly clustered clades on the tree, contains gen-
otypes #147–174, which were identified from 42 human-
isolated strains (n 5 17 from Germany and n 5 25 from
USA). These two lineages are both well represented by
cattle-isolated strains and have been previously identified
at lower resolution using a smaller set of nucleotide poly-
morphisms (Clawson et al. 2009).

Two additional lineages (III and IV) are demarcated on
the tree. Lineage III shares a distant common ancestor with
Lineage II and is represented by a genotype (#175) that was
observed from a single ground beef-isolated strain from the

FIG. 4. Neighbor joining tree of full-length STEC O157 polymorphism-derived genotypes. Bullets represent bootstrap values equal to or greater
than 80% (n 5 1,000 bootstraps). Numbers in bold correspond to genotype numbers. Italicized numbers in parentheses represent clade
frequencies in the human-isolated strains. Major lineages within the tree are denoted with Roman numerals. Lineages I–IV, VI, and VII are
represented by SOR�, tir 255T . A T strains. Lineage V is represented by SOR�, tir T . A A strains. Linage VIII is represented by SORþ, tir 255T
. A T strains and one mutant SOR�, tir 255T . A T strain. Proportions of human and cattle STEC O157 strains per lineage are represented
with black and white pie charts. The numbers of strains per lineage are shown with ‘N’ counts. Genotype #89 is part of Lineage IV in this tree.
The scale bar represents substitutions per site.
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United States. Lineage IV is composed of a loose cluster of
short branch length genotypes (#69–70, #89–90). These
genotypes were observed in three human-isolated strains
(n 5 2 from United States and n 5 1 from Germany)
and nine cattle-isolated strains (n 5 1 from Scotland,
n 5 1 from Australia, and n 5 7 from United States).

Comparison of SBI Genotypes with Polymorphism-
Derived Genotype Phylogeny
To ultimately compare the phylogeny of STEC O157 based
on polymorphism-derived genotypes with the earlier
model of evolution depicted in figure 1, we had to connect
SBI genotypes with the polymorphism-derived genotypes
identified in this study. Accordingly, SBI genotype scores
were obtained from 146 human-isolated STEC O157 strains
and 230 cattle-isolated strains that were also scored by
polymorphism-derived genotypes. Within this collection of
strains, two unique SBI genotypes were observed from
human-isolated strains and four were observed from
cattle-isolated strains (fig. 6). Three SBI genotypes accounted
for 89% of the overall genotype frequency in the human-
isolated strains (genotypes #1, 3, and 11). One of these
(genotype #11) was observed in all 30 SORþ STEC
O157H� human-isolated strains and also from one SOR�

human-isolated strain. The other two SBI genotypes of high

frequencies in human-isolated strains (genotype #1 5 0.291,
#3 5 0.392) were previously reported as high frequency SBI
genotypes for the large portion of human-isolated STEC O157
strains in our collection that were scored and analyzed in
other studies (Besser et al. 2007; Whitworth et al.
2008), with some geographical variation in their propor-
tional frequencies (Whitworth et al. 2008). Similarly, the
high frequencies of four SBI genotypes from cattle-iso-
lated strains in our collection (genotypes #1, 3, 5, and
6; fig. 6) have also been previously reported (Besser
et al. 2007; Whitworth et al. 2008).

Placement of SBI Genotypes onto a Phylogenetic
Tree of Polymorphism-Derived Genotypes
A rooted phylogenetic tree of polymorphism-derived gen-
otypes was used to connect SBI genotypes with the phy-
logeny of their corresponding polymorphism-derived
genotypes (fig. 7). SBI genotypes are subject to homoplasy
due to phage excisions and/or insertions that may be dif-
ficult to detect. However, one or two SBI genotypes ac-
counted for at least 50% of the SBI genotype frequency
in each of the eight major polymorphism-derived lineages
(fig. 7). Thus, the identity of predominant SBI genotypes
within the major polymorphism-derived lineages of STEC
O157 could be used to compare the polymorphism-derived

FIG. 5. Neighbor joining tree of STEC O157 polymorphism-derived genotypes based on 138 tagging polymorphisms. Bullets represent bootstrap
values equal to or greater than 80% (n 5 1,000 bootstraps). Numbers in bold correspond to genotype numbers. Italicized numbers in
parentheses represent clade frequencies in the human strains. Major lineages determined with full-length polymorphism–derived genotypes
are denoted with Roman numerals. The scale bar represents substitutions per site.
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tree with the current model of STEC O157 evolution rep-
resented in figure 1.

Comparison of Eight Major Lineages of
Polymorphism-Derived Genotypes with the Current
Model of STEC O157 Evolution
Overall, the major polymorphism-derived lineages of STEC
O157 support much of the earlier model of STEC O157 evo-
lution, albeit at higher resolution. A comparison of the
polymorphism-derived lineages with the earlier model of
STEC evolution is shown in figure 8. Lineage VIII contains
SORþ STEC O157:H� strains that all have the same SBI ge-
notype (genotype #11) and are all stx2þ, stx1�, and nega-
tive for phage integrations in either yehV or wrbA. Only
one strain of this lineage could be tested for GUD activity
and was positive (supplementary table 1, Supplementary
Material online). Consequently, Lineage VIII is similar to
subgroup B. Lineage VII contains two strains that are stx2þ,
SOR�, and GUDþ, with one stx1þ strain and one stx1�

strain, and both strains PCR positive for a Stx1-encoding bac-
teriophage integration spanning the left junction of yehV and
negative for a Stx2-encoding bacteriophage integration in
wrbA (SBI genotypes 5 [stx1�] and 6 [stx1þ]). Lineage VII
is similar to subgroup A5 and in fact contains strain

TWO5356, a known subgroup A5 member (Feng et al.
2007); however, the presence or absence of stx1 phage inte-
grations in yehV was not originally used to define subgroup
A5 (Feng et al. 2007) and one of the strains in Lineage VII is
stx1�. Lineage VI is not represented in the early model of
STEC O157 evolution and is composed of strains that are
all SBI genotype #5. Lineage V, the clade predominantly
composed of STEC O157 genotypes from cattle isolates,
is also not represented in the early model of STEC O157 evo-
lution. This lineage is composed almost entirely of SBI gen-
otypes #5 and 6. Similarly, SBI genotype #6 is the predominant
genotype in Lineages III and IV, both of which are not rep-
resented in the early model of STEC O157 evolution.

Lineage II is comprised mainly of strains that are stx2þ,
stx1�, SOR�, GUD�, contain a Stx1-encoding bacterio-
phage that spans both junctions of yehV, and do not con-
tain a Stx2-encoding bacteriophage in wrbA (SBI genotype
#1). Thus, Lineage II is similar to subgroup C1. However,
subgroup C1 is characterized by a truncated Stx1-encoding
bacteriophage that occupies the left and right junction of
yehV. One strain of Lineage II is known to have the exact
same truncation of Stx1-encoding bacteriophage as strains
that place in subgroup C1 (strain RM 6049, supplementary
table 1, Supplementary Material online), although it is not
certain that all other strains that place in Lineage II have
this same truncation.

Lineage I contains strains that are similar to subgroups
C1, C2, and C3. Constituents of these three subgroups are
thought to have sequentially evolved, a model that is fully
supported in this study. Strains with SBI genotype #1 are
similar to subgroup C1 and place in the basal subclades of
Lineage I. The one strain in this study that represents sub-
group C2 (strain TW00116, also known as strain 86-24, sup-
plementary table 1, Supplementary Material online) is
stx1�, stx2þ, SOR�, GUD�, contains a Stx1-encoding bac-
teriophage that spans both junctions of yehV (known to be
centrally truncated with the loss of stx1), and contains
a Stx2-encoding bacteriophage in wrbA (SBI genotype
#2). Within Lineage I, the polymorphism-derived genotype
of this strain (genotype #61) is apical to the subclades
connected with SBI genotype #1, and basal to all but
two polymorphism-derived genotypes connected with
SBI genotype #3, placing SBI genotype #2 as an evolution-
ary intermediate between the strains with SBI genotype #1
and a majority of strains with SBI genotype #3. Strains with
SBI genotype #3 are stx1þ, stx2þ, SOR�, GUD�, contain
a Stx1-encoding bacteriophage that spans both junctions
of yehV, and contain a Stx2-encoding bacteriophage in
wrbA. The gain of stx1 in strains with SBI genotype #3 is
linked with the gain of an intact Stx1-encoding bacterio-
phage in yehV, and two strains with SBI genotype #3 are
known to have an intact Stx1-encoding bacteriophage in
yehV (strains EDL933 and Sakai, supplementary table 1,
Supplementary Material online; Leopold et al. 2009). These
results support the notion that SBI genotype #3, the most
frequent SBI genotype observed in this study in both hu-
man and cattle-isolated strains, recently emerged during
STEC O157 evolution.

FIG. 6. Frequencies of SBI genotypes in human and cattle STEC
O157 strains. SBI genotype numbers represent PCR results (0 for
absence and 1 for presence) for the following concatenated
genotypes: stx1, stx2, yehV-left and Stx1-encoding bacteriophage
junction, yehV-right and Stx1-encoding bacteriophage junction,
wrbA-left and Stx2-encoding bacteriophage junction, and wrbA-
right and Stx2-encoding bacteriophage junction. Genotype
numbers represent the following concatenations: 1 5 011100,
2 5 011111, 3 5 111111, 4 5 010011, 5 5 011000, 6 5 111000,
7 5 111011, 8 5 101100, 10 5 001100, 11 5 010000, 12 5 011011,
13 5 101000, 15 5 110000, 16 5 111100, 19 5 010100, and
22 5 101111.
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Comparison of PFGE Diversity with That of
Polymorphism-Derived Genotypes Defined from
762 Nucleotide Polymorphism Alleles
Genetic diversities based on PFGE and polymorphism-derived
genotypes were compared among 96 epidemiologically
unrelated STEC O157 strains isolated from ground beef. PFGE
profiles were determined through independent XbaI and BlnI
digestions as XbaI is typically used as a primary enzyme for
determining STEC O157 genetic relatedness and BlnI is used
as a secondary enzyme to either confirm XbaI results or pro-
vide additional resolution (Gerner-Smidt et al. 2006). Overall,
PFGE diversity assessed with either XbaI or BlnI surpassed
polymorphism-derived genotype diversity. A total of 41
polymorphism-derived genotypes were observed between
the strains, whereas XbaI and BlnI digestions yielded 58
and 50 PFGE patterns, respectively (fig. 9). However, nine BlnI
PFGE patterns occurred with two or more polymorphism-

derived genotypes, as did 10 XbaI PFGE patterns (fig. 9),
indicating that the polymorphism-derived genotypes provide
added resolution to PFGE banding profiles based on individ-
ual digestions in some instances.

PFGE diversity assessed with combined XbaI and BlnI
digestion results surpassed polymorphism-derived geno-
type diversity to a greater extent than either of the single
digestions. Of 68 unique PFGE profiles identified with
combined digestion results, 54 were observed once with
individual strains, and only 4 of 14 profiles observed from
multiple strains occurred with two distinct polymorphism-
derived genotypes (fig. 10). Each of the two distinct
polymorphism-derived genotypes that occurred with a
single PFGE profile are highly related to one another based
on their placement as outer taxonomic units in the
phylogenetic trees (data not shown). In contrast, 17
polymorphism-derived genotypes occurred with two or

FIG. 7. Neighbor joining tree of full-length STEC O157 polymorphism–derived genotypes with corresponding SBI genotypes. Numbers in bold
correspond to polymorphism-derived genotypes. Roman numerals correspond to the major lineages. Numbers in brackets correspond to SBI
genotypes and are listed to show their frequencies in polymorphism-derived genotype lineages and/or subclades. SBI genotype traits observed
at frequencies of 50% or higher in a lineage or lineage subclade are listed in bold, whereas those observed at less than 50% are in parentheses
and are nonbolded. SBI genotypes in Lineage I subclades are shown for clarity. The exact location of a polymorphism-derived genotype
corresponding to SBI genotype 2 is denoted on the tree with an arrow as this phage genotype was observed from just one human strain and is
the sole representative of the C-2 subgroup. Genotype #89 is part of Lineage IV in this tree. The scale bar represents substitutions per site.
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more PFGE profiles based on combined digestions.
Although the PFGE profiles used in this study do not effec-
tively show genetic relatedness by descent, these results
show that PFGE, based on single or combined XbaI and BlnI
digestions, can detect genetic diversity with greater resolu-
tion than the polymorphism-derived genotypes defined in
this study.

Discussion
As a set, the 762 nucleotide polymorphisms characterized
in this study capture a wide spectrum of STEC O157 genetic
diversity and were instrumental in identifying eight major
lineages of genetic subtypes and determining the order of
their descent within the serogroup. However, we caution
that the phylogenetic distances (branch lengths) within
and between the lineages (figs. 4, 5, 7, and 8) are a reflection
of our nucleotide polymorphism selection criteria and the
STEC O157 strains used for polymorphism discovery and
validation. For example, Lineage VIII, which is composed
of SORþ STEC O157:H� strain genetic subtypes, has rela-
tively short internal branches in figure 4. This is because

a single SORþ STEC O157:H� strain was represented in
the nucleotide polymorphism discovery process, and poly-
morphisms were not selected to delineate this lineage.
Consequently, the genetic subtypes of Lineage VIII primar-
ily represent ancestral states for the 762 polymorphisms
with minimal phylogenetic signal stemming from individ-
ual polymorphism alleles that are specific to the lineage.

An additional example is the common ancestor for Lin-
eage V, which resides on a very short branch despite the
selection of 160 polymorphisms for polymorphism-derived
genotyping that were specific to the bovine strain tir 255T
. A A allele DNA pool (fig. 2). The 160 polymorphisms are
specific to Lineage V; however, none of them had an allele
that occurred at 100% in the bovine strain tir 255T . A A
allele DNA pool and at 0% frequency in the other two DNA
pools. Inclusion of polymorphism alleles of this type would
have extended the internal branch leading to the common
ancestor of Lineage V, and 181 such putative polymor-
phisms were identified (Clawson et al. 2009). Thus, the
short branch leading to the common ancestor for Lineage
V is a result of our selecting 160 polymorphisms that
targeted variation between extant genetic subtypes of

FIG. 8. Comparison of STEC O157 evolution based on polymorphism-derived genotypes with the earlier evolutionary model. The scale bar
represents substitutions per site.
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the lineage rather than variation that defined the lineage
ancestry. This makes time of divergence calculations for
Lineage V and the other lineages problematical. Despite
the unequal selection of informative nucleotide polymor-
phisms across lineages, the phylogenetic signal inherent in
this set of nucleotide polymorphisms points to a strong
order of descent within the STEC O157 serogroup that
is well supported by bootstraps and maintained using
a minimal set of 138 tagging polymorphisms.

Little evidence exists that indicates cattle are a reservoir
for STEC O55:H7 or STEC O157:H� (the first lineage to di-
verge within the STEC O157 serogroup [Lineage VII]). E. coli
strains of the ancestral O55 serogroup and STEC O157:H�

have only been found infrequently in cattle (Bielaszewska
et al. 2000; Kobayashi et al. 2001; Wani et al. 2003; Lee and
Choi 2006). Notably, humans are a primary host for E. coli
O55:H7, which are a worldwide cause of infantile diarrhea
(Whittam et al. 1993; Spears et al. 2006), whereas the pri-
mary reservoir for SORþ STEC O157:H� remains unknown
(Alpers et al. 2009). Given that cattle-isolated strains ex-
ceeded human-isolated strains in this study and Lineages
III and VII were represented by 1 and 2 strains overall, re-

spectively (fig. 4, supplementary table 1, Supplementary
Material online), our cattle strain genetic subtypes placed
into STEC O157 Lineages I-VII and accounted for 50% or
greater of the subtype numbers observed in Lineage I,
and III–VII, and 45% of Lineage II. Thus, cattle maintain
their reservoir status with a preponderance of genetic sub-
types that evolved after the divergence of Lineage VIII.
Where and how cattle originally acquired STEC O157 is un-
known. One possibility is humans; however, it is also possible
that cattle once were a reservoir for STEC O55:H7 and Lin-
eage VIII. Furthermore, that STEC O157 evolved from an
STEC O55:H7 progenitor in cattle and subsequently diversi-
fied, followed by cattle then losing the ability to be a reservoir
for STEC O55:H7 and Lineage VIII. Additionally, STEC O157
have been found sporadically in domestic animals, synan-
thropic rodents, birds, amphibians, fish, insects, mollusks,
and feral swine (Jay et al. 2007; Ferens and Hovde 2011). Deer
also have been found to harbor STEC O157 at low frequen-
cies (Renter et al. 2001; Rice et al. 2003), including strains that
appear to have ancestral characteristics (Garcı́a-Sánchez
et al. 2007). Thus, in addition to humans, cattle may have
originally acquired STEC O157 from deer or other wildlife.

FIG. 9. Comparison of STEC O157 diversity assessed with polymorphism-derived genotypes and independent XbaI or BlnI PFGE. (A) Number of
STEC O157 strains per unique BlnI pulsed-field patterns. Numbers above the vertical bars represent the extent of different polymorphism-
derived genotypes observed per BlnI pulsed-field pattern. (B) Number of STEC O157 strains per polymorphism-derived genotypes. Numbers
above the vertical bars represent the extent of different BlnI pulsed-field patterns observed per polymorphism-derived genotype. (C) Number
of STEC O157 strains per unique XbaI pulsed-field pattern. Numbers above the vertical bars represent the extent of different polymorphism-
derived genotypes observed per XbaI pulsed-field pattern. (D) Number of STEC O157 strains per polymorphism-derived genotypes. Numbers
above the vertical bars represent the extent of different XbaI pulsed-field patterns observed per genotype. PFGE patterns labeled ‘‘A,’’ ‘‘B,’’ ‘‘C,’’
‘‘D,’’ or ‘‘unique’’ were not observed in the Pulsenet USA STEC O157 database.
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As Lineage V genetic subtypes are maintained by cattle
and rarely found in clinically ill humans, an ancestor for this
lineage may have evolved away from human virulence and
disseminated the trait to extant members of the lineage.
The identification of genetic mechanisms that may cause
the underrepresentation of lineage V with human disease is
a matter of intense interest. The tir 255T . A A allele is an
intrinsic character for Lineage V and, thus, a likely suspect
for impacting human virulence. However, the T . A mu-
tation, which encodes a nonsynonymous replacement of
aspartate for glutamate within the translocated receptor
protein, has not been shown to directly affect human vir-
ulence (Bono et al. 2007). The 160 validated polymor-

phisms that were observed exclusively from the bovine
strain tir 255T . A A allele DNA pool could have an impact
on human virulence, especially since three of them resulted
in premature stop codons and 80 coded for nonsynony-
mous mutations. However, these polymorphisms evolved
on the backbone of the tir 255T . A A allele and were
not shared with the last common ancestor of Lineage V.
To that end, the genome of a tir 255T . A A STEC
O157 strain was sequenced and compared with the
whole-genome sequences of two other tir 255T . A A
STEC O157 strains and those of tir 255T . A T strains
(Eppinger et al. 2011). The study identified 298 polymor-
phisms that, within a phylogenetic tree, defined a long

FIG. 10. Comparison of STEC O157 diversity assessed with polymorphism-derived genotypes and combined XbaI and BlnI PFGEs. (A) Number
of STEC O157 strains observed per unique combined XbaI and BlnI PFGE patterns. Numbers above the bars represent the extent of different
polymorphism-derived genotypes observed per combined PFGE pattern. Corresponding PulseNet USA STEC O157 database XbaI and BlnI PFGE
patterns for each of the 68 unique combinations are listed in supplementary table 1, Supplementary Material online. (B) Number of STEC O157
strains observed per polymorphism-derived genotype. Numbers above the vertical bars represent the extent of different unique PFGE
combinations observed per genotype.

STEC O157 Phylogeny · doi:10.1093/molbev/mss072 MBE

2059

http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mss072/-/DC1
http://www.mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mss072/-/DC1


internal branch leading to extant genetic subtypes of the tir
255T . A lineage. These polymorphisms represent a large
number of plausible genetic variants that could have
a biological role in reduced human virulence.

Additionally, the Stx complement of Lineage V may very
well have a role in reduced human virulence. Stx1 and Stx 2
are important pathogenic determinants of both STEC O157
and non-O157 serogroups as they are the central cause of
hemorrhagic colitis and HUS (Law 2000). Stx1 and Stx2
are both AB holotoxins; however, as a cytotoxic agent,
Stx2 is 1,000 times more potent to human renal microvas-
cular endothelial cells than Stx1 (Louise and Obrig 1995). At
least 12 stx2 subtypes have been identified across the STEC
O157 and non-O157 serogroups that differ in their associa-
tion with human disease severity (Bertin et al. 2001; Persson
et al. 2007; Kawano et al. 2008, 2012). Our phage typing sys-
tem does not identify phage subtypes. However, all genetic
subtypes that place in Lineage V are positive for stx2; thus, it
is entirely possible that a particular stx2 subtype is overrep-
resented in Lineage V, and either by itself or in linkage with
polymorphism alleles that are specific to Lineage V, is respon-
sible for reduced human virulence.

The set of 138 tagging polymorphisms developed in this
study that resolve all 175 polymorphism-derived genotypes
shows great potential in detecting STEC O157 genetic sub-
types and determining their evolutionary relatedness. How-
ever, PFGE remains an effective tool for detecting variation
between closely related strains. PFGE and polymorphism-
derived genotyping are complementary methods as PFGE
primarily detects insertion/deletion variation within geno-
mic regions specific to STEC O157 (Kudva et al. 2002),
whereas the polymorphism set primarily targets a 4.1 Mb
backbone conserved among E. coli serogroups. Although
combined XbaI and BlnI PFGE patterns revealed greater ge-
netic diversity than the polymorphism-derived genotypes
identified in this study, the combined patterns are not suf-
ficient to infer genetic relationships in the absence of epide-
miological data (Davis, Hancock, Besser, and Call 2003). Thus,
polymorphism-derived genotyping combined with PFGE
could be very useful in assessing strain diversity and evolu-
tionary relatedness between epidemiologically unrelated
strains.

In summary, the alleles of 762 polymorphisms were
used to infer the evolution of STEC O157 strains isolated
from cattle and clinically ill humans. Eight major lineages
of STEC O157 were identified, of which cattle are known
to be a reservoir for seven. One lineage of STEC O157 sub-
types that is found in cattle and rarely in humans appears
to have evolved away from an association with human
disease. All 175 STEC O157 genetic subtypes observed
in this study are tagged with a minimal set of 138 poly-
morphisms. This set can directly assess the evolutionary
relatedness of STEC O157 genetic subtypes regardless of
their epidemiology.

Supplementary Material
Supplementary tables 1–5 are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).
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