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Abstract
Both oxidative stress and inflammation are involved in the pathogenesis of contrast-induced

nephropathy (CIN). Epigallocatechin-3-gallate (EGCG), a purified catechin from green tea,

has antioxidant and anti-inflammatory effects. However, it is unknown whether or not

EGCG is effective in treating CIN. Our present study found that intravenous administration

of EGCG, either before or just after the establishment of CIN, had a protective effect, deter-

mined by normalization of serum creatinine and blood urea nitrogen levels, improvement in

renal histopathological scoring and alleviation of apoptosis, accompanied by decreased oxi-

dative stress and inflammation. Because EGCG is a potent inducer of the antioxidant heme

oxygenase-1 (HO-1), we studied HO-1 signaling in CIN. HO-1 levels were increased in CIN;

treatment with EGCG further increased HO-1 levels, accompanied by an increase in Nrf2, a

regulator of antioxidant proteins. Interestingly, blockade of HO-1 with protoporphyrin IX zinc

(II) (ZnPP) prevented the protective effect of EGCG on CIN. ZnPP also blocked the ability of

EGCG to increase the activity of an antioxidant (superoxide dismutase), and decrease

markers of oxidative stress (myeloperoxidase and malondialdehyde) and inflammation

(myeloperoxidase and IL-1β), indicating that HO-1 is the upstream molecule that regulates

the EGCG-mediated protection. To determine further the role of HO-1 on the EGCG-medi-

ated inhibition of inflammation, we studied the effect of EGCG on the NLRP3 inflamma-

some, an upstream signaling of IL-1β. EGCG down-regulated NLRP3 expression, which

was blocked by ZnPP, indicating that HO-1 links EGCG with NLRP3. Therefore, EGCG,

via up-regulation of HO-1, protects against CIN by amelioration of oxidative stress and

inflammation.
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Introduction
Contrast-induced nephropathy (CIN) continues to be a common iatrogenic cause of acute kid-
ney injury (AKI) after exposure to iodinated contrast medium (CM), e.g., during percutaneous
coronary intervention (PCI), despite the tailored preventive strategies that include risk stratifi-
cation for the individual patient, hydration, newer and safer CM and additional preventive
methods (e.g., N-acetylcysteine [1], sodium bicarbonate [2], fenoldopam [3], statins [4,5], limb
ischemic preconditioning [6], and preemptive hemodialysis [7]). Patients susceptible to CIN
have comorbidities such as diabetes, chronic kidney disease, heart failure, and advanced age.
The incidence of CIN in these patients can reach 20–30% [8,9], increasing the potential for the
development of long-term loss of renal function [9,10]. To date, there is still lack of evidence-
proved prevention or treatment of CIN.

Although the precise mechanisms that cause CIN are not fully understood, there seems to
be a consensus that acute ischemia/hypoxia caused by CM or its toxicity per se, leads to acute
tubular necrosis. Oxidative stress and inflammation have been implicated in the pathogenesis
of CIN [8,9]. CM filtered by the glomerulus, actively taken up by renal tubular cells and
retained within the cells and peritubular space, especially in patients with chronic kidney
impairment, not only has a direct toxic action on tubular cells, increasing oxygen consumption,
but also induces vasoconstriction of the vasa recta, decreasing oxygen delivery, inducing a state
of hypoxia. CM triggers a series of reactions that lead to the release of free radicals, causing cel-
lular damage and initiating the vicious cycle of oxidative stress and inflammation. Thus, a pos-
sible treatment strategy could involve the use of medications that target the regulators of both
renal oxydative stress and inflammation.

Epigallocatechin-3-gallate (EGCG), a purified and active component of green tea, has been
reported to possess both antioxidant and anti-inflammatory properties in the treatment of dis-
eases in the cardiovascular system [11], lung [12], liver [13,14] and kidney [15–23]. The protec-
tive effects of EGCG have been reported in various acute and chronic kidney diseases,
including obstructive nephropathy [15], cisplatin nephrotoxicity [16,17], renal ischemia-reper-
fusion injury [18], kidney damage induced by extracorporeal circulation [19], diabetic
nephropathy [20,21], lupus nephritis [22], and chronic glomerulonephritis [23]. We hypothe-
sized that EGCG may exert a protective effect on CIN. We found that the beneficial effect of
EGCG in a CIN rat model involved an EGCG-mediated up-regulation of HO-1 that mitigated
both oxidative stress and inflammation.

Materials and Methods

Animal care
Male Sprague-Dawley (SD) rats, weighing 220–250g, were used for the experiments. The SD
rats had free access to tap water and standard rat chow on a 12-h-light/dark cycle. The experi-
mental protocol was approved by the Animal Care and Use Committee of Third Military Med-
ical University (Permit Number: 2013–12). All surgery was performed under sodium
pentobarbital anesthesia and all efforts were made to minimize suffering.

Reagents
Indomethacin, Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), and EGCG were
bought from Aladdin (Shanghai, China), iopromide from Bayer HealthCare China (Beijing,
China), protoporphyrin IX zinc(II) (ZnPP) from Sigma (St. Louis, MO), and tin protoporphy-
rin IX dichloride (SnPP) from Tocris Bioscience (Bristol, UK). Rabbit anti-HO-1 polyclonal
antibody, rabbit anti-nuclear factor E2-related factor 2 (Nrf2) polyclonal antibody, rabbit anti-
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histone H3 polyclonal antibody, and rabbit anti-nucleotide-binding oligomerization domain
receptor (NOD-like receptor, NLR) subset 3 (NLRP3) polyclonal antibody were purchased
from Proteintech Group Inc. (Chicago, IL), rabbit anti-GAPDH from Goodhere Technology
(Hangzhou, China), and goat anti-rabbit IRDye 800 CW from LI-COR Biosciences (Lincoln,
NE). Sodium citrate-EDTA antigen retrieval solution, immunostaining blocking solution and
Cy3-labeled goat anti-rabbit IgG were purchased from Beyotime (Shanghai, China).

Establishment of rat CIN model
The rat CIN model was established as previously reported, with minor modifications [24,25].
The rats were deprived of water 24h before the acute insult. After the rats were anesthetized with
an intraperitoneal injection of sodium pentobarbital (50mg/kg body wt), and placed on a heating
table to maintain body temperature at 37°C, the left external jugular vein was cannulated with
PE-10 tubing. In the CM group, indomethacin in ethanol (10mg/kg body wt), L-NAME in nor-
mal saline (10mg/kg body wt), and iopromide (1.8g(I)/kg body wt), were sequentially injected at
15min intervals. The vehicle group received the same amount of solvents.

EGCG (5, 10, 20mg/kg body wt) in normal saline was given intravenously at the indicated
time-points. ZnPP, a HO-1 inhibitor, in normal saline (30mg/kg body wt), was given intraperi-
toneally 7h before EGCG and other treatments[26,27]. Then, the rats were allowed to recover
at the indicated times (24–72h) and continued to have free access to water and rat chow. The
rats were kept in metabolic cages for 24h urinary collections.

At the end of experiments, the rats were re-anesthetized with sodium pentobarbital, 100mg/
kg body wt. After laparotomy, all available blood was withdrawn from the abdominal aorta.
Then, the kidneys were removed and rinsed twice in ice-cold phosphate-buffered saline (PBS).
One longitudinal half of the left kidney was fixed in 4% (w/v) paraformaldehyde in PBS for his-
tological assessment. The remaining half was stored at -80°C until use.

Biochemical assays
Blood sera were separated by centrifugation at 1,200g for 10min and stored at -80°C until use.
Serum creatinine (Cr), blood urea nitrogen (BUN), and urinary Cr were measured by an auto-
matic biochemistry analyzer, Analyzer Medical Systems (SaBa-18, Rome, Italy), using commer-
cial kits (ZhongSheng BeiKong Bio-Technology and Science Inc., Beijing, China). The
creatinine clearance (CrCl) was calculated according to the formula: CrCl = UV/P: U repre-
sents the urinary Cr concentration (μmol/L); V is the total urine volume collected for 24hrs
(ml/min); and P is serum Cr concentration (μmol/L) [28].

Renal histopathological assessment
The longitudinal half of the kidney, fixed in 4% paraformaldehyde for 48h, was subjected to
routine dehydration and paraffin embedding. Sections (4μm thick) were deparaffinized and
stained with hematoxylin and eosin (H&E). The grading criteria for histopathological scoring
of renal medullary damage including tubular vacuolar degeneration/necrosis, tubular casts,
and congestion, followed the published methodology with minor modification [25]. Grading of
tubular vacuolar degeneration/necrosis under ×400 magnification (scoring 0 to 4) was: no
damage (0); number of patchy isolated damage�3 (1); damaged area of the microscopic field
<10% (2); 10% ~25% (3); and>25% (4). Grading of protein casts under ×200 magnification
was: no casts (0); number of casts� 5 (1); casts area<25% of microscopic field (2); between
25% ~50% (3); and>50% (4). The degree of interstitial congestion was graded as: no conges-
tion (0); presence of extravascular erythrocytes under ×400 magnification (1); ×200 magnifica-
tion (2); ×100 magnification (3); and ×40 magnification (4). The scoring was performed in 10
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fields per section from three different sections with the examiner blinded from the experimen-
tal protocol. Data were expressed as the average score per field.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
Apoptosis in paraffin-embedded kidney sections was detected using an In Situ Cell Death
Detection kit (POD; Roche Applied Bio Sciences, Basel, Switzerland), as previously described
[29]. Nuclei were identified with DAPI staining. Images under ×200 magnification field were
obtained using a fluorescence microscope (Eclipse Ti-U, Nikon Corporation, Tokyo, Japan) at
an excitation wavelength of 405nm for DAPI and 488nm for TUNEL. The number of TUNEL-
positive nuclei was quantified in 10 fields in renal medulla per section from three different sec-
tions with the examiner blinded from the experimental protocol. Data were expressed as the
average number of TUNEL-positive nuclei per ×200 magnification field.

Assays of oxidative stress and inflammatory markers
Renal tissues were homogenized in ice-cold sucrose buffer (pH 7.4) according to the instruc-
tions of the assay kit. A marker of lipid peroxidation, malondialdehyde (MDA), and a marker
of oxidative stress and inflammation, myeloperoxidase (MPO) were analyzed according to the
protocols of commercial assay kits from Jiancheng Bioengineering Institute (Nanjing, China).
The activity of the antioxidant, superoxide dismutase (SOD) was measured using a SOD assay
kit from Dojindo Laboratories (Kumamoto, Japan). The level of the pro-inflammatory cytokine
IL-1β was measured using an IL-1β enzyme-linked immunosorbent assay kit from R&D Sys-
tems (Minneapolis, MN). The values were normalized by tissue protein concentration.

Immunoblotting
Renal tissues were homogenized in lysis buffer containing 20mM Tris-HCl, pH 7.4, 2mM
EDTA, pH 8.0, 2mM EGTA, 100mMNaCl, 10μg/ml leupeptin, 10μg/ml aprotinin, 2mM phe-
nylmethylsulfonyl fluoride (PMSF), 1% NP-40, and 2mg/ml aprotinin, and ultrasonicated for
15s, 5 times, on ice. Then, the homogenates were centrifuged at 15,000g for 40min at 4°C.
Nuclear and cytosolic fractions were obtained using an extraction kit from Beyotime (Shang-
hai, China) [30]. Protein concentrations of the samples, measured by Bradford assay, were
adjusted to the same final concentration using the lysis buffer. Protein samples were boiled at
100°C for 10min in SDS-containing sample loading buffer and stored at -20°C until use.

Equal amounts of protein were loaded, separated on SDS-PAGE, and transferred onto nitro-
cellulose membranes. After blocking with 5% (w/v) non-fat milk in TBST (Tris-buffered saline
with 0.05% Tween 20) for 2h at room temperature, the membranes were incubated with pri-
mary antibody in the appropriate dilutions at 4°C overnight [anti-HO-1 antibody (1:200), anti-
Nrf2 antibody (1:200), anti-histone H3 antibody (1:1500), anti-NLRP3 antibody(1:200), and
anti-GAPDH antibody (1:500)]. Thereafter, the membranes were washed 3 times with TBST
and incubated with secondary antibody, goat anti-rabbit IRDye 800 (1:15000), for 1h at room
temperature. The protein bands were visualized using the Odyssey Infrared Imaging System
(Li-Cor Bioscience, Bad Homburg, Germany), and quantified using the Quantity One software.
Densitometric intensity corresponding to each band was normalized against either cytosolic or
nuclear internal reference, GAPDH and histone H3, respectively [31].

Immunofluorescence microscopy
The kidney sections were deparaffinized and rehydrated. Antigen retrieval was performed by
microwave heating in sodium citrate-EDTA antigen retrieval solution. After natural cooling
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and PBS rinses, the tissue sections were mixed with immunostaining blocking solution for 1h
at room temperature to prevent nonspecific antibody binding. Then, the sections were incu-
bated with anti-NLRP3 antibody (1:25) or anti-HO-1 antibody (1:50) at 4°C overnight. After
washing with PBS for 5 min 3 times, the sections were incubated with secondary antibody,
Cy3-labeled goat anti-rabbit IgG (1:200), at room temperature for 1h. Finally, after washing
with PBS (5 min, 3 times), the sections were stained with DAPI before being imaged under a
fluorescence microscope (Eclipse Ti-U, Nikon Corporation, Tokyo, Japan) at an excitation
wavelength of 405nm for nuclei and 543nm for NLRP3 and HO-1.

Statistical analysis
All data were analyzed by SPSS 13.0 (Chicago, IL) and presented as mean ± SEM. Data were
compared by one-way ANOVA with Bonferroni post-hoc test for multiple comparisons, after
checking for normality (Kolmogorov-Smirnov) and homogeneity (Levene). The H&E scores
among groups were compared by the nonparametric Kruskal-Wallis test. P<0.05 was consid-
ered statistically significant.

Results

The renal protective effect of EGCG on CIN
In the present model, the levels of serum Cr and BUN were found to peak at 24h, decreasing at
48h, and almost receding back to normal at 72h. Thus, the time-point at 24h was used to evalu-
ate renal function in this contrast-induced AKI model (Fig 1A and 1B). Intravenous pretreat-
ment with 5 to 20mg/kg body wt of EGCG was able to reduce the extent of CIN, as assessed by
renal function markers, i.e., serum Cr, BUN, and CrCl at 24h after the injury (Fig 1C–1E). The
maximal effect of EGCG was found at the dosage of 10mg/kg body wt, which was chosen for
subsequent experiments.

We also determined if the time-window of intervention, before or just after the contrast expo-
sure, made any difference in the severity of CIN.We found that regardless of the time of pre- or
post-EGCG treatment, a dosage of 10mg/kg body wt, significantly ameliorated the CIN-associated
increase in serum Cr and BUN, as compared with vehicle treatment. There were no differences
between these two intervention time-points (Fig 2A and 2B), suggesting that EGCG treatment
could be effective in both pre- and post-injection of CM. The protective effects of EGCG onmedul-
lary damage and apoptosis were further confirmed by histological examination. In the CM group,
CIN induced tubular vacuolar degeneration/necrosis, protein (hyaline) and cellular casts that were
associated with erythrocytes and infiltration of polymorphonuclear cells in the interstitium (Fig
2C). The major damages were in the renal outer medulla (location of medullary thick ascending
limb, mTAL), rather than in the inner medulla, cortex or conjuction of cortex and medulla (loca-
tion of the pars recta segment (S3) of the proximal tubule) (S1 Fig), consistent with the reports of
Agmon Y [24] and Bird JE [32]. The above-mentioned abnormal changes were significantly
restored after treatment with EGCG (10mg/kg body wt). The histopathologic scores of medullary
damage were lower in the EGCG-treated groups than the untreated CM group (Fig 2C and 2E).
The number of TUNEL-positive nuclei, reflecting the apoptosis, was substantially increased after
contrast-injudced AKI, and reduced by EGCG either pre- or post-treatment (Fig 2D and 2F).

Role of HO-1 in the antioxidant and renal protective effect of EGCG on
CIN
Oxidative stress is an initiator and major component in pathogenesis of CIN [8,9]. To evaluate
the effect of EGCG on renal oxidative stress, we measured the renal expression of the oxidative
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Fig 1. Establishment of CIN in rats and renal protective effect of EGCG on CIN. The rats sequentially received an intravenous infusion of indomethacin,
L-NAME, and iopromide to establish CIN. Serum Cr (A) and BUN (B) concentrations were measured 24h, 48h, and 72h after the intravenous injections.
Varying dosages of EGCG (5, 10, 20mg/kg body wt) were administered intravenously 15min before the establishment of CIN. Serum Cr (C), BUN (D) and
CrCL (E) were measured 24h after the establishment of CIN. (n = 5, * P<0.05 vs. vehicle; # P<0.05 vs. CM).

doi:10.1371/journal.pone.0149032.g001
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Fig 2. Renal protective effect of EGCG onmedullary damage and apoptosis in CIN kidney. EGCG (10mg/kg body wt) was given intravenously 15min
before (pre-EGCG+CM) or after the establishment of CIN (post-EGCG+CM). Serum Cr (A) and BUN (B) were measured 24h after the establishment of CIN.
(C) Representative images of H&E staining under ×400 magnification in the outer medulla. Arrows showed examples of protein casts and tubular vacuolar
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stress marker MDA. CIN was associated with oxidative stress because renal MDA content was
increased; the increase was almost normalized by EGCG pretreatment (Fig 3A).

Though EGCG has no effect on baseline reactive oxygen species [15,16], it has been reported
to increase the levels of several antioxidant enzymes, including SOD, catalase, glutathione per-
oxidase (GPx), and heme oxygenase-1 (HO-1) in pathological condictions [17,18,33,34]. We
wondered which one is the key enzyme involved in the antioxidant effect of EGCG. We found
that the CIN-induced decrease in the activity of SOD was almost normalized by EGCG pre-
treatment (Fig 3B). However, HO-1, as a stress inducible antioxidant enzyme, has been
reported as a powerful cytoprotective protein in several disease states, including that from
renal injury [17,18,31]. Therefore, we measured HO-1 levels and found that HO-1 was
increased in CIN compared with the vehicle group. While EGCG was reported to have no effect
on baseline HO-1 in kidney [35], we found that EGCG treatment increased HO-1 expression
to an even higher level in CIN (Fig 3C) both in the cortex and medulla (S2 Fig).

To confirm the key role of HO-1 in the protective effect of EGCG, we studied the effect of
EGCG on CIN when HO-1 was inhibited by ZnPP (30mg/kg body wt). ZnPP acts as a competi-
tive inhibitor of HO-1 [26,27]. Blocking HO-1 activity by ZnPP almost completely abrogated
the renal protective effect of EGCG on CIN; it reversed the beneficial effect of EGCG on serum
Cr, BUN (Fig 3D and 3E), and kidney MDA, SOD (Fig 3A and 3B), indicating that these renal
protective and antioxidant effects of EGCG may via HO-1. To reconfirm the role of HO-1 in
EGCG’s protective action, another inhibitor SnPP was used to block the activity of HO-1
[36,37]. SnPP (10mg/kg body wt i.p. 2h before EGCG pretreatment) also significantly offsetted
the reno-protective effect of EGCG, assessed by serum Cr and BUN (S3 Fig). Although the
exact mechanism by which EGCG upregulates HO-1 expression is not clear, Nrf2, a transcrip-
tion factor of antioxidant genes with antioxidant response element (ARE), has been found as
the regulator of HO-1. Nrf2/HO-1 signaling has also been implicated in the protective effect of
EGCG on renal injury [17,18]. Indeed, we found that EGCG increased the protein expression
of Nrf2 in CIN (Fig 3F), indicating EGCG may increase the expression of HO-1 at the level of
transcription.

Role of HO-1 in the anti-inflammatory effect of EGCG on CIN
In addition to oxidative stress, inflammation also plays an important role in the CM-induced
renal damage [8,9]. Our present study found that signs of inflammation in CIN were increased,
as indicated by increased MPO (marker of both oxidative stress and inflammation) and IL-1β
(marker of inflammation) levels (Fig 4A and 4B). EGCG treatment reduced the increased
MPO and IL-1β levels in CIN (Fig 4A and 4B). To determine the effect of EGCG on inflamma-
tory signaling, we measured the expression of NLRP3 inflammasome, which is upstream of IL-
1β. We found that NLRP3 expression that was increased in CIN was reduced by EGCG treat-
ment (Fig 4C and 4D), indicating that EGCG, via NLRP3, regulated the IL-1β levels.

As indicated in the above-mentioned results, amelioration of oxidative stress and inflamma-
tion is involved in the protective effect of EGCG. Although the lower level of inflammation
induced by EGCG may be subsequent to its antioxidant action, we wondered if there is a
molecular connection between actions of EGCG on reactive oxygen species production and
inflammation. To test the hypothesis that HO-1 plays a pivotal role in the EGCG-mediated
negative regulation of inflammation, we studied the effect of ZnPP, a HO-1 inhibitor. We

degeneration/necrosis. Erythrocytes and infiltration of polymorphonuclear cells could be easily observed in the interstitium. (D) Representative images of
TUNEL assay under ×400 magnification in the outer medulla. (E) The histopathologic scores of medullary damage. (F) Quantification of TUNEL-positive
nuclei per ×200 field. (n = 5, * P<0.05 vs. vehicle; # P<0.05 vs. CM).

doi:10.1371/journal.pone.0149032.g002
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Fig 3. Role of HO-1 in the antioxidant and renal protective effect of EGCG in CIN. EGCG (10mg/kg body wt) was intravenously infused 15min before the
establishment of CIN. The HO-1 inhibitor ZnPP (30mg/kg body wt) was injected intraperitoneally 7h before EGCG pretreatment. The rats were sacrificed at
24h after the establishment of CIN. Renal MDA level (A) and SOD activity (B) were measured. Renal HO-1 protein detected by immunoblotting was
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found that ZnPP prevented the ability of EGCG to reduce the increased activity and content of
the inflammatory markers, MPO and IL-1β in CIN (Fig 4A and 4B). Moreover, the ability of
ZnPP to decrease NLRP3 protein expression was evident by immunofluorescence microscopy
and immunoblotting (Fig 4C and 4D). Taken together, these results indicate that HO-1 is the
key target of EGCG in reducing both the oxidative stress and inflammation in CIN.

Discussion
CIN is the third leading cause of AKI, accounting for 10–13% of cases in hospitalized patients
[38]. The renal tubular damage in CIN is caused by a decrease in renal blood flow and direct
cytotoxic effect. It is hard to establish a contrast-induced AKI in a normal rat without predispo-
sitions. Homeostasis of medullary oxygenation may depend on prostanoids and nitric oxide.
Impaired endothelium-derived vasorelaxation in diabetes mellitus, hypertension, atherosclero-
sis and heart failure, results in regional hypoxia. Indomethacin, a cyclooxygenase inhibitor,
and L-NAME, a nitric oxide synthase inhibitor in this model were used as predispositions to
decrease the production of prostanoids and nitric oxide respectively for later contrast-induced
AKI, which was thoroughly studied by Agmon Y [24]. This method has been widely used in
experimental studies of CIN [26,30,39]. As low-osmotic CM, rather than a high osmotic CM, is
more commonly used in clinic, therefore, iopromide, a low osmotic CM, was chosen to estab-
lish the model of CIN.

Previous studies have shown a beneficial effect of green tea on dextran sulfate sodium- or
cisplatin-induced nephropathy [40,41]. However, there are no reports about the effect of
EGCG in CIN. In the present study, we demonstrated that the intravenous administration of
EGCG, either before or just after the establishment of CIN, had a protective effect, assessed by
measurements of serum Cr and BUN, H&E histopathological scoring and apoptosis.

Oxidative stress and inflammation are two major factors involved in the pathogenesis of
CIN. Oxidative stress can initiate the tubular injury and induce inflammation that in turn
causes oxidative stress, resulting in a vicious cycle, augmenting the sterile damage. Sterile
inflammation is a reaction of the immune system in response to tissue injury that is essential
for clearance of cell debris and tissue repair. However, uncontrolled excessive and/or prolonged
activation of inflammation causes tissue damage, and contributes to the pathogenesis of AKI
that eventually leads into chronic kidney disease [42–44]. In our study, EGCG significantly
reduced both oxidative stress and inflammation in the kidney, attested by the reduction in
MDA level, increase in SOD activity, and reduction in MPO activity and IL-1β level.

Interstitial congestion and hemoglobin oxidation are typical of acute tubular necrosis caused
by CM. Heme (iron(II)-protoporphyrin IX), released from hemoglobin following hemolysis,
possesses pro-inflammatory and pro-oxidative properties. It is a hallmark of extensive tissue
damage, playing a central role in the pathogenesis of malaria, sepsis, sickle cell disease
[33,45,46], and AKI in the elderly [47]. Endogenous molecules from damaged cells are essential
in the auto-inflammatory response [33,43,44]. Innate immune receptors, which are pattern rec-
ognition receptors (PRRs), including the widely distributed transmembrane Toll-like receptors
(TLRs), provide a sensing network for endogenous ligands [48], like heme and its derivatives
[33,45,49–52]. Thus, heme may be an important risk factor in escalating the oxidation and
inflammation of CIN. Interestingly, catabolism of heme by HO converts the cytotoxic heme
into cytoprotective catabolites, including iron, biliverdin, and carbon monoxide, that have

expressed as the ratio of HO-1 and GAPDH (C). Serum Cr (D), and BUN (E) were determined to evalute the renal function. Nrf2 expression in the nuclear
fraction of renal tissue detected by immunoblotting was expressed as the ratio of Nrf2 and histone H3 (F). (n = 5, * P<0.05 vs. vehicle; # P<0.05 vs. CM; &
P<0.05 vs. EGCG).

doi:10.1371/journal.pone.0149032.g003
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Fig 4. Role of HO-1 in the anti-inflammatory effect of EGCG in CIN. EGCG (10mg/kg body wt) was intravenously infused 15min before the establishment
of CIN. The HO-1 inhibitor ZnPP (30mg/kg body wt) was injected intraperitoneally 7h before EGCG pretreatment. The rats were sacrificed at 24h after the
establishment of CIN. Renal MPO activity (A) and IL-1βlevel (B) were measured. Renal NLRP3 protein expression was detected by immunofluorescence
microscopy (red fluorescence, ×400) (C), and semi-quantified by immunoblotting, expressed as the ratio of NLRP3 and GAPDH (D). (n = 5, * P<0.05 vs.
vehicle; # P<0.05 vs. CM; & P<0.05 vs. EGCG).

doi:10.1371/journal.pone.0149032.g004
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antioxidant and anti-inflammatory properties. HO-1, an inducible isozyme, is activated by
heme, oxidants, cytokines, glycated albumin, and other stressors, and may be part of the pro-
tective response in many diseases [12,32], including acute lung injury [53], lipopolysaccharide-
induced acute liver failure [54], neurodegenerative disorders [55], and AKI [16–18]. In the
present study, we found that the protective effect of EGCG on CIN is mediated by HO-1,
because blockade of HO-1 activity abolished the protective effect of EGCG.

Although inhibition of PI3k/Akt and MAPK signaling pathways by EGCG has been
reported involved in the anti-inflammatory mechanism in ameliorating crescentic glomerulo-
nephritis [56], the NLRs, which are cystolic PRRs, and NLR-activated inflammasome, typically
NLRP3, aroused our interest. NLRP3 inflammasone is a central component of innate immunity
and the sterile inflammatory response that acts as a guardian, linking damage sensing to the
initiation and amplification of the inflammatory response [48,57]. When triggered by bacterial
toxins, and environmental or intracellular danger signals, NLRP3 oligomerizes and recruits
ASC (apoptosis speck-like protein containing a caspase-recruitment domain). ASC interacts
with pro-caspase-1 and induces auto-cleavage to form a platform, i.e., inflammasome, that

Fig 5. Schematic diagram of possible mechanism of EGCG in protecting against CIN. HO-1 expression is markedly enhanced by EGCG via activation
of the Nrf2/HO-1 pathway. HO-1 is essential to the protective effect of EGCG on CIN in anti-oxidation and anti-inflammation. Dash-line arrow stands for
unclear or multiple-step actions. Straight-line arrow stands for direct actions.

doi:10.1371/journal.pone.0149032.g005
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stimulates maturation and secretion of IL-1β and IL-18, leads to pyroptosis, a type of pro-
grammed cell death [45]. The importance of NLRP3 inflammasome has been implied in many
diseases of the heart [57], lung [58,59], liver [54], and kidney [50,60–62]. EGCG has been
reported to inhibit NLRP3 inflammasome, and subsequently IL-1β expression in human
umbilical vein endothelial cells exposed to palmitate [63], and lupus nephritis [22]. Heme, the
substrate of HO-1, can also activate the NLRP3 inflammasome [31,45]. Therefore we studied
the effect of EGCG on the NLRP3 inflammasome, which promotes the maturation of IL-1β.
EGCG down-regulated NLRP3 expression, which was blocked by ZnPP, indicating that HO-1
links EGCG with NLRP3, and thereby, decreasing the expression of IL-1β.

In conclusion, the peri-operative intravenous administration of EGCG could protect against
CIN. HO-1 is key to the EGCG-mediated protection because blockade of HO-1 abolished the
down-regulation of reactive oxygen species production and inflammation caused by EGCG
(Fig 5).

Supporting Information
S1 Fig. Demonstration of the histological injury site of the CIN model. Four portions of the
kidney section stained by H&E: cortex, conjunction of cortex and medulla, outer medulla and
inner medulla, both in vehicle and CM groups were shown. The major damage was located in
the outer medulla (mTALs, medullary thick ascending limb). The cortical convoluted segment
and pars recta segment (S3) of the proximal tubule with apparently larger cell morphology and
longitudinal arrangement in the conjunction were almost intact.
(TIF)

S2 Fig. Histological distribution of HO-1 induced by EGCG treatment of CIN. Immunoflu-
orescence microscopy of HO-1in kidney demonstrated that HO-1 was mainly expressed in
tubules of medulla in the vehicle group; after CM-induced AKI, HO-1 was significantly
increased in tubules both in the cortex and medulla; EGCG treatment further profoundly
increased the expression of HO-1 in those tubules both in the cortex and medulla. The glomer-
uli were consisitently spared in all groups.
(TIF)

S3 Fig. Role of HO-1 in renal protective effect of EGCG in CIN attested by SnPP. EGCG
(10mg/kg body wt) was intravenously infused 15 min before the establishment of CIN. The
HO-1 inhibitor SnPP (10mg/kg body wt) was injected intraperitoneally 2h before EGCG pre-
treatment. The rats were sacrificed at 24h after the establishment of CIN. Serum Cr (A) and
BUN (B) were measured. (n = 5, � P<0.05 vs. vehicle; & P<0.05 vs. EGCG).
(TIF)
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