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This paper shortly reviews the measures used to estimate neural synchronization in

experimental settings. Our focus is on multivariate measures of dependence based

on the Granger causality (G-causality) principle, their applications and performance in

respect of robustness to noise, volume conduction, common driving, and presence of a

“weak node.” Application of G-causality measures to EEG, intracranial signals and fMRI

time series is addressed. G-causality based measures defined in the frequency domain

allow the synchronization between neural populations and the directed propagation of

their electrical activity to be determined. The time-varying G-causality based measure

Short-time Directed Transfer Function (SDTF) supplies information on the dynamics

of synchronization and the organization of neural networks. Inspection of effective

connectivity patterns indicates a modular structure of neural networks, with a stronger

coupling within modules than between them. The hypothetical plausible mechanism

of information processing, suggested by the identified synchronization patterns, is

communication between tightly coupled modules intermitted by sparser interactions

providing synchronization of distant structures.

Keywords: neural synchronization, Granger causality, Directed Transfer Function, effective connectivity, causal

coupling

INTRODUCTION

In recent years a substantial effort has been directed toward elucidating the role of synchronization
inmechanisms of neural population coupling. The kind ofmeasure applied to estimate connectivity
patterns plays a crucial role in the understanding of this synchronization. A multitude of methods
have been devised for estimation of connectivity between neural populations: linear and non-linear,
bivariate and multivariate, directed and undirected. It is impossible to describe all of the measures
of synchronization in this mini review, but they are described in the review by Blinowska (2011)
and in the book by Blinowska and Zygierewicz (2011). The effectiveness of causality measures was
compared e.g., by Astolfi et al. (2007), Schlögl and Supp (2006), and Dauwels et al. (2010). Here we
will focus on the methods that, going beyond the statistical assessment of synchronization, provide
information on causal coupling.
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CONNECTIVITY MEASURES

Among the most frequently used connectivity measures
defined in the time domain, namely cross-correlation, Mutual
Information, Transfer Entropy (TE) andGranger Causality Index
(GCI), the last two indicate the directedness of information flow.
For time-metric methods a contribution of different rhythms
may be estimated by means of filtering; however, methods
operating in the frequency domain are more convenient for
synchronization assessment. In the frequency domain we
can distinguish several measures of functional connectivity:
coherence, pair-wise measures based on phase information
such as the phase lag index (Stam et al., 2007), and pairwise
phase consistency (Vinck et al., 2011). Functional connectivity is
only a statistical measure of interdependence—phase difference
does not imply a causal relation between signals of interest.
Another problem connected with the above mentioned bivariate
measures of functional connectivity is the generation of spurious
connections, which was demonstrated in Kus et al. (2004)
and Blinowska et al. (2004). Effective connectivity indicates a
causal relation, providing information on the influence exerted
by a given channel on other channels. Effective connectivity
measures, i.e., Granger Causality (GC), Directed Transfer
Function (DTF) (Kamiński and Blinowska, 1991) and Partial
Directed Coherence (PDC) (Baccala and Sameshima, 2001),
are based on the Granger’s causality (G-causality) principle.
They are extensions to a multivariate case of Granger’s original
idea concerning two signals (Granger, 1969). When assessing
the usefulness of a method, the following features should
be taken into account: robustness in respect to noise and
volume conduction and influence of the common feeding
effect.

The common input problem is a source of a serious pitfalls,
corrupting all bivariate measures and leading to the creation
of spurious connections. Namely, if signals propagating from a
given source are measured at N electrodes, bivariate methods
may show not just N active connections between source and
sensors, but instead, by virtue of common feeding, it will
be N (N − 1)/2. Therefore, one may get more false than true
connections. In consequence, many papers based on bivariate
methods report very dense and almost random connectivity
patterns (Blinowska and Kaminski, 2013).

Volume conduction—a factor limiting the spatial resolution
of synchronization measures—is connected to propagation of the
electromagnetic field. Since the electromagnetic field propagates
at the speed of light, it does not produce phase differences
on the electrodes; hence, methods based on phase differences
(among them DTF and PDC) are hardly influenced by volume
conduction (Kaminski and Blinowska, 2014). Causal information
is coded in the delays between given signals. Pre-processing
such as the Hjorth transform or projection into source space
involves mathematical operations that mix the information from
the signals of the set, so the phase information is lost. Therefore,
this kind of pre-processing should be avoided.

Non-linear methods of connectivity are much more affected
by noise than the linear ones. Moreover, they are prone to
systematic errors (Pereda et al., 2005; Netoff et al., 2006).

According to some authors, application of non-linear methods
is recommended only when strong evidence of non-linearity is
present. Surrogate data tests and linear-vs. non-linear forecasting
indicate that non-linearity in EEG and LFP (Local Field
Potentials) is rather exceptional, and practically appears only
in some phases of epileptic seizure (Blinowska and Malinowski,
1991; Achermann et al., 1994; Pijn et al., 1997; Stam et al., 1999).
In fact, G-causality based measures perform quite well for non-
linear signals. It has been established (Barnett et al., 2009) that for
Gaussian variables, the non-linear measure TE is equivalent to
GC; however, computations are easier and more reliable
for GC.

MULTIVARIATE G-CAUSALITY MEASURES

The notion of causality in time series, based on Wiener’s
idea (Wiener, 1956), was introduced by Granger (1969). In
general, Granger Causality (GC) represents the improvement
of predicting values of signal X when not only the previous
history of X but also previous history of another signal Y is
taken into account. The measure is expressed as a log value of
prediction accuracy ratios in both cases. This measure may be
conditioned on other signals. The GC was further developed by
Geweke (1982, 1984) in both—time and frequency—domains.
In practice, it was found that Geweke’s frequency-domain
conditional G-causality measure generates negative values in
certain cases. This unfortunate property leads to the definition of
a modified conditional G-causality based on the partition matrix
technique (Chen et al., 2006).

In the identification of casual relations one should try to
incorporate all possible variables of the process. However,
that may be difficult because of the influence of exogenous
(environmental) and latent (unmeasured) variables. The problem
of eliminating these confounding inputs was confronted by
Eichler (2005) who proposed a graphical approach. In Guo
et al. (2008) the partial G-causality measure was introduced.
This method was tested by simulations and application to
multichannel LFP.

GC was successfully used e.g., to evaluate the directional
influences in large-scale sensorimotor cortical networks (Brovelli
et al., 2004) and oscillatory synchronization in top-down
neocortical processing (Bastos and Schoffelen, 2016). Some
additional applications of GC in the study of the nervous system,
latent variable control, and relations with Dynamic Causal
Modeling are described by Bressler and Seth (2011).

G-causality measures are usually computed in themultivariate
autoregressive (MVAR) model framework defined by:

X(t) =

p
∑

m= 1

A(m)X(t −m)+ E(t) (1)

where X(t) signal vector and E(t) white noise vector, both of
size k (number of channels), A(m) model coefficients matrices,
p—model order.

The transformation to the frequency domain yields:
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X(f ) = A−1(f )E(f ) = H(f )E(f )

H(f ) =

( p
∑

m= 0

A(m) exp(−2π imf1t)

)−1

(2)

whereH(f ) is a transfer matrix of the model.
To get a proper MVAR fit the number of data points must be

larger (at least about an order of magnitude) than the number
of model parameters: kNs ≫ pk2 (Ns the number of data points
in the window)r. This requires a compromise between k and Ns.
Alternatively, G-causality measures may be calculated by a non-
parametric spectral method (Dhamala et al., 2008). However,
spectral AR estimates have better statistical properties, since they
are identical with these obtained by maximizing entropy of a
process (Ulrych and Bishop, 1975). It means that AR estimate
takes into account maximum of information contained in the
signal and is maximally free of constraints. For MVAR fitting see
Lütkepohl (2005).

Directed Transfer Function is defined in the form (Kamiński
and Blinowska, 1991):

DTF2j→i(f ) =

∣

∣Hij(f )
∣

∣

2

k
∑

m= 1

∣

∣Him(f )
∣

∣

2

(3)

where Hij is an element of the transfer matrix of the MVAR
model. DTF describes the causal influence of channel j on
channel i at frequency f. The above normalized version of DTF
takes values from 0 to 1, producing a ratio between the inflow
from channel j to channel i in respect to all the inflows to
channel i.

The non-normalized DTF:

NDTF2ij(f ) =
∣

∣Hij(f )
∣

∣

2
(4)

is directly related to the coupling strength between signals
(Kamiński et al., 2001).

The direct Directed Transfer Function (dDTF) was
introduced (Korzeniewska et al., 2003) to distinguish between
indirect and direct flows:

dDTF2ij(f ) = F2ij(f )C
2
ij(f )

F2ij(f ) =

∣

∣Hij(f )
∣

∣

2

∑

f

k
∑

m= 1

∣

∣Him(f )
∣

∣

2

(5)

where C is a partial coherence.
ffDTF is a modification of DTF where the denominator is

integrated over frequencies, which makes it independent on
frequency.

DC—directed coherence (Baccala et al., 1998) is a version of
DTF that counteracts the effect of different noise variances in the
input channels (S is the power spectrum, V is the noise variance):

DCij(f ) =

√

VjjHij(f )
√

Sii(f )
(6)

Partial directed coherence (PDC) is defined as Baccala and
Sameshima (2001):

PDCij(f ) =
Aij(f )

√

a∗j (f )aj(f )
(7)

where Aij(f ) denotes an element of Fourier transformed MVAR
coefficients A(t). The aj(f ) denotes the j-th column of the matrix
A(f ), and an asteriskmarks the operation of complex conjugation
and transposition. PDC is normalized in the range [0,1]; its values
correspond to the direct flows between channels of a process.

PDC operates in the frequency domain. However, its spectrum
weakly depends on frequency and does not have a direct
correspondence to the power spectra of the channels of a process.
Unlike DTF, PDC value shows a ratio between transmission from
channel j to channel i and the summarized outflow from channel
j, so it tends to emphasize sinks rather than sources.

Considering the dependence of PDC on a signal’s dynamic
ranges, Baccala et al. (2007) introduced the generalized PDC
(GPDC), which made the measure scale invariant. Schelter et al.
(2009) pointed out that PDC is decreased when multiple signals
are emitted from a given source, and that the measure does not
allow conclusions on the absolute strength of the coupling. They
proposed the so called re-normalized PDC, with a normalizing
factor correcting the problem. Takahashi et al. (2010) introduced
the information PDC (iPDC), which can be interpreted in terms
of mutual information rate.

PDC found application e.g., in the study of epileptic seizures
(Takahashi et al., 2007; Varotto et al., 2012), and GPDC was used
for the analysis of directed connectivity from fMRI signals in
language processing protocol (Sato et al., 2009).

Astolfi et al. (2007) compared DTF, PDC and dDTF in respect
of connectivity pattern recognition and signal to noise ratio
(SNR). It followed that DTF was the most robust to noise, but did
not distinguish direct from indirect connections. This distinction
was identified by dDTF and PDC.

Fasoula et al. (2013) compared different measures of
G-causality including GC, PDC, GPDC, DTF, dDTF, and DC
in respect of robustness to noise, spectral selectivity and the
presence of a weak node (a channel which has much lower
SNR than other channels). The results showed good robustness
to noise of all measures, especially DTF, dDTF, PDC, and DC.
However, these measures did not perform as well in the presence
of a weak node as their modified counterparts: GPDC and DC.
DTF performed well if the weak node was a passive sink and
not the active node. PDC and GPDC were characterized by the
poorest frequency selectivity.

TIME VARYING SYNCHRONIZATION

The good spectral resolution of DTF and its robustness to
noise makes it the proper measure for revealing synchronization
between brain structures. Information processing in the brain
involves short-time changes in electrical activity, and DTF is
the only measure for which a time-varying version (SDTF) was
developed and extensively used. In cases where there are multiple
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recordings of an experiment available, we may use the repetitions
to effectively increase the statistical significance of estimates. In
order to follow the dynamics we divide the data into shorter,
presumably stationary, overlapping data windows (of length NS).
Within each window the data covariance matrix R(r) is calculated
for every repetition separately (index (r) denotes repetition, NT

is the number of the repetitions), and then the resulting model is
estimated based on the averaged matrix R:

Rij(s) =
1

NT

NT
∑

r= 1

R
(r)
ij (s) =

1

NT

NT
∑

r= 1

1

NS

NS
∑

t= 1

X
(r)
i (t)X

(r)
j (t + s) (8)

The combined result from all windows—SDTF(t, f )—allows the
dynamics of transmissions to be investigated (Ding et al., 2000).

Another possible solution for estimation of time-varying
connectivity is an adaptive approach (Kalman filter, recursive
least squares algorithm Hesse et al., 2003). A comparison of
Kalman filtering with SDTF showed similar results in respect of
detecting dynamics. However, computation time for the Kalman
filter was more than an order of magnitude longer than for SDTF
(Kamiński et al., 2010).

The effect of transients (event related potentials, ERPs)
may disturb connectivity values when estimating time varying
transmission. Subtraction of the ERP may be the solution
(Kamiński et al., 2001), but it does not completely solve
the problem since ERPs may differ between realizations.
This problem was confronted e.g., by Wang et al. (2008),
where a method separating the evoked response from

ongoing activity on a trial-by-trial basis was used. Below
we describe some applications of SDTF, illustrating its
performance in time-frequency space and its topographic
accuracy.

In an experiment concerning a motor task and its
imagination (Ginter et al., 2001; Kuś et al., 2006), changes
of propagation found by SDTF corresponded very well with the
synchronization/desynchronization phenomena (Pfurtscheller
and Lopes da Silva, 1999) in respect of topography and time-
frequency characteristics. In the gamma band: movement was
accompanied by a burst of gamma activity from C3 (overlying
finger motor cortex—fPMC), and in the case of movement
imagination there was cross talk in gamma between structures of
the fPMC and the supplementary motor area (SMA).

In the Continuous Attention Test different geometrical images
were presented. The subject had to press a switch when two
identical images (target condition) appeared and withhold the
reaction for different images (non-target). We integrated flows
(significantly differing from the resting state) in the 25–45 Hz
frequency band and constructed animations representing
dynamically changing propagation patterns (Figure 1; Blinowska
et al., 2010). In the first epoch, which involved a mental
comparison of the displayed images, the activity flow from the
prefrontal cortex (PFC) and within the PFC was similar for
all subjects for both conditions, in agreement with the role of
this structure in focusing the attention and updating working
memory (WM) (Romo et al., 1999; Smith and Jonides, 1999).
In later epochs switch pressing for the target was accompanied

FIGURE 1 | Snapshots from a video presenting significant changes in transmissions in one subject, for target (upper) and non-target (lower part).

Intensity of flow changes for increase: from pale yellow to red; for decrease: from light to dark blue. The time after cue presentation (in seconds) can be seen in the

right upper corner. From Blinowska et al. (2010), with permission.
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by a propagation in the gamma band from C3 (underlying the
fPMC). For the non-target conditions a transmission from F8
(located over the right inferior cortex—rIFC) to C3 or from Fz
(located over the preSMA) to C3 was observed. Both structures
are involved in “go/no go” tasks, exerting inhibition on the
target structures (e.g., Aron et al., 2003; Burle et al., 2004). The
observed transmission related to withholding the motor reaction
confirmed the hypothesis put forward by Burle et al. (2004) i.e.,
that long-range cortico-cortical synchronization plays a role in
the active inhibition of motor structures.

We also found, by means of SDTF, the main centers of
EEG propagation in the frontal and parietal regions during
a WM task involving memorization of relations (Blinowska
et al., 2013), in agreement with imaging studies (Brzezicka
et al., 2011) and neurophysiological hypotheses concerning
the role of the fronto-parietal network (Fangmeier et al.,
2006). The observed time evolution of propagation revealed a
prevalence of short-range interactions, whereas the transmissions
between tightly coupled centers of activity occurred only in
certain moments as bursts of propagating activity (Figure 2). It
shows that distant centers of information processing are linked
by synchronization in lower frequencies (theta, alpha) when
maintaining information, whereas higher rhythms (beta, gamma)
are mostly responsible for information processing within these
centers, in agreement with the postulated role of brain rhythms
(Buzsaki, 2006).

Animations (Blinowski et al., 2014) of the three above
experiments are available at http://brain.fuw.edu.pl/∼kjbli.

FIGURE 2 | Snapshots from a video showing the time-varying pattern

of propagations for the representative subject. The numbers in the upper

left corner correspond to the time[s] after stimulus presentation. From

Blinowska et al. (2013), with permission.

Application of a network formalism based on assortative
mixing (Newman, 2003) revealed the presence of a modular
structure of brain networks, which made estimation of the
coupling strength in specific frequency bands possible. The
strength of interaction within the modules was higher than
between the modules. Namely, the ratios of short-range to long-
range interaction strengths varied from 1.40 for the theta band
to 1.49 for the beta band. Interestingly, these ratios are close to
those found for anatomical connections in cats—1.34 as reported
by Latora and Marchiori (2003). The considerations concerning
metabolic energy saving and efficient wiring in the brain
(Changizi, 2006; Solé and Valverde, 2008) also indicate dense
connectivity within modules and sparser connections between
modules.

DISCUSSION AND CONCLUSIONS

Multivariate G-causality based measures provide a useful
framework for establishing causal relations between neural
populations. They have been successfully applied for finding
interactions at subcortical and cortical levels GC measures have
been used extensively for intracranial signals (e.g., Brovelli et al.,
2004; Bressler et al., 2007; Bastos et al., 2015), while PDC
has been applied to, for example, find directed connectivity
in intracranial epileptic signals. DTF was used for localization
of seizure onset from subdural electrodes (Franaszczuk et al.,
1994) and SDTF for finding directed interaction between spike
trains and LFP (Kocsis and Kaminski, 2006). Furthermore,
a combination of SDTF and dDTF—SdDTF was applied in
the investigation of dynamic patterns of electrocorticographic
activity propagation during word repetition (Korzeniewska et al.,
2008).

Application of G-causality measures to fMRI data is still
controversial because of the low sampling rate, long delays of
fMRI series in respect to neural activity, and the complex relation
between neural activity and blood oxygenation level. The issue is
currently under debate (e.g., Bressler and Seth, 2011; Seth et al.,
2015). The controversies concerning application of G-causality
for analysis of fMRI were also articulated in Roebroeck et al.
(2011) and Friston (2011).

DTF and PDC have been widely used for identification
of causal relations in EEG. The results of DTF concerning
e.g., synchronization mechanisms in sleep (Kaminski
et al., 1997), in transitive reasoning tasks (Brzezicka et al.,
2010), and in affective states (Wyczesany et al., 2014)
have demonstrated very good spectral and topographical
agreement with known evidence and brought new
information on the coupling between brain structures. The
above described SDTF results have also shown excellent
agreement with anatomical, physiological and neuroimaging
evidence, additionally supplying information on the
dynamics of synchronization and organization of neural
networks.

In comparison with different methods of connectivity
analysis, multivariate measures based on Granger principle
provide information on causal frequency-specific coupling in

Frontiers in Computational Neuroscience | www.frontiersin.org 5 October 2016 | Volume 10 | Article 114

http://brain.fuw.edu.pl/~kjbli
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kaminski et al. Measures of Coupling Based on Granger Causality

neural assemblies, moreover they are robust in respect to noise
and volume conduction. Additionally they offer possibilities
to follow dynamical changes of interaction between brain
structures. In summary, G-causality based measures provide
a valuable tool for investigation of the large-scale neural
synchronization and its dynamics.
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