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Abstract: Amniotic membrane is an effective corneal reconstruction material in veterinary surgery.
Cryopreserved amniotic membrane is widely used in practice. Properties of cryopreserved canine
amniotic membranes are currently not well studied. This study aimed to compare three properties
between canine amniotic membranes cryopreserved for 7 days and 30 days, including tensile strength,
transparency, and cell viability. After their respective cryopreservation time, stress–strain curves of
the cryopreserved membranes’ tensile strength were assessed using a universal testing machine. Both
groups produced J-shaped stress–strain curves with statistically comparable parameters, including
maximum stress, strain, and Young’s modulus. The percentage of cell viability was observed
by trypan blue staining under a light microscope. Membrane transparency was tested with a
spectrophotometer. Transparency tests showed high levels of light transmission and low haze,
with no statistical difference between groups. Cell viability was statistically lower in the 30-day
cryopreserved group. Tensile strength and transparency of cryopreserved CAM were not significantly
impeded for up to 30 days. For CAM to be used as an alternative corneal transplant material in
veterinary and regenerative medicine, further research on cell biology, biomechanical properties of
the membrane, and cell viability should be conducted.
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1. Introduction

Corneal ulceration is a common ocular disease in veterinary ophthalmology that
may lead to numerous complications, including blindness. Surgical treatments are recom-
mended when ulcers have become complicated. Corneal grafting [1] is the most effective
procedure for aggressive lesions. Many biological materials, such as the conjunctiva [1],
small intestinal submucosa [2], urinary bladder submucosa [3], pericardium [4], amniotic
membrane [5,6], and cornea [7], have been reported in use as corneal grafts.

Amniotic membrane (AM) is sourced from various species: humans [6], equine [8],
bovine [9], porcine [10], and canine [11]. It is successfully used to treat various human
ocular surface disorders [12]. In veterinary practice, clinical use of human AM has been
reported in the treatment of cats [13], dogs [14] and horses requiring corneal reconstruc-
tion [15].

Ideally, fresh AM would provide the least degradation of membrane properties and
structure [16,17]. However, the availability of fresh AM does not align with testing equip-
ment accessibility when there is demand for immediate transplant membrane. Medically
accepted preservation methods of AM have been developed as alternatives to allow for
a steady supply and pathogen testing. The standard method for human AM, as recom-
mended by the U.S. Food and Drug Administration, is cryopreservation [18–20]. Properties
of cryopreserved human AM, including thickness, basement membrane components, and
its ability to function as epithelial cell cultivation medium, have been documented to be
the preeminent available preservation method [18,21]. Sterility, histology, and biological
properties of human AM were shown to not be significantly impaired after long term
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cryopreservation up to 24 months [22]. Currently, there is no standard recommendation for
preservation specific to canine AM (CAM).

Histological layers of the CAM are comparable to human AM. However, CAM is not
attached to the chorion, and it forms blood vessels at a later stage of pregnancy near the
umbilical cord [23]. Cryopreserved CAM has become a potential alternative material for
animal treatment. According to previous research, CAM was an effective grafting material
to treat keratomalacia in dogs, ankyloblepharon in cats, post-removal of a corneal mass in
dogs [11] and cats [24], and deep ulcer in dogs [25]. It can be successfully cultivated with
canine corneal epithelial cells, suggesting that CAM is an effective scaffolding material for
epithelial cell support [26].

Biomechanical properties such as tensile strength and transparency of a transplant
material are important for corneal reconstruction purposes [27], and they are affected by
methods of preservation [28,29]. A previous study had shown no difference of tensile
strength between fresh human AM, glycerol-cryopreserved human AM, and cryopreserved
human AM without storage medium for up to 6 months. However, tensile strength
of human AM of the same experiment was shown to increase in the longer preserved
groups [17]. The AM of human, porcine, equine, and ovine species have shown to generate
J-shaped stress–strain curves, as typically found in soft tissue [30,31] due to the collagen-
and elastin-rich stroma. Tensile properties of AM vary by species. Among these, species
with AM of the highest loading capacities are equine and human, while those with the
highest elasticity of AM are porcine and ovine [30]. Transparency of human AM was
investigated and compared between cryopreserved and freeze-dried membranes. Freeze-
drying human AM resulted in a more transparent material than cryopreservation [32].

The viability of epithelial cells in human AM is significantly lost in most preserved
tissue [16,33]. Glycerol was shown to degenerate cells in preserved human AM. According
to the same experiment, time of storage was also shown to be a significant factor of cell
viability reduction up to 6 months [17]. Since cell viability may increase immunogenicity
and induce inflammation, lower cell viability is desired in transplant material [18]. Trypan
blue stain has been demonstrated to be a good method to test cell viability of AM [16,33].

While preserved AM structures of several species have been characterized, there
have been no detailed studies of CAM—until now. This study is aimed to investigate and
characterize three properties of cryopreserved CAM, namely tensile strength, transparency,
and cell viability influenced by storage time for 7 and 30 days.

2. Materials and Methods
2.1. Canine Amniotic Membranes

Canine amniotic membranes from healthy puppies (n = 36) were collected from preg-
nant females with completed vaccination programs. They underwent Caesarean sections
at the Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn
University. Females with systemic inflammation within 3 months, history of abortion or
dead fetus, high white blood cell count, or signs of inflammation of CAM were excluded.

2.2. Media

Washing and storage solutions were freshly prepared in a laminar flow hood with
pre-autoclaved equipment. The washing solution was mixed with pre-autoclaved 0.01 M
phosphate buffer solution (Gibthai, Bangkok, Thailand), 1 mL of 5-5-10 mg/mL Penicillin-
Streptomycin-Neomycin antibiotic mixture (PSN) (Gibthai, Thailand), and 0.5 mL of
5 mg/mL Amphotericin B (Gibthai, Thailand). The storage solution was prepared by
mixing 50 mL of pre-autoclaved glycerol (ChemEx, Bangkok, Thailand), 50 mL of DMEM
(Gibthai, Thailand), 1 mL of PSN, and 0.02 mL of Amphotericin B. The storage solution
was stored at 4 ◦C until use.



Membranes 2021, 11, 824 3 of 10

2.3. Sample Collection

After a sterile area was prepared, the washing solution and a piece of gauze were
laid on a collection tray at the surgical site. Instantly after a removal of a puppy from the
uterus, the puppy was separated from the fetal membrane. The membrane was placed on
the prepared tray and immediately transported to a laminar flow hood in an insulated box
with ice packs. All procedures were completed using aseptic technique.

2.4. Cryopreservation

In the laminar flow hood, CAM was separated from the fetal membrane and cleansed
with the washing solution. Autoclaved nitrocellulose paper was cut to different sizes:
5 × 2 cm2 for tensile strength test, 4 × 4 cm2 for transparency test, and 2 × 2 cm2 for cell
viability test. The cut pieces of nitrocellulose paper were attached to the non-vascularized
part of CAM by the stromal side, avoiding the vascularized umbilical cord area. The sam-
ples were anatomically located similarly on all CAMs, with the tensile sample located the
furthest from the umbilical cord. The CAM samples attached to nitrocellulose membrane
were cut and submerged separately in storage solution in a collection vial. All samples
were randomly grouped to be cryopreserved at −80 ◦C for either 7 (7 d CAM; n = 18) or
30 days (30 d CAM; n = 18). After storage, samples were thawed at room temperature for
30 min and cleansed with washing solution before tested.

2.5. Tensile Strength Test

The 5 × 2 cm2 CAM sample was mounted to a universal testing machine (UTM,
Shimadzu, Japan). The nitrocellulose paper was cut across. Tensile strength test was
performed automatically by a computerized program (Trapezium 2, Shimadzu, Kyoto,
Japan), which was set to pull the membrane apart vertically at the rate of 5 mm/min. The
pulling force was measured and recorded every 0.05 s until the CAM fractured.

After a biological stress–strain curve was generated, values of tensile strength included
maximum stress (megapascal, MPa), extensibility, Young’s modulus (MPa), length of toe
region, and length of linear region. Young’s modulus constant was calculated from the
slope of the stress–strain curve at the linear part by Equation (1).

Young’s modulus = Stress/Strain (1)

2.6. Transparency Test

The 4 × 4 cm2 CAM sample was carefully stripped away from the nitrocellulose paper.
It was then loaded onto the transmission compartment of a spectrophotometer (Ultrascan
Pro, HunterLab, Reston, VA, USA) by using a kraft paper, a clip, and a plastic stand to
hold its shape. Quantitative measurement of direct and diffuse transmission of light was
automatically performed using total transmittance mode of the software (EasyMatch QC
ver. 4.88.03, HunterLab, Reston, VA, USA).

The transparency test results were reported as a percentage of total transmitted
light to incident light (%TTRAN) and percentage of diffusely transmitted light to to-
tal transmitted light (%Haze); %TTRAN and %Haze were automatically calculated by
Equations (2) and (3), respectively.

%TTRAN = [(Il+ Id)/Io] × 100 (2)

%Haze = [Id/(Il + Id)] × 100 (3)

2.7. Cell Viability Test

After the 2 × 2 cm2 CAM sample was stripped away from the nitrocellulose paper,
it was mounted on a microscopic slide with the epithelium side up, stained with 20 µL
of trypan blue and incubated for 3 min. A sample was visualized under a light micro-
scope. Stained cells represented non-viable cells, while unstained cells represented viable
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cells. From each CAM sample, microphotographs were randomly taken at 5 fields. The
percentage of viable cells compared to all cells (%Viability) was reported as in Equation (4).

%Viability = (Unstained cell count/Total cell count) × 100 (4)

2.8. Data Analysis

All tested parameters, including those of the tensile strength test (maximum stress,
extensibility, Young’s modulus, length of toe region, and length of linear region), trans-
parency test (%TTRAN and %Haze), and cell viability test (%Viability) between 7 d CAM
and 30 d CAM, were statistically compared by Mann–Whitney U test (SPSS version 22;
IBM, Armonk, NY, USA) with a significance level of p < 0.05. Since we did not make any
assumptions about the parameters, a non-parametric test was selected for this study.

3. Results
3.1. Tensile Strength Test

The stress–strain curves of all CAM samples matched the J-shaped stress–strain curve
of biological material. Representative stress–strain curves of the two groups are shown
in Figure 1. A higher range of data distribution was observed in a group of 7 d CAM
samples with less symmetry, as compared to the other as shown in Figure 2. Right-skewed
data distributions were noted. The median of maximum stress capacity, extensibility, and
Young’s modulus were higher in 7 d CAM samples as compared to 30 d sample (Table 1),
though they were not statistically significant.
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Figure 1. Representative stress–strain curves (MPa) of canine amniotic membranes after: (a) 7 days; (b) 30 days
of cryopreservation.

Table 1. Median ± interquartile range of tensile strength parameters of canine amniotic membranes
that were cryopreserved for 7 days and 30 days.

Parameter/Canine Amniotic Membrane 7 Days 1 30 Days 1

Maximum stress (MPa) 0.11 ± 0.10 0.09 ± 0.05
Extensibility 0.29 ± 0.15 0.19 ± 0.07

Young’s Modulus (MPa) 0.93 ± 1.16 0.11 ± 0.05
Toe region length 0.14 ± 0.16 0.11 ± 0.05

Linear region length 0.05 ± 0.03 0.04 ± 0.02
1 days in cryopreservation.
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3.2. Transparency Test

The range of percentage of total transmitted light to incident light (%TTRAN) and
diffusely transmitted light to total transmitted light (%Haze) of the 30 d CAM samples
was more dispersed compared to the 7 d CAM samples, though more data symmetry was
observed (Figure 3). The median %TTRAN was 97.14 ± 0.78 and 96.89 ± 0.96 in a group of
7 d and 30 d CAM samples, respectively. In contrast, the median %Haze was 17.99 ± 14.17
in a 7 d cryopreserved group, and 19.16 ± 15.08 in the other. The differences were not
statistically significant.
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Figure 3. Series of box and whisker plots representing distribution of: (a) %TTRAN; (b) %Haze of
canine amniotic membranes (CAM) after cryopreservation for 7 days and 30 days. The plots of CAM
after 7 days of cryopreservation show skewed distribution as the mean values (X marks) are not
equal to the median values (middle lines) with a few outliers (o marks), while the plots of CAM after
30 days of cryopreservation are more normally distributed. The boxes represent the interquartile
range while the ends of whiskers represent the maximum and minimum values of the data.
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3.3. Cell Viability Test

Sheets of uniformly arranged polygonal epithelial cells of CAM were observed
(Figure 4). Epithelial cells were tightly packed with distinct cell margins. Some cells
showed homogeneous staining of cytoplasm, while the accumulation of multiple vacuoles
with trypan blue was observed in some other cells. Round eccentric nuclei were more
intensely stained than the cytoplasm. Unstained cells were sparsely observed. The median
percentages of viable cells of the 7 d CAM and 30 d CAM were 8.77 ± 11.39 and 1.75 ± 4.70,
respectively. Cell viability of CAM cryopreserved for 7 days was statistically higher than
that of 30 days (p = 0.037).
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4. Discussion

This is the first report of the biomechanical properties of CAM. Stress–strain curves
generated by CAM matched the J-shaped curve demonstrated in AM of other species,
including human [27], porcine [34], ovine, and equine [30]. This type of stress–strain curve
is typically found in biological tissues containing collagen and elastin that build up a
three-dimensional network such as skin, tendon, and blood vessels [31]. All parameters
of tensile strength were non-statistically lower in CAM cryopreserved for 30 days. This
suggests that longer duration of cryopreservation may mildly damage the cross-linking
bond of elastin, resulting in a deterioration of its tensile strength properties [35]. Trans-
parency properties of cryopreserved CAM were well maintained in both groups (Figure 3),
suggesting cryopreservation is a good method to preserve CAM for optical transplants.
Our finding is consistent with a prior study, which stated that transparency is preserved in
human AM that had undergone repeated freezing procedures of cryopreservation up to
two times [36].

The biomechanical properties of cryopreserved AM from humans and pigs have been
reported [34,37]. When comparing the AM of humans, pigs, and dogs, CAM exhibits
the lowest maximum stress capacity, which indicates the least endurance against applied
force. Among various species studied, CAM exhibits the least Young’s modulus, indicating
the lowest stiffness. It also displays the low extensibility referring to the least endurance
against deformation. Differences between the anatomical part of the membrane [38] and
sample geometries [39] should be considered for different membrane thickness. Clinical
application of CAM for corneal reconstruction in veterinary practice suggests using the
multilayer suturing technique to increase tensile strength for tectonic purposes. In one
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study, human AM was applied in patients with various depths of corneal damage. In the
group of corneal perforation, the bottom of the perforated site was covered with a sheet of
human AM. Layers of membrane were filled up in the thinning area, followed by the large
piece of membrane covering the entire corneal defect. It revealed that not only can multiple
human AM restore corneal stromal thickness, but that the membranes became gradually
transparent, resulting in a clearer healing area similar to the adjacent area [40]. The cross-
linking technique by lamination of eight layered human AM offers better transparency than
multiple layer AM transplant shown by quantitative evaluation of light transmittance [28].
Regarding the transparency, the crossing-linking technique increased light transmittance
and enhanced the tensile strength of human AM [37]. Therefore, cross-linking techniques on
CAM should be further studied to explore the possibility of creating a similar transparency
and resilience for CAM. Further research on the transparency of multiple layered CAM
is suggested to demonstrate whether the membrane transparency is retained. Effects of
multiple freeze-thaw cycles to CAM transparency may provide information mimicking
clinical use, especially for tissue reconstruction.

We found cell viability is poorly preserved in cryopreserved CAM, which is consistent
with many previous studies with different measurement methods [16,17,33,41,42]. A
comparison study of cell viability of cryopreserved human AM using a luminescence cell
viability assay by Wagner and others (2018) revealed an intense decrease of metabolic
cell activity of preserved AM in −80 ◦C. Luminescence signals of tissue preserved in
glycerol at 14 days and 30 days were 67.90 and 49.12, respectively, which were significantly
reduced compared to 238.56 of fresh AM [17]. Another study by Hennerbichler and others
(2007) measured cell viability by EZ4U cell proliferation and cytotoxicity assay, as well
as trypan blue staining. Both methods showed consistent results of intense cell viability
reduction similar to our findings. They demonstrated that by 21 days of cryopreservation,
cell viability was diminished to 13–18%, which was more pronounced than AM that
was stored above 0 ◦C for 28 days (15–35%) [33]. Similarly, evaluations of cell viability
of fresh and cryopreserved human AM by trypan blue and EZ4U cell proliferation and
cytotoxicity assay [16] and MTT assay imaged with confocal microscopy [41] showed that
cryopreserved AM had marked reduction of cell viability. Moreover, no live cells were
identified in any AM commercial products preserved by freeze-dried method, dehydration,
or cryopreservation [42]. Dramatic reduction of cell viability demonstrated in our result
as well as studies of human AM, implies that cryopreserved AM are not suitable for
regenerative medicine purposes. Nonetheless, cryopreservation of the membrane reduced
risk of infectious contamination. Meanwhile, various growth factors, collagen proteins
and basement membrane were not significantly impaired up to 24 months [22]. These
characteristics of cryopreserved AM are clinically beneficial as a scaffold biomaterial.

Several factors play important roles for clinical selection of membranes for transplanta-
tion. Sufficient tissue strength of CAM preserved up to 30 days offers comparable support
to corneal damage as the samples preserved for 7 days. Non-significant transparency
between the two groups confirms good optical purpose when transplanted. Therefore,
we have shown that cryopreservation of CAM between 7 and 30 days resulted in similar
properties for both optical and tectonic purposes. Our first investigation of the basic biome-
chanical properties and cell viability of cryopreserved CAM provides the data to allow
future studies to develop this promising material not only for veterinary practice, but also
tissue banking. Further study is needed to increase cell viability by focusing on time of
tissue storage, storage methods, and media for regenerative therapy. Investigation of longer
CAM cryopreservation time is suggested as cryopreserved human AM has been proven to
be effective transplant material after being stored for up to 6 months [43]. Furthermore, it
will be interesting to explore the presence of growth factors and cytokines to determine
the therapeutic benefit of CAM. The anatomical location of CAM and breed of dogs may
be factors causing wide variations in this study’s results. There are reports of thickness
variation among individuals and anatomical locations in humans [44]. While there is no
data on CAM, the heterogeneous nature of AM as demonstrated in humans was taken



Membranes 2021, 11, 824 8 of 10

into consideration during this study’s sample collection by selecting similar areas, and the
umbilical cord area was generally avoided due to the vasculature. There were limitations
to this study that included the emergency nature of cesarean surgery, the unpredictable
breed of donor dogs, and limited equipment availability which led to inaccessible fresh
CAM information. There may be opportunities in the future to obtain baseline data from
fresh CAM.

Considering that CAM is an easily available material in a veterinary hospital setting,
having information about its basic properties is crucial for creating a more readily available
transplantation material to meet its demand at a lower cost, thus improving animal care in
veterinary medicine.

5. Conclusions

Tensile strength and transparency are essential properties of CAM, which are required
when determining viable corneal transplant materials. These properties of CAM preserved
from 7 to 30 days can provide mechanical stability and transparency for the application in
veterinary ophthalmology.

While the cell viability of CAM is not well preserved by cryopreservation, it is a good
processing method for creating a CAM for scaffolding purpose with low graft rejection risk.
As for a regenerative medicine purpose, more study is needed to increase cell survival.
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