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Abstract

Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous
inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte
Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this
mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis
oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the
gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine
proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on
two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz
domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine
proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2,
indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our
functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type
and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.
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Introduction

Membrane-bound or membrane-anchored serine proteases

have lately emerged as a subfamily of 20 serine proteases that all

share a conserved catalytic domain and a transmembrane domain

[1]. They display diverse physiological and pathophysiological

roles such as roles in skin and intestinal barrier integrity [2–5],

processing of atrial natriuretic peptide [6], iron homeostasis [7–9],

trophoblastic development [10], hearing [11,12] and ion homeo-

stasis [13,14]. More elusive, however, are the identity and the roles

of their physiological inhibitors.

The SPINT1 and SPINT2 genes encode two Kunitz-type serine

protease inhibitors called Hepatocyte Growth Factor Inhibitor

HAI-1 and HAI-2. HAI-1, first purified from a stomach cancer

cell line [15], is found as a complex with the membrane-bound

serine protease matriptase in human milk [16]. Furthermore,

genetic evidence supports an interaction between SPINT1 and the

St14 gene encoding matriptase in mouse skin [17]. The

membrane-bound HAI-2 and HAI-1, with their two inhibitory

domains of Kunitz-type and their transmembrane domain, are

highly homologous. However, HAI-2 lacks the LDL-receptor class

A domain. HAI-2 was cloned from placental tissue, and from a

gastric or pancreas cancer cell lines [18–20]. In cell-free in vitro

systems, HAI-2 is a potent inhibitor of the membrane-bound

serine proteases hepsin, prostasin, matriptase and tmprss13 [21–

24].

The physiological role of SPINT2 is incompletely characterized.

In mice, SPINT2 contributes to the appropriate development of

the embryo as indicated by SPINT2 knockout embryos showing

clefting of the embryonic ectoderm, neural tube defects and

defective placental branching morphogenesis; these defects can be

rescued by the disruption of the Prss8 and/or St14 genes (encoding

prostasin and matriptase respectively) [25–27]. In humans, various

mutations in the SPINT2 gene have been reported and shown to

be linked to a syndromic form of congenital sodium diarrhea,

indicating that SPINT2 likely plays a role in intestinal ionic

homeostasis [28,29]. Among these mutations, a missense mutation

substitutes a conserved tyrosine in the second Kunitz domain for a

cysteine (HAI-2 Y163C). It has been shown that this mutation

decreases the ability of HAI-2 to inhibit the prototype gastro-

intestinal serine protease trypsin [28,29]. The physiological

partners of HAI-2 remain presently unknown.

Functional interactions between serine proteases and protease

inhibitors are usually studied in cell-free in vitro systems. Here, we

established a cellular assay using Xenopus laevis oocytes as a

heterologous expression system to functionally assess the activity of

candidate serine proteases and their inhibition by HAI-2 and its

mutant Y163C. We found that HAI-2 was an efficient inhibitor of

several membrane-bound serine proteases expressed in the GI

tract. The SPINT2 Y163C mutation associated with congenital
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Figure 1. Tissue distribution of mRNA expression of Spint2 and membrane-bound serine proteases. Quantitative RT-PCRs were
performed on selected organs from three wild-type adult mice. From stomach to distal colon, tissues were scraped to get fractions enriched in
mucosal cells. Each gene was assessed in duplicates in two independent experiments. Results are expressed as arbitrary units (A.U.) based on
standard dilution curves (see Material and Methods).
doi:10.1371/journal.pone.0094267.g001
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sodium diarrhea induced a loss of inhibitory activity towards a

limited number of serine proteases such as prostasin and tmprss13.

Material and Methods

Ethics Statement
Work done with animals was performed according to swiss

national guidelines. Mice and Xenopus laevis were kept in an animal

facility regulated by animal care rules of the University of

Lausanne. All animals had access to food and water ad libitum.

Protocols regarding sacrifice of the mice and surgical procedures

on Xenopus laevis used in this study have been reviewed and

approved by the Service de la Consommation et des Affaires

Vétérinaires of the Canton of Vaud, Switzerland (authorization

no. 2312 to LS).

Quantitative PCR analysis
Tissues were removed from three C57BL/6 8 week-old mice.

Duodenal, jejunal, ileal, caecal and colonic (proximal and distal)

tissues were longitudinally opened and mucosal side was scraped

with a razorblade to obtain a fraction enriched in mucosal cells.

To avoid contamination by squamous epithelium, colonic tissues

was scraped a few millimeters above the anus. Total RNA was

extracted from mouse tissues using the RNeasy kit from Qiagen

according to the manufacturer’s protocol. 500 ng RNA (RNA

from the 3 mice was pooled together) was reverse transcribed into

cDNA using the PrimeScript RTreagent kit (TaKaRa). RNA was

treated with DNAse I (Promega) to remove any possible traces of

genomic DNA before the cDNA synthesis. qRT-PCR experiments

were carried out on an ABI PRISM 7500 equipment (Applied

Biosystems). PCR was performed in 96-well plates (Applied

Biosystems) in 20-ml reactions that contained 10 ml of FastSYBR

Green Master Mix (Applied Biosystems), 125 nM of each primer

and 4 ml of cDNA (diluted 30 times). For each gene, standard

curves were obtained using tissues with the highest abundance and

1/1, 1/5, 1/25, 1/625 and 1/3125 dilutions. The analysis of the

slope of the standard curves showed a PCR efficiency between

1.70 and 2. These values were used for absolute quantification.

Relative quantification using reference genes such as Actin or Gapdh

was not used because detection levels of those genes varied up to a

difference of 4 cycles between different mouse tissues. Each gene

was assessed in duplicates in two independent experiments.

Expression of human Spint2 and human membrane-
bound serine proteases in Xenopus oocytes

cDNA clones of human prostasin, tmprss4, matriptase, hepsin,

tmprss2, tmprss11a, tmprss13, enteropeptidase and HAI-2 were

obtained from the Mammalian Gene Collection (MGC). Human

tmprss3 is a kind gift of Bernard Rossier (University of Lausanne).

Membrane-bound serine proteases were selected based on their

gastro-intestinal expression, as reported in the literature (see

results). The other members of the membrane-bound serine

proteases family were not tested because of a reported expression

that appears to be restricted to specific tissues, even though we

cannot rule out that they might display any gastro-intestinal

expression. All cDNAs were subcloned into the pSD(BS)easy

vector for expression in Xenopus laevis oocytes. A FLAG-tag

sequence was added to HAI-2 using a single BstEII restriction site

located in the sequence encoding the region between both Kunitz

domains of HAI-2. PCR amplification was performed to add a tag

of 8 histidines in the N-terminal part of tmprss13. Point mutations

in HAI-2 cDNA were introduced by site–directed mutagenesis

(Stratagene’s QuickChange) to generate HAI-2 mutants Y68C,

Y163C, Y68S, Y163S and double mutant Y68C/Y163C.

Stage V and VI healthy oocytes were isolated from ovarian

tissue of Xenopus laevis and pressure–injected with 100 nl of cRNA

solution. For the functional assay, oocytes were injected with a, b
and c subunits of rat ENaC cRNAs (0,11 ng of each subunit per

oocyte) and with cRNAs of membrane-bound serine proteases and

HAI-2 wild-type or mutants as indicated in the results section. In

this heterologous expression system, we found that the effects of

the serine proteases on ENaC as well as the effects of HAI-2 on the

serine proteases were dose-dependent. To minimize artifacts due

to overexpression, we determined for each serine protease the

amount of cRNA to be injected for a robust proteolytic activation

of ENaC similar to the activation by trypsin. We also determined

the minimal amount of HAI-2 cRNA necessary to completely

inhibit the effect of the protease. For the biochemical assay,

oocytes were injected with cRNAs of His-tagged tmprss13 (1.7 ng)

and FLAG-tagged HAI-2 (8.3 ng). This ratio tmprss13/HAI-2 is

similar to the ratio used in the functional assay. Oocytes were kept

at 19uC in a low Na+ (for the functional experiments with ENaC)

modified Barth solution (MBS) containing (in mM): 10 NaCl, 0.82

MgSO4, 0.41 CaCl2, 0.33 Ca(NO3)2, 80 N-methyl-D-glucamine

(NMDG), 2 KCl and 5 HEPES or a normal Na+ (for the

biochemical experiments done without ENaC) modified Barth

solution (MBS) containing (in mM): 85 NaCl, 1 KCl, 2.4

NaHCO3, 0.82 MgSO4, 0.41 CaCl2, 0.33 Ca(NO3)2, and 10

HEPES, 4.08 NaOH.

Electrophysiology
Electrophysiological measurements were made 12 hours after

injection except for experiments with tmprss3 and tmprss15,

which were performed 30 hours after injection. ENaC-mediated

Na+ currents were measured in oocytes using the standard two-

electrodes voltage clamp technique using a Dagan TEV voltage

clamp amplifier (Dagan, Minneapolis, MN), the Digidata 1322

digitizer, and the PClamp 9 data-acquisition and analysis package

(Axon Instruments, Molecular Devices, Sunnyvale, CA). The two

electrodes contained 1 M KCl solution. All electrophysiological

measurements were performed at room temperature (22uC) in a

perfusion solution containing (in mM) 120 NaCl, 2.5 KCl, 1.8

CaCl2-2H2O, and 10 HEPES-H+. The holding potential inside

the oocytes was -100 mV.

Figure 2. Validation of the functional assay using ENaC as a reporter gene. A, Representative recordings of amiloride-sensitive current (INa
+)

in the presence (filled bars) or absence of trypsin (5 mg/ml), in Xenopus oocytes injected with 0.11 ng/subunit ENaC alone (left panel), with ENaC and
0.25 ng tmprss13 (middle panel) and with ENaC, tmprss13 and 1.5 ng spint2 cRNA (right panel). 10 mM amiloride was used to block the ENaC-
mediated current. B, Effects of increasing the amounts of injected tmprss13 and enteropeptidase cRNAs on INa

+. INa
+ was measured in oocytes

injected with ENaC with/without of tmprss13 or enteropeptidase as indicated. INa
+ was measured without (black bars) or with trypsin (5 mg/ml)

perfused extracellularly (white bars) as a positive control for ENaC activation. C, Effects of increasing the amounts of injected spint2 cRNA to prevent
the tmprss13- or enteropeptidase-mediated increase in INa

+ (left and right panels, respectively). D, Effect of spint2 on INa
+. INa

+ was measured 12, 24
and 30 hours after injection (left, middle and right panels, respectively) in three independent experiments. n = 6-9 measured oocytes per condition
from 2 different batches for each experiment. Data are means 6 SEM; *, p,0.05/**, p,0.01 compared to ENaC alone or ENaC + protease (as
indicated) after two-way repeated measure ANOVA followed by Dunnett’s multiple comparisons test.
doi:10.1371/journal.pone.0094267.g002
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Data analysis
The epithelial sodium channel (ENaC) is highly sensitive to

amiloride with an IC50 of 0.1 mM. ENaC activity was measured

by the amiloride-sensitive Na+ current (INa
+), defined as the

difference between Na+ current obtained in the presence (10 mM)

and in the absence of amiloride. ENaC activity is increased by a

variety of serine proteases including trypsin [13,30,31], making

ENaC an ideal tool for monitoring serine protease activity. We

used trypsin (Sigma-Aldrich Chemie) 5 mg/ml in the perfusion

solution for 2–3 minutes to define a maximal proteolytic

stimulation on ENaC activity as measured by the increase in

INa
+. In each condition, sensitivity of ENaC to trypsin (defined as

the relative trypsin-mediated increase in INa
+) can vary depending

on whether proteases with or without HAI-2 wt/mutants are co-

expressed with ENaC and was quantified by dividing, for each

oocyte, INa
+ after trypsin treatment by INa

+ before trypsin

treatment. A relative trypsin-mediated increase in INa
+ close to

one reflects resistance of ENaC to trypsin because of the presence

of an activating co-expressed protease. When HAI-2 fully inhibits

the co-expressed protease, relative trypsin-mediated increase in

INa
+ has a value (.1) similar to control oocytes injected with

ENaC alone.

Statistical analysis
All data are represented as means 6 SEM. Statistical

significance was determined with one-way or two-way ANOVA

followed by Dunnett or Tukey’s multiple comparison tests and

indicated in the legend of the figures.

Results

mRNA expression of Spint2 and candidate membrane-
bound serine protease along the mouse gastro-intestinal
tract

We first identified potential targets for HAI-2 inhibition that are

relevant for the pathogenesis of sodium diarrhea. We have limited

our selection to members of the membrane-bound serine proteases

family expressed in different gastro-intestinal (GI) tissues, because

HAI-1, a highly conserved homolog of HAI-2 was reported as the

physiological inhibitor of the membrane-bound serine protease

matriptase. From the literature, nine membrane-bound serine

proteases are expressed in GI tissues namely Prss8 (encoding

prostasin), Tmprss4, St14 (encoding matriptase), Hepsin, Tmprss2,

Tmprss3, Tmprss11a, Tmprss13 and Tmprss15 (encoding enteropep-

tidase) [11,21,32–44].

The mRNA expression levels of Spint2 and of the candidate

proteases were determined in mouse GI tissues, and compared to

heart, lung and kidney. Since Spint2 is mainly expressed in

epithelial cells [21], we took intestinal tissue fractions enriched in

mucosal cells. Fig.1 shows that Spint2 mRNA is found along the

entire GI tract, but its expression increases in the distal part. As

already reported, the short isoform of Spint2 lacking the first Kunitz

domain appears more abundant than the long (full-length) isoform

in mouse (opposite findings are known in human) [45]. St14

mRNA has an expression pattern similar to Spint2. Prss8, Tmprss4

and Tmprss2 are easily detected in the small and large intestines

with a higher abundance in the distal part. The other candidates

show a more restricted expression distribution along the GI tract:

Tmprss11a is essentially expressed in oesophagus, Tmprss13 in

oesophagus and colon, Tmprss15 in duodenum and jejunum.

Although Hepsin is very abundant in the kidney, low expression

levels are observed in the colon. Finally, Tmprss3 mRNA is

detected at very low levels in all tissues, with a higher expression in

stomach and jejunum.

Functional assay in Xenopus laevis oocytes
To test whether HAI-2 inhibits our selected intestinal serine

proteases in a functional cellular assay, we used as a functional

readout the epithelial sodium channel ENaC and its unique

property to be stimulated by a wide variety of serine proteases

[30]. This allowed us to quantitatively assess by an electrophys-

iological approach the proteolytic activity of a serine protease, as

an increase in ENaC mediated Na current. Xenopus laevis oocytes

were injected with cRNAs encoding ENaC and the above

mentioned serine proteases with or without HAI-2. The activity

of the serine protease monitored by the increase in epithelial

sodium channel ENaC activity, was measured as an inward

current sensitive to amiloride, a known blocker of ENaC [46,47].

The ENaC-mediated current was systematically compared with

the maximal current obtained in the presence of trypsin, a well-

established proteolytic agonist of ENaC. A typical electrophysio-

logical recording is shown in figure 2A and illustrates the effect of

the intestinal serine protease tmprss13 on ENaC-mediated

currents (INa
+) and its inhibition by HAI-2. In an oocyte injected

with ENaC alone, removing the ENaC blocker amiloride induces

a discrete inward current which dramatically increases in the

presence of trypsin (left tracing); co-injection of ENaC with

tmprss13 increases the amiloride-sensitive current INa
+ to the level

Table 1. Increase in ENaC activity by membrane-bound serine proteases.

protease (ng of cRNA) Fold increase in ENaC-mediated current

Tmprss2 (5 ng) 2.660.2 (trypsin: 3.560.3)

Tmprss11a (0.25 ng) 2.160.2 (trypsin: 3.760.3)

Enteropeptidase (6 ng) 2.660.3 (trypsin: 3.760.3)

Hepsin (0.05 ng) 2.560.3 (trypsin: 3.760.4)

Tmprss3 (2.5 ng) 2.660.3 (trypsin: 3.960.3)

Matriptase (1.5 ng) 2.660.3 (trypsin: 3.160.3)

Tmprss4 (2 ng) 2.460.4 (trypsin: 360.2)

Prostasin (1 ng) 3.660.4 (trypsin: 3.860.5)

Tmprss13 (0.25 ng) 5.260.8 (trypsin: 4.460.3)

Values were obtained from experiments in figure 3. Effect of trypsin is indicated in parentheses. Data are means 6 SEM.
doi:10.1371/journal.pone.0094267.t001
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Figure 3. Functional analysis of interactions between HAI-2 (wt and mutants) and membrane-bound serine proteases. A, ENaC-
mediated sodium currents (INa

+) were measured in Xenopus oocytes injected with ENaC with/without candidate serine protease and HAI-2 (wild-type
or mutants Y68C and Y163C) as indicated. INa

+ was measured without (black bars) or with trypsin (5 mg/ml) perfused extracellularly (white bars) as a
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of INa
+ recorded in the presence of trypsin (middle tracing); finally,

co-injection of ENaC tmprss13 and HAI-2 completely abolished

the effect of tmprss13 on INa
+ (right tracing).

For some proteases such as tmprss13 we observed a dual effect

on the activity of ENaC depending on the amounts of cRNA

encoding the protease that were injected into the oocyte. Figure 2B

compares the effects of increasing the amount of cRNA (i.e. the

expression) of two proteases, tmprss13 (left panel) and enteropep-

tidase (right panel) on ENaC-mediated INa
+: co-injection of ENaC

with 0.5 ng of tmprss13 cRNA increases INa
+ to the level obtained

with trypsin but higher amounts of injected tmprss13 cRNA show

a dose-dependent decrease in INa
+ in the presence and absence of

trypsin. This observation is consistent with a progressive loss of

ENaC activity at high levels of serine protease expression, likely

due to an extensive proteolytic modification of the fully activated

channel. For enteropeptidase a robust activation of ENaC activity

to levels comparable with those obtained with trypsin could be

obtained only with high doses of injected enteropeptidase cRNA

up to 6 ng. We therefore systematically performed dose-response

experiments for every serine protease tested to determine the

minimal amount of the protease cRNA needed to stimulate

ENaC-mediated INa
+ to levels comparable with those obtained for

trypsin. All candidate serine proteases tested in our assay were

functional as shown by the robust increase in ENaC-mediated INa
+

(see table 1 and figure 3). This effect varied from a 2 to 5 fold

increase in ENaC activity depending on the protease and on the

batch of oocytes used for the experiments.

Inhibition of serine proteases by HAI-2
We then evaluated the ability of HAI-2 to inhibit the different

serine proteases shown in table 1. In preliminary experiments, as

for the serine proteases, we determined the minimal amount of

HAI-2 cRNA needed to completely reverse the effect of each

protease tested. Typical experiments shown in figure 2C illustrate

the inhibition of tmprss13 and enteropeptidase by HAI-2: 1 ng

and 1.5 ng of HAI-2 cRNA are sufficient for a full inhibition of

tmprss13 and enteropeptidase respectively as seen by a return of

INa
+ to baseline and the recovery of the stimulatory effect of

trypsin. We also verified that HAI-2 per se does not directly alter

ENaC-mediated INa
+, neither the effect of trypsin on ENaC

(fig.2D).

Effect of the congenital sodium diarrhea-associated
mutation of HAI-2

We analyzed the Y163C mutation in the 2nd Kunitz domain of

HAI-2 associated with congenital sodium diarrhea, and its effect

on the inhibitory activity of the intestinal serine proteases. In

addition, we have compared the Y163C mutation with its

homologous Y68C mutation in the 1st Kunitz domain to assess

the relative roles of the two Kunitz domains in the proteolytic

activity of HAI-2. Figure 3A compares the effects of the HAI-2 wt,

HAI-2/Y68C and HAI-2/Y163C mutants on the activity of the

serine proteases listed in table 1. For these experiments we used

similar amounts of injected cRNAs assuming that the three HAI-2

constructs have comparable levels of expression in the oocytes.

These experiments show that the wild type form of HAI-2 reverses

the increase in the INa mediated by the serine proteases, indicating

that HAI-2 efficiently inhibits all membrane-bound serine

proteases tested. This suggests that HAI-2 is a functional inhibitor

of various intestinal membrane-bound serine proteases.

The Y68C and Y163C mutations in the 1st and 2nd Kunitz

domains have differential effects depending on the serine protease:

the Y68C or Y163C mutations have no effects on the ability of

HAI-2 to inhibit enteropeptidase, whereas they result in a loss of

the inhibitory function of HAI-2 on tmprss13. On other serine

proteases such as tmprss11a, only the Y68C but not the Y163C

abolished the activity on HAI-2. A partial loss of function was

observed with the Y163C mutation on the inhibition of matriptase

by HAI-2. The data on figure 3A are expressed as absolute values

of ENaC-mediated INa
+ reflecting serine protease activities. In

order to compensate for variations in ENaC expression and

protease activation of INa
+ among the different batches of oocytes,

we assessed in figure 3B the relative efficiency of HAI-2 wild type

and mutants on the different serine protease by quantifying for

each oocyte the trypsin response on INa
+ (ratio INa

+ after trypsin

treatment/INa
+ before trypsin treatment). When the relative

trypsin-mediated increase in INa
+ is equal to one, there is no

trypsin response indicating full effect of the serine protease;

whereas a trypsin response $3 (value similar to that obtained for

oocytes injected with ENaC alone) indicates a full inhibitory effect

of HAI-2 on the serine protease. As mentioned before, both Y68C

and Y163C mutants of HAI-2 are fully functional on enteropepti-

dase. On prostasin and tmprss13 both mutations Y68C and

Y163C result in a near complete loss of HAI-2 function. On

tmprss2, tmprss11a and hepsin, only the Y68C mutation leads to a

loss of HAI-2 inhibitory activity. A partial loss of function with the

HAI-2 Y163C mutant, and full activity with the Y68C mutant are

observed on tmprss3 and matriptase, A partial loss of function is

seen with both mutants on tmprss4. These experiments indicate

that either the Y68C in the 1st or the Y163C in the 2nd Kunitz

domain are sufficient to induce a loss of function of HAI-2 on

prostasin and tmprss13 proteases. These latter proteases appear

thus as interesting potential partners of HAI-2 the regulation of

Na+ transport in the intestine. By contrast the Y68C mutation

alone is sufficient to abolish the activity of tmprss11a, tmprss2 and

hepsin, whereas the Y163C has no effect.

Effect of the double mutant HAI-2 Y68C/Y163C, and of
serine substitutions

Four intestinal proteases, enteropeptidase, tmprss3, tmprss4 and

matriptase are still partially, blocked by either HAI-2 Y68C or

Y163C mutations. We assessed the effect of the double mutation

HAI-2 Y68C/Y163C on these proteases. As shown in Fig.4, the

Tyr to Cys mutations in both Kunitz domains nearly abolishes the

inhibitory activity of HAI-2 on enteropeptidase, tmprss3, tmprss4

and matriptase, as shown on the measured ENaC-mediated INa
+

(fig.4A) or on the trypsin response (fig.4B).

To further understand the molecular basis of the Y68C and

Y163C substitutions on the inhibitory capacity of HAI-2 towards a

serine protease such as tmprss13, we asked whether this effect is

due to the substitution of the tyrosine, which is highly conserved

among HAI-2 orthologs from different species, or to the addition

of a thiol group at position Y163. We mutated the Tyr68 and

Tyr163 into a serine and assessed the effect of these mutations on

positive control for ENaC activation. n$15 measured oocytes per condition from at least 2 different animals. Each protease was tested in at least two
independent experiments. Data are means 6 SEM. B, Relative trypsin-mediated increase in INa

+ was calculated by dividing, for each oocyte from
experiments of panel A, INa

+ after treatment with trypsin by INa
+ before treatment with trypsin. Data are means 6 SEM. */#/u, p,0.05, **/##/uu,

p,0.01, ***/###/uuu, p,0.001, compared to ENaC alone, ENaC + protease or ENaC + protease + HAI-2 WT respectively after One-way ANOVA
followed by Tukey’s multiple comparisons test.
doi:10.1371/journal.pone.0094267.g003
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the ability of HAI-2 to inhibit tmprss13. In contrast to the cysteine

mutants, the serine mutants HAI-2 Y68S and HAI-2 Y163S retain

their activity and are able to fully inhibit the activity of tmprss13

on ENaC (Fig.5). This suggests that the presence of the additional

cysteine with its thiol side chain in the 1st or 2nd Kunitz domains is

Figure 4. Effect of the double mutant HAI-2 Y68C/Y163C on enteropeptidase, Tmprss2, tmprss4 and matriptase. A, ENaC-mediated
sodium currents (INa

+), were measured in Xenopus oocytes injected with ENaC with or without serine protease and HAI-2 (wild-type or double mutant
Y68C/Y163C) as indicated. INa

+ was measured without (black bars) and with trypsin (5 mg/ml) perfused extracellularly (white bars) as a positive control
for ENaC activation. n$11 measured oocytes from 4 different animals. Each protease was tested in two independent experiments. Data are means 6
SEM. B, Relative trypsin-mediated increase in INa

+ was calculated by dividing, for each oocyte from experiments of panel A, INa
+ after treatment with

trypsin by INa
+ before treatment with trypsin. Data are means 6 SEM. **/##/uu, p,0.01, ***/###/uuu, p,0.001, compared to ENaC alone, ENaC +

protease or ENaC + protease + HAI-2 WT respectively after One-way ANOVA followed by Tukey’s multiple comparisons test.
doi:10.1371/journal.pone.0094267.g004
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responsible for the loss of the inhibitory activity of HAI-2 on

tmprss13.

Discussion

In this study, we used a cellular assay to examine the functional

interactions between HAI-2 wild type or mutants and different

membrane-bound serine proteases expressed in the gastro-

intestinal tract.

An in vitro cellular assay to assess the activity of
membrane-bound serine proteases

This assay uses the ENaC channel as the readout protein for the

proteolytic activity of intestinal membrane-bound serine proteases.

ENaC is a target for stimulation by a large number of membrane-

bound serine-proteases. Prostasin, tmprss4, matriptase and

tmprss3 have already been shown to activate ENaC [13,34,40].

Here, we report the activation of ENaC by hepsin, tmprss11a,

tmprss13, enteropeptidase and tmprss2 [48]. An important aspect

to consider in this assay is the dual effect of serine proteases on

ENaC activity. The expected stimulatory effect on ENaC was

observed at low levels of serine protease expression, as for the

proteolytic cleavage of a and c ENaC subunits at the cell surface.

However, increasing the level of expression of serine proteases like

tmprss13 resulted in the inhibition of ENaC activity (see Fig.2),

suggesting an extensive proteolytic cleavage of the fully active

ENaC that becomes incompatible with a channel function. This

stresses the necessity in this assay to perform dose-response curves

for every serine protease in order to quantitatively assess their

effects on ENaC by both an increase in ENaC activity and a

resistance to trypsin. The physiological relevance of the dual

effects of these intestinal serine-proteases on ENaC activity still

needs to be addressed in in vivo models.

HAI-2 and membrane-bound serine proteases
We found that HAI-2 efficiently inhibits all intestinal proteases

tested. The inhibition of hepsin, prostasin, matriptase and

tmprss13 by HAI-2 has already been described [21–24] in cell-

free assays. In addition, we also showed that HAI-2 inhibits

tmprss4, tmprss2, tmprss3, tmprss11a and enteropeptidase.

The mutation of the conserved Tyr163 in the 2nd Kunitz

domain (KD2) of HAI-2, as well as the corresponding Tyr

mutation in the 1st Kunitz domain (KD1) alone or together

resulted in a loss of function of HAI-2 against all the intestinal

serine proteases tested in our assay. The crystal structure of the 1st

Kunitz domain of the HAI-1 (HAI-1KD1) in complex with the

catalytic domain of matriptase provides useful information at the

atomic level on the possible mechanism underlying the loss of

function of the HAI-2 Y163 or Y68C mutant [49]. The KD1 of

HAI-1 structure adopts a pear-shape structure formed essentially

by 2 loops that are stabilized by three disulfide bonds (figure 6).

This binding mode of HAI-1 KD1 is common for the inhibition of

other serine protease of Kunitz type [50]. The Tyr in KD1

conserved in HAI-1 and HAI-2 is in a close vicinity of cysteines

(C259 and C283 in HAI-1) involved in a disulfide bond at the

interface between the HAI-1 and matriptase (figure 6). By contrast

to the Cys 259 and 283 of HAI-1 that interact with the catalytic

triad of matriptase, the Tyr is surrounded by hydrophobic residues

and does not participate directly to the interface between HAI-1

and matriptase. Simulation of the Tyr substitution by either Cys or

Ser in the HAI1-KD1 that reproduces the Y68C or the Y68S in

our experiments, resulted in a drop of the stability of the residues

surrounding the Tyr by 2.8 kcal/mol and 3.3 kcal/mol (calculated

with FoldX3.0) [51]. Such a decrease in the stability of the loop at

the interface of the HAI-1 and matriptase does not seem to affect

the binding of KDI with matriptase since in our experiments the

Y68S HAI-2 mutant retains its inhibitory activity. Our exper-

iments indicate that the Tyr to Cys substitution has a more

profound effect on the conformation of the HAI-1 loops at the

interface with matriptase. One interpretation is that the thiol

group of the substituted Y68C or Y163C may bridge with either

cysteines C47/C71 or C142/C166 of the HAI-2 loop normally

involved in a disulfide bond that fits the protease binding site. Such

aberrant disulfide bond is expected to disrupt the conformation of

the Kunitz domain loops of HAI-2 and its interaction with the

protease; this hypothesis is supported by our results showing that

the Y68C and Y163C of the HAI-2 almost completely suppressed

the inhibitory activity of HAI-2 on tmprss13 and prostasin.

Interactions between HAI-2 and membrane-bound serine prote-

ases are probably complex and not limited to the interaction

between one Kunitz domain and the catalytic domain of the serine

protease as shown by the crystal. In our experiments we expressed

full-length HAI-2 (with 2 Kunitz domains) and serine proteases

that may have several accessory domains potentially involved in

protein-protein interaction.

Figure 5. Effect of HAI-2 Y68S and Y163S mutations on
tmprss13 activity. A, ENaC-mediated sodium currents (INa

+), were
measured in Xenopus oocytes injected with ENaC, tmprss13 and HAI-2
(wild-type or mutant). INa

+ was measured without (black bars) and with
trypsin (5 mg/ml) perfused extracellularly (white bars) as a positive
control for ENaC activation. n$14 measured oocytes from 4 different
animals performed in two independent experiments. Data are means 6

SEM. B, Relative trypsin-mediated increase in INa
+ was calculated by

dividing, for each oocyte from experiments of panel A, INa
+ after

treatment with trypsin by INa
+ before treatment with trpysin. Data are

means 6 SEM. ***, p,0.001, compared to ENaC alone, after One-way
ANOVA followed by Tukey’s multiple comparisons test.
doi:10.1371/journal.pone.0094267.g005
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The analysis of the cysteine mutations in either or both Kunitz

domains of HAI-2, support a differential contribution of the KD1

and KD2 in the inhibition of target serine proteases. The KD2 of

HAI-2 is clearly less efficient than the KD1 for inhibition of

tmprss11, tmprss2 and hepsin. The KD1 and KD2 are equally

efficient in inhibiting tmprss13 and prostasin. For matriptase or

tmprss4, mutations of both Kunitz domains are required for a

complete inhibition by HAI-2.

Among the intestinal serine proteases tested, we observed a loss

of function of HAI-2 activity against prostasin and tmprss13 by the

Y163C mutation associated with the congenital sodium diarrhea

mutant. These two proteases represent potential targets of HAI-2

in regulating intestinal Na+ transport. Prostasin shows significant

mRNA levels in small intestine and colon like HAI-2, and recent

genetic evidence shows that disruption of the Prss8 (encoding

prostasin) gene rescues the embryonic lethality of Spint2 deficient

mice [27]. Prostasin could also be a target of HAI-2 during

embryonic development since children with the syndromic form of

congenital sodium diarrhea also have dysmorphic features [28]. It

should be mentioned that prostasin has been proposed to be an

activator of ENaC in vivo [14] and notably in colon [52,53].

Tmprss13, whose physiological role is unknown, is also an

interesting candidate target for inhibition by HAI-2. Tmprss13 is

significantly expressed at the mRNA level in distal colon. The

proteases matriptase, tmprss3 or tmprss4 were only partially

inhibited by the HAI-2 Y163C. We cannot exclude that these

serine proteases represent physiological targets for HAI-2 and play

a role in the pathogenesis of congenital sodium diarrhea. The

Spint2 expression pattern is for instance particularly similar to the

St14 gene that encodes matriptase (as shown in this study and in

Figure 6. Structure of the catalytic domain of matriptase in complex with the 1st Kunitz domain of HAI-1. The crystal structure of the
complex was solved by Zhao et al. [49] and the atomic coordinates used for the figure were obtained from the Protein Data Bank (code 4ISO). The 1st

Kunitz domain of HAI-1 is shown in gray with the Tyr280 residue (magenta), and the cysteines (red) involved in disulfide bonds. The catalytic domain
of the matriptase is represented in black with the cysteines (red) involved in disulfide bonds. Insert: substitution of the Tyr280 (magenta) in the KD1 of
HAI-1with a cysteine pointing its side chain towards the Cys283.
doi:10.1371/journal.pone.0094267.g006
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[21]). The functional targets of HAI-2 and the pathophysiological

basis for the intestinal loss of Na+ ions in congenital sodium

diarrhea still remain to be identified.

In summary, we developed a cellular assay in Xenopus oocytes to

study functional interactions between membrane-bound serine

proteases and inhibitors using ENaC as a reporter gene. SPINT2,

whose mutations have been linked to congenital sodium diarrhea,

appears to be a potent inhibitor. Being no longer blocked by the

Y68C and Y163C HAI-2 mutants, prostasin and tmprss13 are

interesting candidate partners of HAI-2 for maintaining Na+

homeostasis in the intestine. The functional effects of the cysteine

or serine substitutions for the conserved Tyr in the KD1 and KD2

on the activity of HAI-2 are supported by the crystal structure of

the complex formed by the HAI-1 homolog and matriptase.
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