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Abstract: 

Background: Acute kidney injury (AKI) is a condition that leads to a rapid deterioration of renal 

function associated with impairment to maintain electrolyte and acid balance, and, if left  

untreated, ultimately irreversible kidney damage and renal necrosis. There are a number of 

causes that can trigger AKI, ranging from underlying conditions as well as trauma and surgery. 

Specifically, the global rise in surgical procedures led to a substantial increase of AKI incidence 

rates, which in turn impacts on mortality rates, quality of life and economic costs to the healthcare 

system. However, no effective therapy for AKI exists. Current approaches, such as  

pharmacological intervention, help in alleviating symptoms in slowing down the progression, but 

do not prevent or reverse AKI-induced organ damage.  

Methods: An in-depth understanding of the molecular machinery involved in and modulated by 

AKI induction and progression is necessary to specifically pharmacologically target key  

molecules. A major hurdle to devise a successful strategy is the multifactorial and complex  

nature of the disorder itself, whereby the activation of a number of seemingly independent  

molecular pathways in the kidney leads to apoptotic and necrotic events.  

Results: The renin-angiotensin-aldosterone-system (RAAS) axis appears to be a common element, 

leading to downstream events such as triggers of immune responses via the NFB pathway. Other 

pathways intricately linked with AKI-induction and progression are the tumor necrosis factor alpha 

(TNF) and transforming growth factor beta (TGF) signaling cascades, as well as a number of 

other modulators. Surprisingly, it has been shown that the involvement of the glutamatergic axis, 

believed to be mainly a component of the neurological system, is also a major contributor.  

Conclusions: Here we address the current understanding of the molecular pathways evoked in 

AKI, their interplay, and the potential to pharmacologically intervene in the effective prevention 

and/or progression of AKI.  
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Introduction 

 

number of tightly controlled and complex pro-

cesses are performed by the heterogeneous cell 

populations of the kidney, from blood filtration by 

microvascular endothelial cells and podocytes, and re-

absorption by proximal epithelial (tubular) cells to name 

a few. Acute kidney injury (AKI), also known as acute 

renal failure (ARF), is a common clinical event associated 

with a rapid loss of kidney function, leading to unac-

ceptable high morbidity and mortality.1 0.4% to 0.6% 

of the total healthcare costs, between £400m and 

£600m, are annually spent on treatment for acute kid-

ney injury in the UK alone  and as many as 22% of 
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hospitalized patients develop AKI.2 However, it is esti-

mated that one-fifth of AKI that occurs after hospital 

admission is predictable and avoidable.3 

Over the last 10 years several international guide-

line groups have tried to establish consistent definitions 

and staging systems for AKI, namely the RIFLE (Risk, 

Injury, Failure, Loss, End stage kidney disease) system,4 

which was modified by the AKIN (Acute Kidney Injury 

Network) group 5 and further developed by KDIGO 

(Kidney Disease: Improving Global Outcomes).6 The 

clinical assessment criteria for AKI are serum creatinine 

(SCr), blood urea nitrogen and urine output levels, 

whereby a rise in measurable quantities of SCr and 

blood urea associated with a decrease in urine levels is 

deemed indicative of AKI, especially if these occur rap-

idly within 48 hours. 

However, it is apparent that a definitive and timely 

diagnosis using those measures has its limitations and 

hampers a reliable clinical assessment, which as a con-

sequence can lead to serious diagnostic delays, poten-

tial misclassification of the actual injury status and stage, 

and offers a limited amount of information regarding 

the underlying cause. This in turn can result in a potential 

missed opportunity for therapeutic interventions at a 

point in time when kidney damage could be limitable or 

reversible.7 Unmanaged or delayed action can lead to 

a number of complications, including metabolic acidosis, 

high potassium levels, uremia, changes in body fluid 

balance, and effects to other organs, and ultimately 

organ failure.8 This delay between assessment and clini-

cal decision making has also been recognized as a po-

tential reason for poor clinical outcomes often associat-

ed with AKI,9 and it was suggested to use functional and 

injury biomarkers instead of, or in conjunction with, these 

clinical measures.10 

Nowadays, it has been widely recognized that AKI 

represents a multifactorial, heterogeneous syndrome, or 

a spectrum of diseases, that has the potential to be 

identified at an early stage, unlike the previous termi-

nology of ARF which assumed that each AKI-induction 

pathway follows a similar or identical molecular route.11 

This also explains the sometimes contradictory research 

findings, but at the same time has the potential to con-

fuse rather than solve the mystery surrounding AKI on a 

molecular level. Also, the identification of molecular 

events of renal impairment at an early stage would 

allow devising a suitable test that can be used for an 

immediate course of action to alleviate symptoms and 

disrupt the process of functional decline.12 It is impera-

tive that this condition is comprehensively understood on 

a molecular level to allow for targeted intervention 

therapies. 

 

Risk factors and triggers of AKI induction 

 

There is a considerable amount of clinical infor-

mation available relating to observed AKI cases over 

the last 30 years that allows a wide-ranging analysis of 

AKI predisposition and causative agents. General risk 

factors are age greater than 65 years, heart failure, 

liver disease, diabetes, chronic kidney disease with or 

without diabetes, sepsis, urological obstruction, iodinat-

ed contrast agents, nephrotoxic medication and 

hypovolaemia/shock.13 AKI can be induced by many 

different events such as rapid blood loss to and from 

the kidney, vasoconstrictive drugs, exposure to harmful 

substances, hypotension linked to sepsis, and obstruction 

of the urinary tract. Table 1 lists the main factors that 

can lead to AKI,14 where surgical procedures or medica-

tion are often precursors. 

Such a vast array of events leading to the same out-

come makes it impractical to devise general strategies 

to combat the onset of AKI using clinical measures alone. 

Nevertheless, this can be substantially improved if com-

mon and reliable indicators of tissue damage at an 

early stage can be demonstrated, especially if non-

invasive tools, such as the use of molecular biomarkers, 

can be employed. 

 

Biomarkers of AKI 

 

Currently, the main clinical objective regarding AKI is 

the prevention of disease onset due to the lack of suita-

ble and effective treatment and the irreversibility of 

organ damage. Monitoring disease onset and progres-

sion usually involves clinical markers such as SCr levels. 

However, SCr levels are known to be influenced by 

factors other than renal causes alone, lack the power of 

prediction due to its nature of being modulated after 

kidney irregularities and show low sensitivity.15 Other 

traditional clinical biomarkers of kidney injury observed 

in blood (urea nitrogen) and urine (epithelial cells, tubu-

lar casts, fractional excretion of Na+, urinary concen-

trating ability, etc.) have also been demonstrated to be 

insensitive and nonspecific for the diagnosis of AKI,16 

and therefore such measurements are a poor marker of 

acute deterioration in kidney function.17 This led to the 

search of potentially more reliant biomarkers, and over 

the last decade a considerable amount of studies were 

performed to identify specific molecular biomarkers 

which could replace or augment the value of the current 

physiological markers. 
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Promising diagnostic injury markers include kidney 

injury molecule 1 (KIM-1),16 interleukin 18 (IL-18),18 neu-

trophil gelatinase-associated lipocalin (NGAL),19 liver-

type fatty acid binding protein (L-FABP),20 cystatin C,21 

N-acetyl-beta-D-glucosaminidase (NAG),22 beta-2-

microglobulin (B2M),23 zinc-alpha-2-glycoprotein 

(AZGP1),24 and cytochrome C. 25 Furthermore, several 

additional biomarkers have been postulated to be of 

prognostic or diagnostic value in connection with AKI 

(reviewed in e.g.)10,17,26,27. 

KIM-1 is a promising marker for various renal dis-

eases as well as AKI, which includes but not limits to tub-

ular necrosis, since AKI incidence precedes any rise of 

the conventional SCr.28 KIM-1 expression is undetecta-

ble in normal kidneys, whereas the mRNA and protein 

levels are markedly up-regulated in AKI.29 

Urinary IL-18 was reported to be significantly ele-

vated in patients one to two days prior to an observed 

rise in SCr and confirmed AKI diagnosis.18 It has been 

shown to perform better as a predictive biomarker in 

children, 30 and multiple preclinical studies demonstrat-

ed that IL-18 is not only a biomarker but also a media-

tor of ischemic AKI.31 

NGAL is expressed during systemic inflammation 

and sepsis,15 and was found to be highly increased 

post-intervention in patients undergoing cardiac surgery 

and subsequently developing AKI compared to non-AKI 

patients undergoing the same treatment.32 It was shown 

in a cohort of more than 500 intensive care patients that 

it has a moderate prediction value for a predisposition 

to develop AKI. 33 NGAL as a clinical marker is now in 

clinical trial phase and undergoing prospective evalua-

tion after it was shown to be in accordance with altered 

serum creatinine levels as well as biopsy results in adult 

AKI patients.34 

L-FABP has been reported to be elevated in non-

diabetic CKD16 and in established AKI of diverse caus-

es, including acute tubular necrosis, sepsis, and 

nephrotoxin exposure.35 

Cystatin C, a marker for glomerular filtration rates 

that is freely reabsorbed by the glomerulus and 

catabolized by the tubulus, and was shown to be ele-

vated in tubular dysfunction.16 It was proposed to be an 

early onset marker for AKI in urine36 and serum.37 

Urinary NAG is a molecule shed from the proximal 

tubules into the urine. It is a proximal tubular damage 

marker and correlates with the grade of injury, and 

indeed has been shown to correlate with various diseas-

es and toxic agents affecting the kidneys, but also other 

diseases including rheumatoid arthritis and hyperthy-

roidism creating doubts on its specificity.16 

Table 1: Events leading to AKI induction. 

Site Trigger 

Pre-renal - Volume depletion due to hemorrhage, severe vomiting or diarrhea, burns 

 - Edema due to cardiac failure, cirrhosis, nephrotic syndrome 

 - Hypotension due to cardiogenic shock, sepsis, anaphylaxis 

 - Cardiovascular due to severe cardiac failure, arrhythmias 

 

- Renal hypoperfusion induced by non-steroidal anti-inflammatory drugs (NSAIDs) or specific enzyme inhibitors or 

receptor blockers involved in the renin-angiotensin axis, abdominal aortic aneurysm, renal artery stenosis or occlusion, 
hepatorenal syndrome 

Renal - Glomerular disease due to inflammation (glomerulonephritis), thrombosis, hemolytic uraemic syndrome 

 
- Tubular injury due to acute tubular necrosis following prolonged ischaemia, and nephrotoxins such as aminoglycosides, 

radiocontrast media, cisplatin, heavy metals 

 - Acute interstitial nephritis due to drugs (e.g. NSAIDs), infection or autoimmune diseases 

 
- Vascular disease including vasculitis, cryoglobulinaemia, polyarteritis nodosa, thrombotic microangiopathy, cholesterol 
emboli, renal artery stenosis, renal vein thrombosis, malignant hypertension 

 - Eclampsia 

Post-renal 
- Urinary tract obstructions due to Calculus formation (i.e. kidney stones), urethral stricture, prostatic hypertrophy or 
malignancy, blood clot 

 - Papillary necrosis 

 - Bladder tumor 

 - Radiation and retroperitoneal fibrosis 

 - Pelvic malignancy 
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B2M, the light chain of the major histocompatibility 

complex (MHC) I, which is present on every living cell, is 

shed normally but also usually reabsorbed by the prox-

imal tubular cells. In tubular damage situations it be-

comes present in urine, which has been shown in surgery 

and transplantation studies.16,27 

Serum levels of AZGP1, best known as a marker in 

cancer progression, were demonstrated in a small study 

to be increased in the early phase of AKI, and high 

initial levels of AZGP1 correlated with extra-renal 

complications but not with parameters of renal function. 
24 Elevated levels of extracellular cytochrome C is a 

bona fide indicator of cell death burden in any organ 

or tissue, and is released during mitochondrial damage 

as an initiator of apoptosis, necrotic cell lysis and oxi-

dative stress. It was observed in drug-induced AKI,25 

and holds potential as a marker for necrotic conditions. 

A recent meta-analysis of medium- to large-scale 

clinical/prospective studies indicated that the bi-

omarkers serum cystatin C and urinary IL-18 and NGAL 

showed the best performance for early diagnosis of 

AKI, serum cystatin C, urine IL-18 and KIM-1 were in-

dicative for the differential diagnosis of established 

AKI, and levels of urine NAG, KIM-1, and IL-18 per-

formed the best for mortality risk prediction after es-

tablished AKI.17 Some of these biomarker have already 

been proven to be elevated in patients developing AKI 

in different clinical settings such as patients in intensive 

care units (ICU), before and after heart or other sur-

gery, in diabetic or obese patients. Currently, however, 

they are not able to replace the conventional measured 

values like GFR, cystatin C, creatinine and urea. There is 

also hope that these novel biomarkers will discriminate 

between the underlying pathophysiology of AKI (i.e. 

toxins, sepsis, ischemia or multifactorial), and will enable 

to distinguish AKI from other renal disease such as 

chronic kidney disease.9 

A different approach to not only determine key fac-

tors and molecular modulators, but also pinpoint 

druggable targets, is the elucidation of molecular events 

such as downstream signaling cascades involved in renal 

insults. 

 

Molecular hallmarks and modulated pathways 

 

AKI can have many seemingly unrelated initiators, 

however commonalities converge on the affected organ, 

thereby enabling a much better view of how kidney 

damage is inflicted on a molecular level. It is suggested 

that renal cell loss, secondary to metabolic, genetic, 

immune, toxic, oxidant, and other mechanisms, is a com-

mon determining factor that can result in a broad spec-

trum of clinical renal syndromes.38 Molecular hallmarks 

of AKI are hyperglycaemia, vasoconstriction, accumula-

tion of free and esterified cholesterol, activation of the 

renin-angiotensin-aldosterone system (RAAS), inflamma-

tion and inflammatory response, altered tubule dynam-

ics leading to increased luminal sodium, hypoxia, cellu-

lar ATP depletion, renal apoptosis and necrosis (Table 

2) .39  

The major signaling cascades involved in AKI are the 

RAAS axis, tumor necrosis factor alpha (TNF), trans-

forming growth factor beta (TGF), epidermal growth 

factor receptor (EGFR), hypoxia inducing factor (HIF1α) 

and NFB pathways.40,41 A recent study integrated a 

majority of the various elements of AKI, delineated all 

potentially involved pathways and assembled them into 

a global molecular model of AKI induction, progression 

and ultimately apoptosis/necrosis using a combination 

of Systems Biology, proteomics and de-novo pathway 

mapping approaches.42 Additionally, a dataset from a 

proteomic study of chemically induced AKI was estab-

lished in this investigation and used to remove unsup-

ported pathways, thereby uncovering the involvement 

of the glutamatergic system in renal damage. 

A potential summary of AKI-modulated pathways 

and signaling events leading to Ca2+-overload and 

apoptosis as well as necrosis in kidney tissue after injury 

is shown in Figure 1. 

Potentially initiating factors such as TNF and other 

cytokines lead to activation of the RAAS cascade,43,44 

however induction of AKI can occur via multiple stimula-

tion or entry points,45 including vasoconstriction, which 

also activates the angiotensin receptor.46 These events 

lead to the activation of peroxisome proliferator-

activated receptor gamma (PPAR),47 which is involved 

in the expression/inhibition of gluconeogenesis pro-

teins.48  This can then lead to hyperglycemia via glyco-

gen phosphorylase activity.49 Hyperglycemia has also 

been shown to be chemically induced by 20-

hydroxyeicosatetraenoic acid (20-HETE) which involves 

the cAMP/protein kinase A-phosphorylase kinase-

glycogen phosphorylase pathway.50 

Vasoconstriction, one of the hallmarks of AKI, is in-

duced by RAAS,51 and has been shown to lead to hy-

poxic conditions,52 which in turn triggers the asymmetric 

gene activation of elements involved in the glycolysis 

pathway such as phosphofructokinase (PFKL).53 An ac-

cumulation of the PFKL metabolic product fructose 1,6-

bisphosphate can result in the inhibition of de novo ATP 

production and ultimately accumulation of hypoxan-

thine,54 which is another known hallmark of AKI. 
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Other downstream events of RAAS and hypoxia are 

the activation of the NFB signaling cascade,55 leading 

to inflammatory responses,56 and the 

cortisol/aldosterone receptor pathway, resulting in 

Table 2: Hallmarks of AKI. 

Hallmark * Modulated associated event 

RAAS activation ↑  Angiotensin signaling 

Na+/Cl- retention, increased luminal Na+ ↑  Aldosterone/cortisol signaling events 

Hyperglycemia ↑  Diabetes 

Tubular cell dynamics ↑  Infiltration of immature cells 

Cytoskeletal reorganization ↑  ECM remodeling 

Elevated blood pressure ↑  Hypertension 

Accumulation of free and esterified cholesterol ↑  Systemic stress response 

PI3K modulation ↓  Phosphoinositol-3-kinase activity 

 ↓  Insulin signaling 

Vasoconstriction ↑  Vasoconstrictors (endothelin, angiotensin, MMP2) 

 ↓  Vasodilators (nitric oxide NO) 

Hypoxia ↑  Hypoxia inducing factor HIF1α  

 ↑  NADPH oxidases 

 ↑  ROS levels 

 ↑  NFB activity 

 ↑  Inflammation factors (TNFα , TF, PAT1, MCP1) 

 ↑  Inflammation and inflammatory response 

 ↑  Atherogenesis, fibrinogenesis 

 ↓  ATP levels 

 ↓  NAD levels 

 ↑  Hypoxanthine levels 

 ↑  Necrosis 

* Clinical and disease model observations are listed based on modulated associated events, and the arrows represent either up- or down-
regulation. 

 

 

Figure 1: Signaling cascades and evoked pathways involved in AKI. Known primary modulators of AKI (blue boxes) with downstream targets  

(yellow boxes) and hallmarks (green boxes) are shown. Grey boxes denote chemical compounds, and red boxes indicate endpoints in AKI. 
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Na+/Cl- -retention.57 The potential role of the function-

ally similar NFB2 has been postulated, 41 but remains 

currently un- 

clear. 

The activation of the RAAS axis also leads to a raise 

in intracellular Ca2+, either by targeting intracellular 

Ca2+-stores or induction of the glutamatergic system 

involving the N-methyl-D-aspartate (NMDA) receptor 

(NMDA-R). The latter might also require the production 

of reactive oxygen species (ROS) in a NADPH oxidase 

(NOX)-dependent pathway58 under hypoxic 

conditions,59 leading to gene activation of the NMDA-

R.60 It could also be shown that death associated protein 

kinase 1 (DAPK1), which is a gene activation target of 

the JNK-p53 system, is up-regulated in AKI. 42 This gene 

expression can also occur via TGF-mediated SMAD 

induction, 61 and has been shown to inhibit NFB activa-

tion by TNF-induced apoptosis. 62 Additionally, the 

NMDA-R is a known target of DAPK1, where DAPK1-

mediated channel modulation results in a permanently 

open NMDA-R, potentially leading to an uncontrollable 

elevation of intracellular Ca2+, nitric oxide (NO) and 

ROS, and ultimately to non-reversible cell death.63 This 

is directly associated with nuclear DNA damage, mito-

chondrial apoptotic pathway activation via calpain and 

caspase activation, and poly(ADP-ribose) 

glycohydrolase (PARG)-mediated necrosis involving 

molecular events described above.64,65 

Additionally, molecules involved in cytoskeletal reor-

ganization, cell integrity and extracellular matrix have 

also been shown to be induced in AKI, and their up-

regulation was suggested to be a cellular protective 

mechanism from angiotensin II- and high-glucose-

induced apoptosis.66 

 

The renal glutamatergic system 

 

Scant information is available on the involvement of 

the glutamatergic system in kidney function. The majori-

ty of molecular studies performed involving the 

glutamatergic system are in the area of neuroscience, 

where it could be demonstrated that different types of 

glutamate receptors are coupled to specific molecular 

signaling cascades.67 The NMDA-R in particular was 

shown to be tightly integrated in a vast molecular net-

work,68 and surprisingly many of these components 

were also not only found in kidney tissues, but also in 

conjunction with the NMDA-R up-regulated after AKI 

induction.42 The relevant endogenous NMDA-R ligand in 

AKI has not been characterized, however kidney gluta-

mate levels are increased in AKI,69 and expression of 

these proteins in tubular cells has been shown.70 A re-

cent study has shown that glutamate and NMDA-R pol-

yamine binding site agonist spermidine aggravated 

oxidative stress and ischemia-reperfusion-induced AKI,71 

reasoning that glutamate itself is the renal activator of 

the glutamatergic system. A simplified diagram of this 

system is shown in Figure 2. 

Renal receptors for glutamate modulated in AKI are 

the metabotropic glutamate receptor 1 (mGLUR1), α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptor (AMPA-R) and the NMDA-R. 42 

mGluR1-signaling occurs via G-proteins, resulting in the 

activation of  phospholipase C beta (PLC).72 Thus, the 

intracellular Ca2+-release channel IP3-R, which is linked 

to this system via the mGluR1-scaffolder Homer,73 can 

be directly activated.74 This release of vesicular Ca2+ 

can activate calcineurin (PP2B), which is able to block 

calcium/calmodulin-dependent protein kinase type II 

(CamKII) indirectly via protein phosphatases 1 

(PP1).75,76 CamKII is a downstream target of NMDA-R 

activation,77 and is coupled to this receptor via scaf-

folders belonging to the disks large family DLGs,78 that 

also bind to the Ca2+/Na+-importer channel AMPA-R.79 

Nitric oxide synthase (NOS) is also bound to DLGs80 

and activated by CamKII,81 thereby linking NO-

production directly to NMDA-R activity. CamKII is also 

involved in protein tyrosine kinase 2 (Pyk2)82 and mito-

gen activated protein kinase/extracellular signal-

regulated kinase (MAPK/ERK)83 cascade activation, and 

both of those events can lead to a substantial number of 

diverse signaling end-points through various other cas-

cades and molecules involved. One example of con-

verging signaling is tyrosine-protein kinase Src that can 

be activated by Pyk2 phosphorylation,84 arachidonic 

acid (AA) modulation via phospholipase A 2 gamma 

(PLA2)85 downstream of MAPK/ERK,86 or 

diacylglycerol (DAG) induction by PLC and PKC activi-

ty,87 and can lead to the activation of the 

Ras/Rac/Cdc42 pathway.88,89 MAPK/ERK signaling can 

also result in gene activation events through phosphory-

lation of MSK1,90 and directly activates DAPK1,91 which 

in turn targets the NMDA-R. The NMDA-R has also been 

shown to be involved in cytoskeletal reorganization in 

neurons,92 but whether this is also the case in renal cells 

is currently unknown. However, the required molecular 

components are present in these cells. 

It has to be noted that this glutamatergic system 

might not exist in its entirety in a single cell, but is dis-

persed across several cell types, whereby ionotropic 

glutamate receptors and its associated signaling com-

ponents might be expressed in one type of cells, and 

the metabotropic receptor and associated signaling 

pathways in another. 

http://dx.doi.org/10.5249/jivr.v7i2.615
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Prevention and pharmacological intervention 

 

A considerable number of pharmacological or other 

intervention studies were performed to date due to the 

clinical importance of AKI. Summarily, inhibition of mole-

cules linked to the TNF-dependent modulation in the 

AKI-induced pathways, including ROS production, hy-

perglycemia and specific NFB-dependent signaling 

cascades, all had an improving or attenuated outcome 

(see overview of pharmacological intervention studies 

in).42 

Inhibition of TNF signaling by blocking the cognate 

receptor using anti-TNF antibodies resulted in preven-

tion of the induction of AKI.93 Targeting the penultimate 

step of Ca2+-overload by inhibiting NMDA-R using the 

channel blocker D-AP5 was shown to significantly re-

duce ischemia/reperfusion injury (I/RI) -induced glomer-

ular and tubular dysfunction,94 and raises the possibility 

that NMDA receptor signaling is one of the penultimate 

steps prior to non-reversible apoptosis and necrosis. 

However, inhibition of the NMDA-R in the clinical setting 

could be problematic due to the intricate involvement of 

this receptor in physiological processes occurring in neu-

romuscular junctions (e.g. heart) as well as cognitive 

functions.95 Nonetheless the NMDA-R channel blocker 

Mg2+ has been successfully used in the clinic manage-

ment of pre-eclampsia and eclampsia.96 

 Another molecule which gained considerable atten-

tion was sphingosine kinase-1 (SK1). It catalyzes the 

phosphorylation of sphingosine to form sphingosine 1-

phosphate (S1P), which in turn stimulates and promotes 

activation of NFB in response to TNF signaling and 

thereby diverting the AKI-induced stimulation of delete-

rious inflammation.97 It could be demonstrated that in-

terleukin 11 (IL-11), which is an approved chemothera-

py-induced thrombocytopenia treatment, induces this 

molecule via a HIF1-dependent pathway, resulting in 

powerful renal protective effects by reducing necrosis, 

inflammation, and apoptosis in ischemia-induced AKI.98 

Isoflurane administration in I/RI-induced AKI could also 

be shown to have the same downstream target as IL-11, 

where SK1 is induced through ERK MAPK activation, and 

 

 

Figure 2: Glutamatergic signaling cascades in renal tissue. Glutamate receptors NMDA-, AMPA- and metabotropic mGluR1 receptors, which 

are present and functional in tubular cells as well as podocytes, are depicted with potential associated signaling cascades ranging from calci-

um signaling to phospholipase and adenylate cyclase cascades and their interlinking pathways. Metabolites are depicted with a grey box, 

receptors in yellow, kinases in pink, phospholipases in orange, and phosphatases with a green box. Global parameters are shown with a blue 

box and scaffolders with a green ellipse. 
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resulted in protection against renal endothelial apopto-

sis.99 

Targeting the receptor of S1P has also shown great 

promise in AKI treatment. Using S1P as a pre-treatment 

prior to AKI induction in an I/RI animal model resulted in 

an attenuation of systemic inflammation and kidney 

injury,100,101 and the S1P receptor type 2 (S1P(2)R) an-

tagonist JTE013 selectively up-regulated SK1 and at-

tenuated both hydrogen peroxide-induced necrosis and 

TNFα/cycloheximide-induced apoptosis.102 

The compound TDZD-8, which targets and inhibits 

glycogen synthase kinase-3β, protects against 

endotoxemic acute renal failure mainly by down-

regulating pro-inflammatory TNF-α and RANTES. It was 

shown to ameliorate NSAID-induced AKI by induction of 

renal cortical COX-2 and direct inhibition of the mito-

chondrial permeability transition.103,104 

An as yet untested likely druggable target in AKI-

associated symptoms could be DAPK1 due to its direct 

link with the NMDA-R. This molecule has been shown to 

be a prospective target in cancer treatment by exploit-

ing its potential apoptotic action, however inhibition 

studies by chemical compounds are somewhat lacking. 

Nevertheless, one recent report of designed kinase in-

hibitors using octahedral metal chelate complexes with 

a ruthenium(II) or iridium(III) metal center demonstrated 

a highly selective octasporine protein kinase inhibitor 

termed OS4 with a DAPK1-IC50 of 2nM.105 Such a com-

pound deserves further investigation and shows a prom-

ising way forward in combating AKI-induced tissue inju-

ry. 

The results of pharmacological intervention studies 

reported in the literature suggest that AKI mediated 

tissue damage effects can be reduced and in principle 

even prevented or to some degree reversed, and a 

combination of various drugs, targeting specific AKI-

induced pathways and molecules, might potentially be a 

line of attack in disease prevention or therapeutic inter-

vention. 

 

Conclusion  

 

AKI currently remains a serious issue in clinical care and 

intervention therapies, however substantial advances in 

understanding the symptoms on a molecular level will 

undoubtedly lead to an improved way to devise novel 

therapy regimes and/or detection methods, and cur-

rently the best route of action is to prevent the occur-

rence of AKI in the first place, close monitoring of renal 

function and alleviating symptoms if kidney damage has 

occurred. 

Current research in AKI biomarker discovery has 

gone from strength to strength over the preceding years 

and it is only a matter of time to find the right marker(s) 

for each of the various causes of AKI. While potential 

proteinaceous molecular markers are under heavy in-

vestigation and close scrutiny, one should not ignore 

chemical metabolic markers of AKI, where prospective 

studies have not gained the same level of attention. 

These types of biomarkers might hold great potential to 

rapidly and reliably assess kidney damage in the clini-

cal setting. 

Therapeutic regimes by pharmacological interven-

tion in AKI prevention or progression have already 

yielded outstanding results and will quite likely be the 

best course of action. However, many compounds tested 

to treat or prevent AKI symptoms are unknown to be 

effective in humans, still need to be tested in larger 

cohorts, or approved to be used in the clinical setting. 

Future research for novel compounds could also be driv-

en by exploiting the molecular processes involved in 

AKI. This requires a better understanding of molecular 

events in the various facets leading to AKI symptoms. 

The current trend in AKI disease management, cou-

pled with a global effort to not only alleviate symp-

toms, but effectively combat AKI and challenge its root 

causes, holds great promise to tackle this issue head on 

and succeed in the not too distant future. 
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