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Abstract: CD38 was first discovered as a T-cell antigen and has since been found ubiquitously
expressed in various hematopoietic cells, including plasma cells, NK cells, B cells, and granulocytes.
More importantly, CD38 expression levels on malignant hematopoietic cells are significantly higher
than counterpart healthy cells, thus presenting itself as a promising therapeutic target. In fact, for
many aggressive hematological cancers, including CLL, DLBCL, T-ALL, and NKTL, CD38 expression
is significantly associated with poorer prognosis and a hyperproliferative or metastatic phenotype.
Studies have shown that, beyond being a biomarker, CD38 functionally mediates dysregulated
survival, adhesion, and migration signaling pathways, as well as promotes an immunosuppressive
microenvironment conducive for tumors to thrive. Thus, targeting CD38 is a rational approach to
overcoming these malignancies. However, clinical trials have surprisingly shown that daratumumab
monotherapy has not been very effective in these other blood malignancies. Furthermore, extensive
use of daratumumab in MM is giving rise to a subset of patients now refractory to daratumumab
treatment. Thus, it is important to consider factors modulating the determinants of response to
CD38 targeting across different blood malignancies, encompassing both the transcriptional and
post-transcriptional levels so that we can diversify the strategy to enhance daratumumab therapeutic
efficacy, which can ultimately improve patient outcomes.

Keywords: CD38; immunotherapy; blood malignancies; daratumumab; drug combination; extracellular
vesicles; miRNA

1. Introduction

Antibody-based immunotherapy has emerged amongst the most successful treatment
strategies in cancer and is now incorporated as a mainstay treatment option in conjunction
with chemotherapy, surgery, and radiation [1]. The monoclonal antibody has high target
affinity and specificity, which enables selective disruption of pro-tumoral signaling path-
ways while simultaneously recruiting the immune system to generate long-term antitumor
responses, thus favoring superior and durable treatment outcomes with manageable side
effects for patients [2]. CD38-targeting monoclonal antibodies against cancer exemplify one
such success story in the clinic.

Daratumumab is a first-in-class, IgG1k human CD38-targeting monoclonal antibody
first approved by FDA for the treatment of multiple myeloma (MM) in 2015. It has since
been incorporated into the treatment regimen for both relapsed/refractory and newly
diagnosed multiple myeloma patients, so far demonstrating outstanding improvements
in clinical efficacy, both as a single agent and in combination with other chemotherapeu-
tics [3-6]. Isatuximab is a novel CD38-targeting antibody raised against a different epitope
from daratumumab and is differentiated by the direct cytotoxic effect it can induce in
tumors, as well as stronger inhibition of the tumor suppressive NADase role of CD38
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in vitro [7,8]. Isatixumab has currently been approved in combination with carfilzomib and
dexamethasone, or pomalidomide and dexamethasone for the treatment of adult patients
with relapsed or refractory MM who have received one to three prior lines of therapy [9,10].
Other CD38-targeting antibodies MOR202 [11] and TAKO079 [12] are also currently under
preclinical and clinical evaluation for potential incorporation in the clinic.

Enhanced expression of the CD38 membrane protein has also been reported in other
aggressive hematological malignancies, including chronic lymphocytic leukemia (CLL),
T-cell acute lymphoblastic leukemia (T-ALL), diffuse large B-cell lymphomas (DLBCL), and
T and NK lymphomas (NKTL) [13-17]. This elevated CD38 expression has been associated
with poorer prognosis and a more aggressive cancer phenotype, which is an outcome of
the cancer cell hijacking underlying CD38-driven functions to create both a pro-tumoral
extracellular environment and a cancer-permissive intracellular milieu [18-20]. This has
generated an impetus for the evaluation of CD38-targeting therapeutics in such cancers.
However, early-phase clinical trials have reported mostly modest efficacy with daratu-
mumab treatment, suggesting that more work needs to be carried out to understand the
determinants of response to CD38 targeting [21,22]. In addition, long-term and widespread
treatment with daratumumab has led to resistance in a subset of MM patients and efforts
are underway to identify strategies that can enhance daratumumab efficacy.

This review will describe the pattern of CD38 expression across different hemato-
logical malignancies and study unique molecular factors regulating CD38 expression
and functions. This will highlight potential strategies that can be utilized in combina-
tion with CD38-targeting antibodies to enhance therapeutic responses in CD38-driven
hematologic malignancies.

2. CD38 Protein Expression and Function in Healthy Cells

CD38 is ubiquitously expressed in multiple human tissues, with the highest expression
detected in hematopoietic tissues, such as bone marrow and lymph nodes. Originally identi-
fied as an antigen on the surface of T cells [23], CD38 expression has been reported in a wide
range of hematopoietic cells, including B cells, NK cells, macrophages, granulocytes, neu-
trophils, and platelets, as well as nonhematopoietic cells, including the prostate epithelium,
pancreatic beta cells, and in organs such as the brain, the liver, and the kidney [24-27].

Structurally, CD38 is a transmembrane glycoprotein with a large bifunctional extra-
cellular catalytic domain and single transmembrane segment near its N-terminus [24].
This structural conformation is well adapted for the diverse and pleiotropic functions that
CD38 mediates in regulating cell adhesion, migration, proliferation, intracellular signal
transduction, metabolic reprograming, modulation of the cell microenvironment through
inflammation, and immunosuppression (Figure 1).

CD38 knockout mice models convey an overall insight as to the key functions of
this protein. While CD38 null mice appear healthy, fertile and unburdened by gross
defects, they, however, demonstrate a dramatic reduction in NAD+ glycohydrolase ac-
tivity in the spleen and a complete abolishment in the liver and brain. Interestingly,
this loss of NAD+ glycohydrolase activity did not significantly impact the development,
maintenance, or establishment of population ratios of hematopoietic stem cells. Notably
though, CD38 null mice exhibited marked deficiencies in the antibody responses to T-
cell-dependent protein antigens, thus suggesting that CD38 may play a role in regulating
humoral immune responses [6,28].

In human CD38 studies, its function as an adhesion molecule was first established
by receptor binding to hyaluronic acid in the extracellular matrix through a hyaluronate
binding motif [29]. Subsequently, it was demonstrated that CD38 binds to a cognate ligand
CD31 and mediates adhesion and transmigration between leukocytes and the endothelial
wall, thereby promoting the activation and proliferation of these cells [30]. CD38 also
regulates the migration of dendritic cell (DC) precursors from blood to peripheral sites, as
well as the migration of mature DCs to lymph nodes in response to CCL2, CCL19, CCL21,
and CXCL12 chemokines [31].
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Figure 1. Functional roles of CD38. CD38 can mediate adhesion through binding with (1) hyaluronic
acid in the extracellular matrix or through (2) binding with its cognate ligand CD31 to mediate
adhesion and transendothelial migration. (3) Importantly, the ecto-enzymatic domain of CD38
catabolizes NAD+ into cADPR, which can enter the cell to mobilize calcium stores and modulate
numerous cell signaling pathways. cADPR can also be hydrolyzed to ADPR, and then subsequently
adenosine upon colocalization with CD73/203a. Adenosine is bound to purinergic receptors to
suppress NK and T-cell activation.

The extracellular enzymatic (ecto-enzymatic) domain of CD38 can mediate two in-
dependent reactions, one as an NAD glycohydrolase and also as a ADP ribosyl cyclase,
eventually catabolizing NAD+ into two different products which are essential for intra-
cellular calcium homeostasis. It catalyzes the formation of adenosine diphosphate ribose
(ADPR), cyclic ADPR, and nicotinamide from NAD+ under neutral pH or nicotinic acid
adenine dinucleotide phosphate (NAADP+) under acidic conditions [32-35]. cADPR and
NAADP are structurally and functionally distinct messengers that mobilize calcium from
endoplasmic reticulum and lysosomal calcium stores, respectively, leading to modulation
of intracellular signaling pathways [36,37]. This ecto-enzymatic function also links to an
immune-suppressive role for CD38 through the regulation of extracellular adenosine, which
is a byproduct from the catabolism of NAD+ and ATP [38]. Adenosine has been implicated
in the control of inflammation and immune response through purinergic receptor binding,
which may be exploited by malignant cells for immune escape [39].

3. CD38-Mediated Tumor-Promoting Mechanisms and Expression in
Hematological Cancers

Anomalous CD38 expression in hematologic malignancies correlates with hyper-
proliferation of cells, dysregulation of intra- and extracellular metabolic pathways, for-
mation of a tumor permissive microenvironment, and disease progression, thus making
CD38 an attractive target for antibody-based therapeutics [16,18-20,40]. Here, we examine
how CD38-mediated mechanisms have been hijacked for tumorigenesis in the various
hematological cancers and how these can be potentially exploited to enhance monoclonal
antibody-mediated antitumor responses. The summary of these mechanisms can be found
in Table 1.
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3.1. CD38 in Multiple Myeloma

Multiple myeloma is the malignant growth of clonal plasma cells primarily located
in the bone marrow and, also, the second most common hematological malignancy. Ma-
lignant plasma cells from any stage of this disease express uniformly high levels of the
CD38 antigen, higher than healthy myeloid and lymphoid cells (2). This differentiated
expression provides the basis for the good clinical outcomes that have been achieved with
daratumumab treatment in patients. Through Fc-receptor-dependent mechanisms, dara-
tumumab recruits the immune system and eliminates CD38-expressing tumor cells via a
broad spectrum of mechanisms (Figure 2), including complement-dependent cytotoxicity
(CDC) [41], antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular
phagocytosis (ADCP), induction of apoptosis [42,43], and an indirect immune modulatory
effect moderated by the depletion of suppressive CD38+ regulatory T cells [44]. In contrast
to MM, the clonal plasma cell in amyloidosis (AL) has a lower proliferation index [45].
Despite this, AL clonal plasma cells express surface CD38 [46], allowing monoclonal an-
tibodies, such as daratumumab, to inhibit light-chain production [47,48]. A considerable
amount of malignant clone of plasma cells in Waldenstrém macroglobulinemia patients
expresses CD38 (40-70%) [49-51], explaining the rationale for a recently completed clinical
trial to treat Waldenstrom macroglobulinemia patients with daratumumab [52].
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Figure 2. A broad spectrum of mechanisms of action of daratumumab. Daratumumab triggers
Fc-dependent immune effector mechanisms that comprise of CDC, ADCC, and ADCP. The Fec tail
of daratumumab with the Fc gamma receptors (FcyRs) present on immune effector cells leads to
activation of these immune cells and subsequent lytic killing of MM cells. Lysis and depletion
of CD38+ immune suppressor cells, such as Tregs, also occur via the same process, leading to
immunomodulation of the tumor niche and clonal expansion of cytotoxic T cell. CD38-daratumumab
complexes that are formed are transferred from MM cells to monocytes and granulocyte in a process
known as trogocytosis, thereby modulating CD38 expression on immune cells.

While the anticancer efficacy of daratumumab treatment can be attributed to the
abovementioned immune-mediated mechanisms, additional studies have highlighted that
the depth and durability of the antitumor daratumumab response was also due to the
disruption of onco-promoting signals mediated by CD38 [40,43,44,53-56].
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3.1.1. CD38 Increases Capacity for Oxidative Phosphorylation

Compelling evidence has been provided for the role of CD38 in directly promoting
MM survival through mechanisms supporting bioenergetic plasticity of the myeloma cell.
Marlein et al. demonstrated that the CD38 mediates mitochondrial transfer between bone
marrow stromal cells (BMSC) and myeloma cells through tumor-derived tunneling nan-
otubes, thus promoting MM proliferation by augmenting mitochondrial-based oxidative
phosphorylation [54]. CD38-directed transfer of mitochondria has also been observed
between astrocytes and damaged neurons after a stroke [53].

3.1.2. CD38 Mediates Immunosuppression by Producing Elevated Levels of Adenosine

In the bone marrow niche, MM cells undergo metabolic reprograming, which upreg-
ulates NAD+, lactate, and H+ levels [40]. Through the ecto-enzymatic activity of CD38,
NAD-+ is converted to cyclic ADPR and then ADPR, which is a substrate for adenosine
formation. Bone marrow plasma aspirates contain elevated levels of adenosine, which
increase as the disease progresses [20]. Adenosine leads to tumor growth and skews the
immune cells towards an immunosuppressive phenotype. It binds purinergic cell recep-
tors that transduce autocrine and paracrine signals, which can inhibit effector T cells, NK
cells, and dendritic cells and conversely stimulate the upregulation of regulatory T cells
and myeloid-derived stromal cells so as to hinder an immune-mediated response against
the tumor [55,56].

Using a recombinant CD38 protein, van de Donk et al. showed that the anti-CD38
monoclonal antibody Dara can reverse the tumor-promoting activities of the CD38 ectoen-
zyme by reducing ADPR cyclase activity and inducing cADPR hydrolase activity, thus
increasing NAD+ and ADPR levels and decreasing cADPR levels [43].

3.1.3. CD38 Expression on Immune Suppressor Cells Promote a Pro-Tumoral MM Niche

Studies in patients with multiple myeloma have found that CD38+ T regulatory (Treg)
cells are more suppressive than CD38— Treg cells, consisting of a novel subpopulation of
Tregs (CD41CD251CD127dim), which demonstrated superior autologous T-cell inhibitory
capacities [44,57]. Isatuximab was able to preferentially suppress proliferation and cy-
tokine production in Tregs and restore proliferation and function of T effector cells. It also
augments MM cell lysis by CD8+ T and natural killer cells [58].

CD38 is also expressed on a large subset of other immune suppressor cells, such as
regulatory B cells and myeloid-derived suppressor cells. The presence of these cells in
the tumor microenvironment contribute to tumor growth, immune evasion, angiogenesis,
metastasis, and production of suppressive cytokines, which can be reversed upon addition
of daratumumab. Daratumumab binding to CD38 on the immune-suppressive cells leads
to the depletion of these populations and subsequent expansion of CD4+ T helper cells,
CD8+ cytotoxic T cells, and increases T cell clonality [44]. Patients also showed increased
T-cell responses against pre-existing viral and alloantigens.

3.2. CD38 in Chronic Lymphocytic Leukemia

Chronic lymphocytic leukemia (CLL) is a highly heterogenous disease, which is char-
acterized by a dynamic balance between the atypical accumulation of indolent lymphocytes
in the periphery and proliferation stimuli in the bone marrow, which determines disease
course and aggressiveness. The most favorable conditions for expansion of CLL clones exist
in discrete anatomic sites, such as proliferation centers in the lymph node and bone marrow,
where leukemic cells come into contact with accessory cells and the suitable array of cy-
tokines and chemokines. Identification of markers that may correlate with more aggressive
CLL cell subsets is, therefore, crucial and, in this context, increase in CD38 expression
through the course of the disease has been regarded as a potential marker for the transition
to a more aggressive phenotype [59-61]. CD38 is expressed by approximately 27-46% of
patients [62,63]. In CLL, CD38 expression is a negative prognostic indicator associated with
inferior CLL outcome [62,63]. Patients who are CD38-positive were characterized with
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an unfavorable clinical course with a more advanced disease stage, poor responsiveness
to chemotherapy, and shorter survival. Patients with CD38(+) samples have significantly
aggressive disease regardless of their clinical stage, in contrast to the CD38-negative group
who required minimal treatment and had prolonged survival.

3.2.1. CD38 Promotes Migration towards Proliferative Niches through Adhesion and
Cytokine Production

In vivo, CD38 appears to act as a molecular compass that directs leukemic cells to
specialized niches based on observations that the number of CD38 molecules expressed
in BM and LN is higher than in circulating lymphocytes. Homing of chronic lymphocytic
leukemia (CLL) cells to sites favoring growth, a critical step in disease progression, is
principally coordinated by the CXCL12/CXCR4 axis. Through potential colocalization with
CXCR4 on the membrane, CD38-positive CLL cells demonstrate heightened chemotaxis to
CXCL12 signaling [19].

A direct role for CD38 in enhancing CD49d-mediated adhesion processes in CLL
has also been elucidated. The proposed model for a prosurvival circuitry operating in
CD38+CD49d+ CLL revolves around CD38/CD31 inducing the release of CCL3 and CCL4
by CLL cells. These chemokines attract CD68+ myeloid cells expressing the CCL3 receptor,
which then release TNFa and other cytokines, thereby increasing interactions with VCAM-
1/CD49d, which promotes survival of CD49d-expressing CLL cells [64,65]. Additionally,
CD38 physically colocalizes with CD49d to Vav-1, which potentiates its phosphorylation
and, thus, the activation of the integrin signaling pathway, which facilitates homing. Lastly,
Mele, et al. recently demonstrated that CD38-expressing CLL cells exhibit a calcium-
mediated Rapl GTPase activation [66], which is known to have a crucial role in leukocyte
trafficking and homing.

3.2.2. CD38 Directly Stimulates Growth and Survival Signals

CD38 has also been shown to colocalize with CD19 and CD81 in membrane lipid raft,
which facilitates the transduction of BCR signals [67]. Gene expression profiling of CD38+
and CD38— members of the same clone highlighted elevated levels of VEGF and Mcl-1 in
CD38+ cells, conferring a survival advantage potentially from CD38-mediated interactions
with the tumor microenvironment [65].

3.2.3. CD38+ CLL Cells Exhibit Intrinsic Molecular Characteristics in Favor of
Promoting Oncogenesis

Other characteristics of the CD38+ and CD38— CLL subgroups are variable telomere
lengths, telomerase level, and expression of COX-2 changes over time [68,69]. CD38/CD31
interaction results in a genetic signature, with proliferation and migration emerging as
the main elements characterizing this receptor/ligand system. In vitro activation through
CD38 drives CLL proliferation and chemotaxis via a signaling pathway that includes ZAP-
70 and ERK1/2. Finally, CD38 is under a polymorphic transcriptional control after external
signals. Consequently, CD38 appears to be a global molecular bridge to the environment,
promoting survival/proliferation over apoptosis.

3.2.4. CD38 Expression on Immune Suppressor Cells Promote a Pro-Tumoral CLL Niche

Patients with CLL exhibit profound immunosuppression, which can be attributed
to the presence of a large population of Treg cells and Breg, such as CLL cells. High
CD38 expression on these cells results in ablation of cells, with CD38-targeted therapeutics
resulting in repopulation of the immune milieu with immune-reactive cells which promote
an antitumor response [62].

3.3. CD38 in Aggressive Non-Hodgkin Lymphomas

Mantle cell lymphoma (MCL) is a rare type of aggressive non-Hodgkin lymphoma
(NHL) [70]. Despite an intensive treatment based on strong chemotherapy regimens and
autologous stem cell transplantation, virtually all patients eventually relapse [71]. CD38
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expression is found on 90% of the cases of MCL and correlates with nodal involvement and
poorer prognosis [72]. Additionally, CD38 expression appears to mediate some resistance to
Bortezomib [73]. Altogether, in MCL, high CD38 expression promotes clonal B-cell accumu-
lation and may, therefore, represent an attractive therapeutic target in this disease. Diffused
large B cell lymphoma (DLBCL) is the most common NHL. Approximately 40% of patients
do not respond to first-line therapy and develop a refractory course [74,75]. CD38 expres-
sion is abnormally high in DLBCL and can be detected in 80% of the cases [22]. Expression
of CD38 on the surface appears to correlate with aggressiveness of the tumor and, in de
novo DLBCL, high CD38 expression is associated with significantly worse progression-free
survival and poor overall survival [13,76]. There have been no oncogenic mechanisms
directly attributed to CD38 in DLBCL so far; however, its expression on aggressive variants
of DLBCL suggests that it may support a proliferative phenotype. CD38 appears to be ro-
bustly detected in the lymphocytic infiltrate from the tumor microenvironment of classical
Hodgkin lymphoma, reminiscent of powerful immunosuppressive roles it mediates in the
bone marrow niche of MM [77].

3.4. CD38 in T and NK Lymphomas

T and natural killer (NK) lymphomas are a group of lymphoid tumors that are highly
malignant and generally associated with poorer outcomes. In peripheral T-cell lymphomas
and extranodal NK/T-cell lymphoma (ENKTL), prognosis remains relatively dismal, with
a 5-year overall survival rate of approximately 30 to 50% [78]. Variable levels of CD38
expression have been detected in approximately 80% of angioimmunoblastic T-cell lym-
phoma (AITL) and 60% of peripheral T-cell lymphoma, not otherwise (PTCL-NOS), thus
providing a rationale for novel treatment with anti-CD38 antibodies [79]. CD38 is also
expressed by the majority of ENKTL nasal type, a rare and aggressive subtype of mature
T- and NK lymphomas commonly associated with maturity and Epstein Barr virus (EBV)
infection [14,80]. CD38 expression was shown to associate with poorer prognosis [80]. In-
deed, subsequent reports have demonstrated that, for the subset of patients which express
high levels of CD38, daratumumab treatment is able to inhibit NKTL survival and growth
in both the cell lines and in a cancer xenograft model [14]. It clearly highlights that the
ratio of CD38: complement inhibitory protein is an important predictor of susceptibility
to daratumumab treatment and not absolute CD38 levels alone. Phase 2 clinical trials of
daratumumab monotherapy in relapsed/refractory NKTL demonstrated that it was well
tolerated and achieved an overall response rate of 25.0% [21].

Table 1. Schematic overview of oncogenic mechanisms mediated by CD38 in different blood malignancies.

CD38 Function

How This Is Hijacked to Promote Cancer Type of Blood Malignancy

Ecto-enzymatic NADase activity

Elevated levels of adenosine suppress activity of effector
immune cells and stimulate activity of regulatory T cells and MM, DLBCL, T-ALL
myeloid-derived suppressor cells

Increased enzymatic activity increases production of cADPR
and NAADP calcium messengers, which promote survival, MM, CLL, AML
trafficking, and homing

Adhesion

Formation of nanotubes to mediate mitochondrial transfer from

BMSC to promote oxidative phosphorylation MM

Cell surface receptor/antigen

Increased expression on immune suppressor cells, which
intensifies cell suppressive phenotype and promotes formation MM, CLL
of immune-suppressive tumor niches

Chemokine-mediated migration towards proliferative niches CLL, AML
Colocalization with other receptors to directly transduce CLL
survival signaling
Biomarker for poor prognosis CLL, MCL, DLBCL, PTCL, NKTL

MM, multiple myeloma; DLBCL, diffuse large B-cell lymphoma; T-ALL, T-cell acute lymphoblastic leukemia; CLL,
chronic lymphocytic leukemia; AML, acute myeloid leukemia; MCL, mantle cell lymphoma; PTCL, peripheral
T-cell lymphoma; NKTL, natural killer T-cell lymphoma.
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3.5. CD38 in Acute Myeloid Leukemia (AML) and T cell Acute Lymphoblastic Leukemia (T-ALL)

AML is the most common form of acute leukemia in adults. CD38 expression assessed
on 37 AML and 12 T-ALL patients highlighted that CD38 expression is heterogenous in
AML, more uniform in T-ALL, and that expression did not correlate with progressive
disease [81]. Another in-depth analysis of CD38 expression in a large cohort of T-ALL at
diagnosis during chemotherapy and at relapse found that CD38 expression was positive in
97.9% of diagnosed patients, 88.7% patients with minimal residual disease (MRD) and 82.9%
relapsed samples [82]. No significant difference was noted in CD38 expression between
pediatric versus adult or between diagnostic versus MRD and diagnostic versus relapsed
paired samples. CD38 is robustly expressed in T-ALL blasts despite exposure to cytotoxic
chemotherapy, making it a potentially effective target for anti-CD38-monoclonal therapy.
The role of CD38 in these diseases, however, is still not fully understood. Preclinical
studies have highlighted the potential efficacy for daratumumab in these diseases [15,83].
Findings from one of the studies propose that, mechanistically, daratumumab efficacy can
be attributed to ADCP and the disruption of CD38-mediated trafficking and migration
of AML. Daratumumab treatment in an AML xenograft model impaired the homing of
AML cells to the bone marrow and spleen by three- to fivefold. It was also able to reduce
the capacity of AML transendothelial migration by 50% [83]. In a more recent study,
combining daratumumab with a CD47-blocking antibody substantially prolonged survival
as compared to single treatments, and it was hypothesized that the CD47 blockade was able
to overcome the immunosuppressive effects on ADCP mediated by dysregulated CD38
expression in T-ALL [84].

3.6. Clinical Studies of CD38-Targeting Antibodies in Hematological Malignancies (Table 2)

CD38-targeting antibodies are transforming the treatment landscape, particularly for
multiple myeloma patients, having demonstrated profound anticancer efficacy coupled
with a relatively manageable toxicity profile. Currently, two anti-CD38 monoclonal anti-
bodies, daratumumab and isatuximab, are approved for MM in the clinic [85-88], whilst
a third, MOR 202, is presently being evaluated in clinical trials [11]. Studies show that
daratumumab stimulates stronger induction of Fc-dependent immune effector mechanisms
CDC and ADCP as compared to isatuximab; however, isatuximab is unique in its ability to
directly induce apoptosis in the cancer cells and inhibit tumor-promoting enzyme-mediated
activities of CD38 due to direct binding to its ecto-enzymatic site [89].

Substantial clinical improvement has been observed, especially with the combination
of current myeloma therapeutic regimens and CD38-targeting antibodies. The addition of
either daratumumab or isatuximab to the backbone of immunomodulatory drugs (lenalido-
mide and pomalidomide) plus dexamethasone significantly improved progression-free sur-
vival in phase 3 POLLUX, APOLLO, and ICARIA-MM clinical trials, respectively [9,86,87].
Marked patient responses were also observed, including in patients 65 years and older,
when daratumumab or isatuximab was added to the backbone cocktail of proteasome
inhibitor (bortezomib and carfilzomib) and dexamethasone in CASTOR, CANDOR, and
IKEMA clinical trials [5,10,90,91].

In other hematological malignancies, the clinical evaluation of CD38-targeting anti-
bodies is still in its early stages. Treatment with daratumumab as a single agent in relapsed
refractory NKTL patients confirmed no new safety concerns and 8 out of 32 patients
demonstrated a partial response [21]. However, none of the responders achieved complete
response and duration of response was short, with a median of 55 days. Currently, there is
an active phase 2 trial studying the combination of isatuximab and cemiplimab (PD1 in-
hibitor) in this malignancy (NCT04763616 (ICING)). Blocking PD-L1, which is expressed on
the tumor cells of ENKTL and ANKL patients, can restore immune effector function in the
tumor microenvironment and may produce a synergistic effect through the augmentation
of the immune-mediated anticancer response triggered by Isatixumab.

Daratumumab monotherapy in the three-arm CARINA trial against relapsed /refractory
mantle cell lymphoma, diffuse large B -cell lymphoma, and follicular lymphoma was termi-
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nated at Stage 1 of the study [22]. This was due to the failure to meet futility thresholds,
which were defined by overall response rate (ORR) of 50% and 30% in FL and DLBCL,
respectively. Similarly, the phase 2 study of isatuximab monotherapy in refractory T-acute
lymphoblastic leukemia (T-ALL) or T-lymphoblastic lymphoma (T-LBL) displayed low
efficacy as a single agent and was subsequently terminated [92].

Table 2. Key clinical studies of CD38-targeting antibodies in hematological malignancies.

Tumor Type Study Title Phase Drug Regimen Median PFS Ref
NCT02076009, POLLUX 3 Dara-Len-Dex vs. Len-Dex 44.5 vs. 17.5 months [85,86]

NCTO03180736, APOLLO 3 Dara-Pom-Dex vs. Pom-Dex 12.4 vs. 6.9 months [87]
NCT02136134, CASTOR 3 Dara-Bort-Dex vs. Bort-Dex 60.7 vs. 26.9 months [5,93]

NCT03158688, CANDOR 3 Dara-Carfil-Dex vs. Carfil-Dex 28.6 vs. 15.2 months [91]

MM NCTO01749969 1b Isa-Len-Dex 8.5 months [88]

NCT02990338, ICARIA-MM 3 Isa-Pom-Dex vs. Pom-Dex 11.5 vs. 6.5 months [9]

NCT03275285, IKEMA 3 Isa-Carfilz-Dex vs. Carfilz-Dex 35.7 vs. 19.2 months [10]

NCTO01421186 1b/2a MOR202-Len-Dex not reached after 24 months [11]

NCTO01421186 1b/2a MOR202-Pom-Dex vs. Mor Dex 17.5 vs. 8.4 months [11]

NKTL NCT02927925 2 Dara single agent 55 days [21]

Terminated as futility thresholds
MCL, DLBCL, FL NCT02413489, CARINA 2 Dara single agent were not reached (FL ORR 50%), [22]
(DLBCL ORR 30%)
Terminated; unsatisfactory
T ALL, TLBL NCT02999633 2 Isa single agent benefit/risk ratio, 11/14 developed [92]

progressive disease as best response.

Dara, daratumumab; Len, lenalidomide; Dex, dexamethasone; Pom, pomalidomide; Bort, bortezomib; Isa,
isatuximab, Carfilz. Carfilzomib PFS, progression-free survival; ORR, overall response rate; TLBL, T-cell
lymphoblastic lymphoma.

A total of 11 out of 14 patients developed progressive disease, which was ultimately
the best response observed. Combination-based regimens containing CD38 antibodies are
currently the subject of ongoing clinical trials in AML (NCT03537599), ALL (NCT03860844),
and CLL (NCT04230304). In CLL, the phase 2 trial seeks to characterize the potential
clinical efficacy of daratumumab in combination with ibrutinib, a BTK kinase which has
become an established treatment for the relapsed /refractory disease. Analogous to the
triplet drug combination success in MM, clinical evaluation of CD38 monoclonal antibodies
in combination with drugs that rationally target key oncogenic pathways in that subtype
of cancer may pave the way forward for improving patient response in hematological
malignancies or daratumumab refractory patients.

4. Molecular Strategies to Enhance CD38 Expression for More Effective Targeting by
Monoclonal Antibodies

Extensive studies in hematological malignancies highlight that, beyond simply a sur-
face biomarker, CD38 transduces pathways which can promote tumor survival, expansion,
and metastasis [18,66,68]. Thus, CD38 is an attractive and novel target, especially in highly
aggressive hematologic malignancies for which novel treatment modalities are scarce.
However, early-phase clinical trials with CD38 antibodies in some of these malignancies
(Table 2) have only demonstrated limited efficacy so far.

Considerable intra-tumoral heterogeneity in CD38 expression may be one of the key
factors underlying the limited clinical efficacy of single-agent CD38 antibody treatment in
some blood malignancies. In multiple myeloma, CD38 expression is typically high and
homogenous, thereby supporting a sustainable therapeutic response [32]. CD38 expression,
however, is more variable in CLL, where CD38 positivity is defined as >20% expression [94].
In the phase 2 daratumumab trial in NKTL, half of the patient cohort exhibited less than
50% CD38 expression [21]. Thus, administration of CD38 monoclonal antibodies may
selectively deplete CD38-positive cells, possibly enriching the CD38-negative population,
which subsequently emerges as treatment-resistant clones. In the phase 2 trial of isatuximab
in T-ALL and T-LBL, CD38 expression was uniformly high across leukemic blasts at all
stages of the disease. This is, however, not as high as levels observed in MM, which suggests
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that achieving a minimal threshold for CD38 expression may reverse poor outcomes in
this study [92].

Thus, to overcome these limiting factors, incorporation of strategies that amplify CD38
surface expression may allow us to fully harness the antitumor potential of CD38 antibodies.
In the following section, we will describe molecular modulators of CD38 expression and
discuss how these can be exploited to upregulate CD38 levels to enhance therapeutic
efficacies (Figure 3).
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Figure 3. Molecular strategies to enhance CD38 expression and overall antitumor efficacy of Dara-
tumumab. A. Transcriptional upregulation of the CD38 mRNA and subsequent protein expression
can be stimulated by ATRA, HDAC inhibitors (panobinostat and ricolinostat), STAT3 inhibitor (rux-
olitinib) and immunomodulatory drugs (pomalidomide and lenalidomide). B. CD38 mRNA can be
degraded by miR-26a and miR-140-3p through direct binding to the 3’UTR or indirectly through the
cytokine mediated mechanisms. These miRs can be targeted through antisense oligonucleotides to
prevent CD38 mRNA degradation. C. Optimization of CD38 availability on the cell surface membrane
by modulating processes involved in extracellular vesicle formation or trogocytosis.

4.1. The Human CD38 Gene

Briefly, the human CD38 is located on the short arm of chromosome 4 (4p15) and
exhibits several distinctive features. First, the gene is relatively large, with >98% of the
genetic material consisting of introns. The first intron of the CD38 gene contains a retinoic
acid response element (RARE), which can be bound by a heterodimer composed of RA
receptor and retinoid X receptor in vitro [95]. Indeed, induction of the transcriptional
upregulation of CD38 through retinoids have been well described. The promoter region
of CD38 is atypical, lacking a canonical TATA box but containing a CpG island, thereby
suggesting susceptibility to epigenetic modulators, which has been increasingly observed
in cancer studies [96]. The methylation of this CpG island on the CD38 promoter has
been shown to negatively correlate with surface expression in CLL patients [97]. CD38
expression in PBMCs is under the pressure of constant and intense regulatory activity.
Retinoids, vitamin D, and a variety of cytokines are the most known inducers [32].
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4.2. Strategies to Enhance Transcriptional Activation of CD38 Gene
4.2.1. All Trans Retinoic Acid (ATRA)

The ATRA molecule binds to nuclear retinoic acid receptor (RAR), which then mediates
upregulation of CD38 mRNA expression through RARE [98,99], subsequently leading to
enhanced CD38 surface protein expression. Thus, ATRA can be utilized to boost CD38
levels, particularly in patients with low CD38 expression to enhance therapeutic efficacy of
CD38 monoclonal antibodies.

Preclinical evaluation of this strategy has confirmed that ATRA can significantly en-
hance CD38 expression and trigger overall amplification of Fc-receptor-dependent effector
mechanisms ADCC and CDC in a variety of cancer models [14,100]. Treatment of MM cell
lines with Daratumumab, after ATRA exposure, improved ADCC and CDC lysis, which
correlated with the upregulation of CD38 in both MM cell lines and patient samples. It is
interesting to note that the increase in CDC lysis is significantly higher than the increase
in ADCC, possibly due to the downregulation of the complement inhibitory proteins via
ATRA exposure [100]. Van de Donk and his colleagues further evaluated the efficacy and
safety of daratumumab combined with ATRA in daratumumab refractory MM patients.
Although 66% of patients achieved stable disease, the primary endpoint was not met, with
an overall response rate of 5% [101]. Although ATRA increased CD38 expression, limited
efficacy was observed, potentially because this effect was transient and not able to restore
CD38 expression to baseline levels.

This combination has yet to be evaluated clinically for other blood cancers. Preclin-
ical studies have shown that ATRA-mediated CD38 upregulation can also enhance the
immunomodulatory effects mediated by CD38 in AML and CML via reversal of tumor
migration and NAD+ mediated resistance mechanisms, respectively [83,102].

4.2.2. HDAC Inhibitors

Another possible way to upregulate CD38 expression is via the use of histone deacety-
lase inhibitor, Panobinostat, although the mechanism of upregulation is not quite clear.
Panobinostat has been shown to increase CD38 expression in primary MM cells and MM
cell lines [103]. Upon stopping treatment, CD38 levels reverted back to baseline level and
then, upon re-exposure of Panobinostat, CD38 upregulation returned to levels similar
to that of the primary treatment. Moreover, Daratumumab treatment after Panobinostat
pretreatment led to higher ADCC in both MM cell lines and primary cells [103]. Interest-
ingly, this upregulation in CD38 expression levels was only observed in myeloma cells,
not in T cells, and also lymphoma cell lines. Apart from CD38 upregulation, Panobinostat
exposure has led to several changes in transcriptional profile of myeloma cells, which
may aid in overcoming drug resistance in MM, making it a promising candidate for drug
combination treatments. It was observed to inhibit cell cycle progression and associated
with upregulation of p21, p53, and p57. It also promotes apoptosome formation along with
Apaf-1 upregulation and downregulation of antiapoptotic proteins, such as BCL2 and BCL
XL [104]. Panobinostat also induces histone H4 acetylation, which may lead to activation of
tumor suppressor genes. On top of that, it has been associated with activation of caspases,
which eventually lead to apoptotic cell death. In vitro studies have also shown decreased
viability of MM cell lines when used in combination with Melphalan or Doxorubicin [105].

Furthermore, there has been a recent report highlighting a basal role for HDAC6-
mediated promoter deacetylation in regulating CD38 gene expression levels in MM [106].
Addition of Ricolinostat to patient MM cells resulted in the upregulation of CD38 mRNA
transcripts and subsequent enhancement of CD38 surface expression. Chromatin im-
munoprecipitation assays performed after Ricolinostat treatment confirmed an increased
acetylation of H3K27 at the CD38 promoter and, hence, the activation of the gene. Similar
to Panobinostat, Ricolinostat only enhances CD38 expression in MM and not T or NK cells,
thus evading any off-target augmentation in tumor suppression by CD38 T-regulatory
populations. HDAC inhibitors have been shown to suppress myeloid-derived suppressor
cells, another potent immune suppressive cell population [107], thereby underscoring
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the potentially impactful therapeutic effect induced by the combination of Ricolinostat
and daratumumab.

4.2.3. STAT 3 Inhibitors

The bone marrow niche in MM is an integral component of the pro-tumoral microen-
vironment sustaining and advancing the cancer. Bone marrow stromal factors modulating
the expression of CD38 and ADCC effector mechanisms of daratumumab were studied in
depth and this led to the discovery of the converse roles mediated by the IL6-induced JAK
STAT pathway in MM [108]. JAK-STATS3 signaling was found to suppress CD38 expression,
whereas the JAK-STAT1 pathway mediated CD38 upregulation. This was further corrobo-
rated with the inverse correlation between STAT 3 and CD38 expression in MM patient cells.
Ruxolitinib a Jak1/2 selective inhibitor, which inhibits the phosphorylation of both STAT3
and STAT1 overall mediated a transcriptional upregulation of the CD38 mRNA transcript
in some patients. Its effect is less consistent than ATRA and this may be attributable to the
concomitant inhibition of STAT1, which is a promoter of CD38 expression. Nonetheless,
Ruxolitinib can still rescue the BM-supernatant-mediated loss of CD38 surface expression
and suppression of ADCC on patient MM cells [108]. Selective STAT3 inhibitors or STAT1
activators are potential candidates, which can be evaluated in the future in combination
with daratumumab treatment.

4.2.4. Immunomodulatory Imide Drugs (IMiDs)

First-in-class immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide
currently form the cornerstone of MM therapy. The promising efficacy of IMiDs and CD38-
targeting therapeutics was first highlighted in 2016 by the phase 3 POLLUX clinical trial in
relapsed refractory MM patients [85]. This study demonstrated a significant superior over-
all response rate (93% vs. 76%) and progression-free survival (median 44.5 vs. 17.5 months)
in patients treated with a combination of daratumumab-lenalidomide-dexamethasone
as compared to lenalidomide and dexamethasone only [85,86]. One of the mechanisms
underlying this synergistic efficacy appears to be IMiD-mediated upregulation of CD38 ex-
pression. Both lenalidomide and pomalidomide have been shown to stimulate the increase
in CD38 surface expression, with the latter demonstrating up to threefold upregulation at
72 h in vitro [109-111]. This appears to be triggered by the IMiD-mediated degradation of
Ikaros and Aiolos. In MM, Ikaros interacts with CHD4, a component of the nucleosome re-
modeling deacetylase complex (NurD), to repress CD38 mRNA expression [112]. Depletion
of Ikaros and Aiolos via Crispr-Cas9 knockout or IMiD treatment releases this suppression
and stimulates transcriptional upregulation of CD38 mRNA, which subsequently primes
the cells for enhanced daratumumab-induced ADCC [112]. This elegantly provides a
cell intrinsic mechanism explaining the clinically favorable outcomes for the treatment
combination of IMiDs and daratumumab.

4.3. Strategies Regulating the Degradation of CD38 mRNA

Another interesting component of CD38 regulation that has emerged recently is the
post-transcriptional regulation of CD38 expression by microRNAs. MicroRNAs are a
family of short noncoding RNAs that generally promote mRNA decay and degradation via
binding to the 3’ untranslated regions, thereby resulting in gene silencing. In human cancers,
miRNAs may function as either oncogenes or tumor suppressors to regulate pathways
that promote proliferation, invasion, and metastasis [113]. MiRNAs are also increasingly
established as potential biomarkers for human cancer diagnosis and prognosis, as well
as therapeutic targets or tools in the clinic. Little is known about the posttranscriptional
regulation of CD38 mRNA. Here, we describe two studies identifying miRNA candidates
that can modulate CD38 expression.

MiR-26a expression was found to be significantly downregulated in the plasma cells of
multiple myeloma patients, as compared to healthy donors. The direct binding of miR-26a
to the 3’ UTR of the CD38 mRNA inhibited the expression of CD38 protein in MM cell
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lines [114]. MiR-26a-mediated downregulation of CD38 expression was able to trigger
apoptosis. This was further validated in an MM xenograft model where miR-26a mimics
not only inhibited CD38 expression, but also reduced proliferation and induced caspase-3
cleavage in vivo. It will be interesting to evaluate the levels of mir-26a in patients along the
course of the daratumumab treatment and to study if CD38 expression can be optimized
through the utilization of miR-26a mimics or antisense oligonucleotides. The modulation
of CD38 expression levels to achieve potentially optimal levels may resensitize resistant
cells to daratumumab treatment, thereby deriving some clinical benefit.
miRNA-mediated regulation of CD38 has also been reported in human airway smooth
muscle cells. Here, TNF-alpha-induced miR-140-3p modulation of CD38 expression was
mediated directly through binding to the CD38 3’ UTR and indirectly through cytokine
mechanisms involving activation of p38 MAPK and the transcription factor NF-kB [115].

4.4. Strategies to Optimize CD38 Antigen Availability on the Cell Membrane

Finally, at the membrane protein surface expression level, the availability of the CD38
antigen to mediate anticancer mechanisms stimulated by the CD38 monoclonal antibodies
has been shown to be a limiting factor over time. Daratumumab infusion induces a quick
and consistent reduction in CD38 on MM cells, with up to an estimated 90% reduction at
the first infusion [116,117]. There are several proposed mechanisms leading to this. Firstly,
daratumumab treatment selectively lyses high CD38-expressing MM cells via ADCC and
CDC, thereby enriching the population of low CD38-expressing MM cells and facilitating its
clonal expansion [118]. Secondly, binding of daratumumab can lead to the internalization
of the protein through endocytosis [119,120]. Thirdly, the CD38-daratumumab complex is
shown to be transferred from MM cells to monocytes and granulocytes in a process known
as trogocytosis, even with the absence of phagocytosis of tumor cells [116]. Trogocytosis
is characterized by the process whereby chelated ligands on the donor cell, along with
sections of its plasma membrane being pinched off and taken up by the acceptor cell [121].
Lastly, CD38 surface protein depletion may be a result of the redistribution of CD38
molecules upon daratumumab binding leading to the formation of polar aggregates, which
are subsequently released as microvesicles (MV) [122,123]. CD38 expression on these
microvesicles is colocalized with CD73, CD39, and CD203, which functionally points to
potential microvesicle-mediated production of adenosine through this complex and the
maintenance of a tolerogenic environment [123]. The microvesicles also carry PDL 1 and
CD55 and CD59. In this context, the loss of CD38 expression to the MVs seems to be a way
for the cancer to overcome CD38 therapeutic effects.

It is interesting to note that there was also a study published recently describing the
involvement of extracellular vesicles (EV) in daratumumab-resistant models, which have
been exposed to sequentially increasing concentrations of daratumumab. In RNA sequenc-
ing analyses made, there was an enrichment for genes involved in exosome biogenesis and
secretion in both cell line and mouse-derived daratumumab-resistant models of NKTL [124].
This was further validated in additional Dara refractory models of myeloma and T-ALL,
which displayed increased concentration of secreted exosome particles and expression of
exosome markers in the media [124]. Inhibition of these isogenic daratumumab-sensitive
and -resistant cell line pairs with inhibitors of exosome secretion demonstrated a selec-
tive and more effective suppression of tumor cell viability in daratumumab-resistant
than -sensitive cell lines, suggesting an addiction to the exosome biogenesis pathway
for survival. These studies suggest that the role of extracellular vesicles in mediating
resistance to daratumumab may be mitigated by inhibitors of EV formation and that this
line of investigation may yield alternative novel combinations to enhance the efficacy of
daratumumab treatment.

5. Conclusions and Future Directions

A lot of studies are focused on the optimization of CD38-targeting antibodies in
multiple myeloma, as well as the elucidation of the detailed mechanism of action from
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the point of patient exposure to the development of a refractory response, and rightly so.
Mechanistic insights to antitumoral mechanisms mediated by CD38 antibodies in multiple
myeloma are a model to be learnt from and, most importantly, applied and extended
to other CD38-dependent malignancies or diseases. The tumorigenic roles of CD38 in
myeloma and other hematologic malignancies were highlighted in this review so as to gain
a better insight as to the various determinants of response that can be further targeted to
enhance CD38-directed antitumor mechanisms.

Apart from amplifying CD38 surface expression, there are other factors that can en-
hance CD38-targeting therapies. For example, the synergistic combination of daratumumab
and IMiDs can also trigger immune stimulatory activities, which potentiates the cytotoxic
effects of T and NK cells [125] on tumor cells, thereby promoting enhanced ADCC and
T-cell lysis [126,127]. In the presence of IMiDs, isatuximab also induces enhanced direct
cell apoptosis, augmented PBMC-mediated ADCC in MM cell lines and patient samples,
and CD38 expression on Tregs was decreased, thus affording a further relief from the
immunosuppressive tumor niche [7]. Interestingly, patients who were initially refractory to
an IMiD drug in a prior line of therapy was resensitized to lenalidomide or pomalidomide
after starting on daratumumab [128]. Blocking the PD-1/PDL-1 axis to prevent tumor
evasion is also another combination that is currently being explored with daratumumab.
A preclinical study conducted to measure the efficacy of Daratumumab and anti-PD-1
(Nivolumab) combination treatment on a mouse tumor model demonstrated prolonged
survival and enhanced tumor regression [129].

The clinical success of CD38 monoclonal antibodies in MM has stimulated the develop-
ment of cytotoxic T-cell-based therapeutics, such as CD38 chimeric antigen receptor (CAR)
T cells and CD38 (bispecific T-cell engager) BiTE antibodies. BCMA and CD19 CAR T
treatment has been approved in DLBCL, ALL, and MM, thereby highlighting the potential
clinical utility of a CD38 CAR T treatment [130,131]. The CD38 CAR T stably expresses a
single chain fragment variant that recognizes the CD38 antigen and subsequently triggers
cytotoxic T-cell responses through the activating of cytoplasmic domain upon binding.
Preclinical evaluation of CD38 CAR T in MM, AML, NKTL, and MCL suggests that this can
effectively suppress CD38hi-expressing subsets of the cancer [130]. Combination of CD38
CAR T with CD38 transcriptional activators, such as ATRA, further improve therapeutic
efficacy in mouse xenografts, emphasizing the importance of optimal induction of CD38
expression in cancer cells. Designing tandem dual CAR Ts, which targets multiple antigens
simultaneously, can increase specificity of effector cells and potentially circumvent to anti-
gen escape [132]. Clinical trials are ongoing to evaluate the single dose escalation safety
and efficacy outcomes of CD38 CAR-T-cell therapy in relapsed or refractory MM patients
(NCT03464916 and NCT03767751). In a phase 1/2 trial for CD38 CAR T in AML, the median
leukemia-free survival (LFS) time was 6.4 months with manageable side effects [133].

CD38 bispecific T-cell-engaging (BiTE) antibodies belong to a new class of immunother-
apeutic agents, which can mediate dual specific binding to the CD38 and the CD3e chain
on T cells, thereby activating T cells and recruiting them in proximity of target cancer cells
to efficiently induce T-cell-mediated cytotoxicity. One such antibody, Bi38-3, can suppress
MM growth both in vitro and in vivo without reducing surface expression of CD38 [134].
T-cell-mediated cytotoxic responses are only induced in CD38hi tumor cells with limited
toxicity against cells expressing intermediate levels of CD38. This suggests yet again that
CD38 surface expression may present as the biggest limiting factor for CD38 therapeutic
efficacy in blood cancers with heterogenous expression of CD38.

Strategies enhancing the transcriptional, translational, or protein surface regulation
of CD38 should be seriously evaluated. In light of recent findings, unique and novel
treatment combinations incorporating modulators of CD38 expression, including HDAC6
inhibitors, STAT 3/1 modulators, miRNA mimics, or antisense oligonucleotides, as well as
agents regulating formation and secretion of extracellular vesicles, should be extensively
considered to be investigated in combination with CD38 antibodies.
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Additionally, several recent reviews have highlighted that, despite excellent treatment
outcomes, there remains a subset of patients who eventually develop resistance to dara-
tumumab [135,136]. Here, CD38 expression levels may have less impact and strategies
that may potentially overcome refractoriness to daratumumab include treatments which
can reverse NK cell depletion, for example, through the transfusion of ex vivo expanded
NK cells [118,137,138], countering the increased expression of complement inhibitory pro-
teins during disease progression with CD55- or CD59-blocking antibodies [117,139] and
potentially utilizing anti-CD38 antibody-drug conjugates to enhance the cytotoxic load to
the cells [118,140].
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