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Simple Summary: Skin cancer is the most common malignancy in humans. The goal of this study
was to design, implement, and clinically test a novel handheld optical polarization imaging (OPI)
system for rapid and noninvasive detection of basal cell carcinoma (BCC) margins. The device is
compact, lightweight, and can be operated with minimal training. To validate the handheld imager,
10 subjects with biopsy-confirmed BCC were imaged prior to Mohs surgery. The optical images
were processed using a spectral encoding method to increase the accuracy of the tumor boundary
delineation. Preoperative margin assessment results from the OPI were compared to the surgeon’s
clinical evaluation and to the gold standard of histopathology. Our findings indicate that OPI may be
a valuable tool for optimizing surgical treatment of skin cancer.

Abstract: Background: Accurate removal of basal cell carcinoma (BCC) is challenging due to the
subtle contrast between cancerous and normal skin. A method aiding with preoperative delineation
of BCC margins would be valuable. The aim of this study was to implement and clinically validate a
novel handheld optical polarization imaging (OPI) device for rapid, noninvasive, in vivo assessment
of skin cancer margins. Methods: The handheld imager was designed, built, and tested. For
clinical validation, 10 subjects with biopsy-confirmed BCC were imaged. Presumable cancer margins
were marked by the study surgeon. The optical images were spectrally encoded to mitigate the
impact of endogenous skin chromophores. The results of OPI and of the surgeon’s preoperative
visual assessment were compared to clinical intraoperative histopathology. Results: As compared
to the previous prototype, the handheld imager incorporates automated image processing and
has 10-times shorter acquisition times. It is twice as light and provides twice as large a field of view.
Clinical validation demonstrated that margin assessments using OPI were more accurate than visual
assessment by the surgeon. The images were in good correlation with histology in 9 out of 10 cases.
Conclusions: Handheld OPI could improve the outcomes of skin cancer treatments without impairing
clinical workflows.

Keywords: nonmelanoma skin cancer; basal cell carcinoma; optical imaging; polarization

1. Introduction

Basal cell carcinoma (BCC) is the most common type of cancer [1]. This year in the
United States about 3.6 million new BCC lesions will be treated in more than 2 million
people [2]. Epidemiological data project increasing incidence of the disease worldwide [3].
At present, several treatment options for BCC including curettage [4], cryotherapy [5],
photodynamic therapy (PDT) [6–8], radiation therapy [9–11], and others are available.
However, excisional surgery remains the leading intervention [12–14]. During conventional
surgical resection, the tumor is removed with a lateral clearance margin (~4–6 mm) of
adjacent normal-appearing skin [15]. There is no real- time ability to evaluate whether or
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not the lesion was completely removed and, consequently, high risk that the residual tumor
will remain at the excision site [16]. Mohs micrographic surgery (MMS) technique achieves
high cure rates (~99%) using intraoperative evaluation of hematoxylin and eosin (H&E)
histopathology for intraoperative margin control [17,18]. This method utilizes horizontal
tissue sectioning to enable inspection of the entire surgical margin [19]. However, MMS is
expensive, time-consuming, labor-intensive, and not readily available in most dermatology
surgery clinics [20,21].

Despite efforts to improve preoperative delineation of skin cancers using epilumi-
nescence microscopy (dermoscopy) [22,23] and optical techniques including integrated re-
flectance confocal microscopy (RCM)/optical coherence tomography (OCT) systems [24–26],
initial tumor boundary assessments are still based primarily on visual inspections per-
formed by the surgeon. Outcomes from this approach depend on prior clinical experience
and are prone to error because of limited visible contrast between malignant and normal
skin [27].

Our group is developing optical polarization imaging (OPI) technology for nonin-
vasive, preoperative detection of nonmelanoma skin cancer (NMSC) margins. In this
work, we present a novel handheld OPI system, characterize technical specifications of the
device, and provide results from imaging 10 BCC cases to demonstrate its potential for
clinical adoption.

2. Materials and Methods
2.1. Handheld Optical Polarization Imager

The optical imaging system is presented in Figure 1. The layout (Figure 1A) included
a lamp (Lambda LS, Sutter, Novanto, CA, USA) with a filter wheel to emit narrowband
light at 440 nm, 570 nm, or 640 nm (full-width at half maximum (FWHM) = 10 nm). A
fiber optic ring light (Edmund Optics, Barrington, IL, USA) equipped with a linear polarizer
(Edmund Optics, Barrington, IL, USA) directed light towards the skin. Light reflected from
the skin passed through an analyzer and was collected by a 0.3X/F8 macro lens (Rodenstock
GmbH, Munich, Germany). A custom, 3D-printed spacer (Rize Inc., Concord, MA, USA)
fitted with a 38-mm-diameter glass plate was designed and implemented to ensure the proper
imaging distance. Cross-polarized images were acquired with a 14-bit charge-coupled device
(CCD) PCO Pixelfly USB camera (PCO Tech, Kelheim, Germany). A 440 nm image visualized
the dermal collagen network, a 570 nm image showed vasculature, and a 640 nm image
displayed surgical markers on the skin surface used to outline estimated tumor borders.
Image acquisition was controlled using MetaMorph software (Molecular Devices, Sunnyvale,
CA, USA). The images could be viewed in real time or as single frames on a computer.
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2.2. Image Processing

An in-house-developed MATLAB code (MathWorks, Natick, Massachusetts) was used
to generate spectrally encoded images using the following formula:

Pi,j = ((α × P440 nm
i,j)/P640 nm

i,j) × 1000 (1)

where Pi,j, P440 nm
i,j, and P640 nm

i,j are pixel values of the spectrally encoded image, 440 image,
and 640 nm image, respectively. The constant α is the ratio of mean pixel values in 640 nm
and 440 nm images. The spectrally encoded image was scaled by 1000 to optimize display.

Spectral encoding minimized artifacts caused by uneven illumination and by the
presence of endogenous skin chromophores (e.g., melanin, oxyhemoglobin, and deoxy-
hemoglobin). Spectrally encoded images were pseudo-colored using the MATLAB code.
Pixels with grayscale values below 20% of the maximum pixel intensity value in the image
were set as black and purple colors (representing the tumor), whereas pixels above 20% of
the maximum were set as blue/green/yellow/orange/red colors (representing normal
skin). Binary images that display cancerous and normal skin as black (lowest 20% of pixel
values) and white, respectively, were also generated.

2.3. OPI Clinical Evaluation

Clinical performance of the handheld OPI device was evaluated by imaging patients
with BCC prior to MMS. The study was performed under a protocol approved by the
Institutional Review Board at the University of Massachusetts Medical School (IRB ID
H00017121). Enrolled subjects were aged 18 or older, had at least one biopsy-confirmed
BCC lesion, and were scheduled to undergo MMS at the University of Massachusetts
Medical Center Dermatology Surgery Clinic. Prior to imaging, the surgeon consented the
patient and used a sterile purple marker to outline the clinical margins of the excision.
The treatment site was cleansed with isopropyl alcohol, and an optically transparent gel
(Aftersun Aloe Vera, CVS Health Corporation, Woonsocket, RI, USA) was applied to
the lesion to improve light coupling into the skin. Digital photographs of the treatment
site were obtained for reference. Optical imaging was performed by researchers from
the Advanced Biophotonics Laboratory (ABL) of the University of Massachusetts Lowell.
Images were acquired in less than 1 s, while the entire imaging procedure took about 5 min
per subject. The study surgeon was blinded to the optical images. Therefore, OPI did not
interfere with routine MMS procedures. After imaging, standard MMS was performed
based on the surgeon’s initial visual estimate of the tumor size.

2.4. Data Analysis

Results from optical imaging were compared to the surgeon’s preoperative visual
margin assessment and validated against clinical H&E histopathology. When histopatho-
logical analysis revealed no residual tumor at the lateral boundary of the Mohs excision
(i.e., negative surgical margins), the preoperative OPI assessment was considered true
negative (TN) or false negative (FN) if the spectrally encoded image displayed collagen
disruption contained inside or spread outside the surgeon’s markings, respectively. In
cases where histopathology showed a tumor at the lateral boundary of the excision (i.e.,
positive surgical margins), greater than one Mohs stage was required to completely remove
the cancer. When this occurred, margin delineation results from imaging were considered
true positive (TP) if collagen disruption extended beyond the surgeon’s marker in the same
topographical area as in the intraoperative Mohs map. The OPI evaluation was categorized
as false positive (FP) if imaging displayed collagen distortion past a clear surgical margin,
as indicated by histopathology. Sensitivity and specificity of spectrally encoded OPI were
determined using the following equations:

Sensitivity = TP/(TP + FN) (2)

Specificity = TN/(TN + FP) (3)
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3. Results
3.1. System Characterization

A handheld optical polarization imaging system was designed and built to enable
rapid assessment of skin cancer tumor margins with minimal interruption to current treat-
ment workflows. The newly designed imager has a mass of 0.55 kg (1.21 lbs.), dimensions
of 10 cm × 10 cm × 22 cm, and a field of view (FOV) of 3.2 × 2.3 cm2. Lateral resolution
was measured to be 12.4 µm (40.3 line pair/mm). Image acquisition times ranged between
5 ms and 50 ms. Power density of light incident on the skin was 0.2 mW/cm2 at 440 nm,
0.4 mW/cm2 at 570 nm, and 0.5 mW/cm2 at 640 nm. These values are lower than the maxi-
mum permitted skin/ocular exposures established by the American National Standards
Institute (ANSI) [28].

Table 1 compares characteristics of the new imager with those of the previous proto-
type [29,30]. It demonstrates that the handheld OPI device is twice as light, its field of view
is two times larger, while the lateral resolution remains the same. The image acquisition
times are 10 times shorter, while the power densities are similar. In addition, it allows for
imaging at 570 nm and incorporates automated image processing.

Table 1. Comparison of handheld OPI with previous imaging system.

Specifications Handheld OPI Previous System

Weight 1.21 lbs. 2.51 lbs.

Field of View 3.2 × 2.3 cm2 2.2 × 1.6 cm2

Lateral Resolution 12.4 µm 12.4 µm

Image Acquisition Time
440 nm 50 ms 620 ms
570 nm 41 ms n/a
640 nm 5 ms 64 ms

Power Density
440 nm 0.2 mW/cm2 0.2 mW/cm2

570 nm 0.4 mW/cm2 n/a
640 nm 0.5 mW/cm2 0.6 mW/cm2

Data Processing Automated Manual
n/a, not applicable.

3.2. Clinical Validation

To validate the handheld OPI device, we imaged 10 subjects with pathologically di-
verse BCC lesions. Table 2 summarizes the clinical/experimental data and results. Subjects
included seven men and three women between 55–83 years old (mean age: 71 ± 9 years). In
total, 10 cancerous lesions were imaged and analyzed. Histopathological analysis revealed
tumor subtypes of nodular BCC (n = 5), superficial BCC (n = 1), nodular/superficial BCC
(n = 2), nodular BCC with squamous differentiation (n = 1), and micronodular/cystic BCC
with ductal differentiation (n = 1). The skin cancers were located on the face (n = 7; left
temple, right eyebrow, glabella, right nasal, right cheek, left cheek, and right jaw) or on
the upper/lower extremity (n = 3; right shoulder, right forearm, and right tibia). Tumor
dimensions ranged from 0.4 × 0.4 cm2 to 2.5 × 2.0 cm2 (mean size: 1.22 ± 0.57 cm2). Four
of the cases (40%) required two stages of Mohs surgery to completely remove the cancer,
whereas six cases (60%) needed one Mohs stage.
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Table 2. Clinical information and experimental data for 10 study subjects.

Subject
No. Sex Age Diagnosis Tumor Site Tumor

Size [cm]
No. of

Mohs Stages
OPI

Classification
OPI/Histopathology

Correlation

1 M 76 BCC, nodular Glabella 0.4 × 0.4 1 TN +

2 M 71 BCC, nodular R forearm 1.7 × 1.2 1 TN +

3 M 77 BCC, nodular R cheek 1.1 × 0.7 1 TN +

4 M 67 BCC, nodular L temple 1.0 × 0.8 1 TN +

5 F 81 BCC, nodular R nasal 1.1 × 0.6 2 TP +

6 M 55 BCC, superficial L cheek 1.0 × 0.5 2 FP * +/−

7 M 69 BCC,
nodular/superficial R jaw 1.1 × 0.9 1 TN +

8 F 72 BCC,
nodular/superficial R eyebrow 0.6 × 0.6 2 TP +

9 F 83
BCC, nodular with

squamous
differentiation

R tibia 1.7 × 1.1 2 TP +

10 M 60
BCC, micronodu-

lar/cystic with
ductal differentiation

R shoulder 2.5 × 2.0 1 TN +

R, right; L, left; BCC, basal cell carcinoma; TN, true negative; TP, true positive; FP, false positive; +, case where
OPI assessment correlated with histological findings; +/−, case where OPI assessment partially correlated with
histological findings; *, this case was judged FP because OPI correctly identified positive margins, but misidentified
blood vessels as tumor.

The results demonstrate that preoperative margin delineation using spectrally en-
coded OPI correlated with the findings of clinical histopathology in nine out of ten cases.
Specifically, in all six cases with negative margins after the first Mohs excision, OPI correctly
showed the tumor contained inside clinical borders marked by the surgeon (i.e., there were
six TN cases). Four cases required >1 Mohs stage to clear the lesion because preoperative
visual assessment underestimated the lateral tumor size (i.e., a 40% error rate from the
surgeon). In three of the cases with positive margins, OPI accurately displayed the tumor
extending beyond the surgical marker (i.e., three TP cases). In one case, OPI correctly
detected the positive margin, but incorrectly represented blood vessels as cancer in another
region (i.e., one FP case). Based on results of the pilot study, handheld OPI demonstrated a
sensitivity of 100% and specificity of 86%.

To demonstrate the clinical performance of handheld OPI, in Figure 2 we present
example images of the 83-year-old female patient with basal cell carcinoma (subject # 9)
that required two stages of Mohs surgery. A preoperative photograph of the tumor outlined
with a surgical marker (Figure 2A) exhibits limited visual contrast between cancerous and
normal skin. Figure 2B shows the gray-scale optical image acquired at 440 nm. Reduced
reflectance signal caused by collagen disruption, pigmented macules, and blood vessels
is visible. Figure 2C shows the lesion imaged at 640 nm where pigmentation spots, blood
vessels, and surgical markings can be seen. The pseudo-colored (Figure 2D) and binary
(Figure 2E) spectrally encoded images were processed using Equation (1). Processed images
were superimposed with the surgeon’s marks. The images (Figure 2D,E) demonstrate the
significantly decreased impact of background melanin and hemoglobin. Two positive mar-
gins at the left and right borders of the excision (10:00 o’clock and 3:00–6:00 o’clock positions,
respectively) correlate well with the Mohs map (Figure 2F). Clinical H&E histopathology
(Figure 2G–I) confirmed the diagnosis of nodular BCC with squamous differentiation.
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Figure 2. Example case with positive surgical margins (subject #9). (A) Preoperative photograph
of BCC lesion outlined with surgical marker; (B) 440 nm cross-polarized image; (C) 640 nm cross-
polarized image; (D) Pseudo-colored, spectrally encoded image overlaid with surgical marker (shown
in magenta). Positive margins have been outlined in dashed black lines. (E) Binary, spectrally encoded
image overlaid with surgical marker (threshold = 20%); (F) Intraoperative Mohs map (positive
margins are drawn in green); (G) H&E histology; (H) Magnified view of positive surgical margin
(10:00 o’clock position) in histology section; (I) Magnified view of positive surgical margin (3:00–6:00
o’clock position) in histology section (rotated 90◦). The color bars in (D,E) show pixel values as a
percentage of the maximum pixel value in the image. Solid black arrow: pigmentation spot; dashed
black arrow: blood vessel; solid red arrow: residual tumor at lateral boundary of H&E section. Scale
Bar = 5 mm.

4. Discussion

OPI technology identifies tumor-induced disruption of the dermal collagen structure
to map lateral margins of skin cancer [29,30]. Previously, a pilot trial of six cases showed
that noninvasive collagen assessment by OPI provides a reliable biomarker for skin can-
cer [29]. More recently, in a clinical study of 53 cases conducted at Massachusetts General
Hospital, we demonstrated that spectrally encoded OPI accurately detects NMSC bor-
ders by minimizing the impact of skin chromophores (e.g., melanin and hemoglobin) [30].
However, a previous prototype of the imaging system was not practical in the context of
fast-paced clinical applications, as it was bulky, heavy, required an articulating arm for
positioning, and relied on manual data processing. The new handheld imager (Figure 1B)
is compact, lightweight, and easy to operate. The designed and implemented handheld
OPI system is capable of in vivo delineation of BCC lesions within seconds, and therefore
it does not disrupt current treatment workflows. The technology requires only minimal
training to operate the device and interpret the images. The spectral encoding algorithm
was developed and programmed to detect tumor boundaries in biopsy-proven BCC in
conjunction with available clinical information (e.g., visible features of the lesion). Au-
tomated data processing further decreases requirements for operator performance. The



Cancers 2022, 14, 4049 7 of 10

handheld device was validated by imaging 10 cases. Studies including larger case numbers
are underway to establish its diagnostic accuracy in clinical practice.

Other optical techniques are being developed for skin cancer margin delineation. For
example, dermoscopy typically utilizes non-polarized, white light illumination to visualize
the skin surface. However, studies have indicated that this technique does not enhance the
accuracy of the preoperative tumor margin delineation [31,32]. Recently, RCM and OCT
modalities have been combined into a single device for NMSC margin assessment [24–26].
These systems offer cellular level resolution of RCM (axial resolution: 1–3 µm; lateral
resolution: 0.5–1.0 µm) with 1–2 mm imaging depth of OCT. However, a small FOV (RCM
mode: <1 mm; OCT mode: ~2 mm) presents a significant challenge. Single images can be
stitched together to visualize large areas. However, mosaicking is time-consuming, sensitive
to motion artifacts, and uses sophisticated software. The available RCM/OCT systems are
expensive, and image acquisition/interpretation requires extensive training. Moreover, the
imaging results are based on the subjective evaluation of tissue morphology. In comparison,
spectrally encoded OPI with pseudo-color provides a wide FOV and displays the tumor as
a black and purple region surrounded by highly reflective collagen (Figure 2D).

Images of a 55-year-old male patient with superficial basal cell carcinoma on the left
cheek are shown in Figure 3. This was the only false positive case imaged in this study,
where OPI accurately detected two positive margins, but misinterpreted blood vessels as
a tumor in an upper part of the image. The preoperative photograph (Figure 3A) shows
the borders of the superficial BCC as estimated by the surgeon. Prominent vasculature
surrounding the lesion is clearly visible. Figure 3B,C shows optical images of the lesion
acquired at 440 nm and 640 nm, respectively. The 440 nm image (Figure 3B) visualizes
collagen, hemoglobin, and hair follicles. The 640 nm image (Figure 3C) shows hair and
the surgeon’s marker. A comparison of pseudo-colored (Figure 3D) and black/white
(Figure 3E) spectrally encoded images with the Mohs map (Figure 3F) and clinical histology
(Figure 3G,H) reveals that OPI correctly identified an extension of the tumor beyond
surgical marks at two locations on the lower margin of the excision and misidentified
blood as cancer above the upper margin. Figure 3I presents a magnified view of the region
outlined by a red dashed line in Figure 3E, imaged at 570 nm. The wavelength of 570 nm
corresponds to the absorption maximum of hemoglobin; therefore, Figure 3I visualizes
numerous blood vessels present at the upper border of the lesion.

In this case, suboptimal imaging conditions and prominent superficial vasculature
contributed to the false positive assessment by OPI. Nonuniform pressure on the lesion
caused uneven illumination across the FOV (Figure 3B–D). Applying moderate, consistent
pressure would have eliminated the illumination gradient and could have mitigated the
impact of hemoglobin by temporarily pushing blood out of the papillary dermis vessels.
OPI image acquisition takes less than one second and the frames can be viewed in real time.
Therefore, the operator could be trained to recognize these potential issues, reposition the
device as needed, and repeat clinical imaging. In addition, a spectral encoding algorithm
incorporating 570 nm image, which emphasizes blood vessels (Figure 3I), could further
minimize the impact of hemoglobin.
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Figure 3. Case with false positive OPI margin assessment (subject #6). (A) Preoperative photograph
of BCC lesion outlined with surgical marker; (B) 440 nm cross-polarized image; (C) 640 nm cross-
polarized image; (D) Pseudo-colored, spectrally encoded image overlaid with surgical marker (shown
in magenta). Positive margins have been outlined in dashed black lines. (E) Binary, spectrally encoded
image overlaid with surgical marker (threshold = 20%); (F) Intraoperative Mohs map (positive
margins are drawn in green); (G) H&E histology; (H) Magnified view of positive surgical margins in
histology section; (I) Magnified view of region outlined by dashed red lines in (E) imaged at 570 nm.
The color bars in (D,E) show pixel values as a percentage of the maximum pixel value in the image.
Dashed black arrow: blood vessel; solid black arrow: hair follicle; dotted black arrow: nonuniform
illumination; solid red arrow: residual tumor at lateral boundary of H&E section. Scale Bar = 5 mm.

5. Conclusions

This work demonstrated the feasibility of the first handheld OPI prototype for rapid,
noninvasive preoperative delineation of BCC margins. The device is capable of wide-field
(~3 × 2 cm2) rapid image acquisition (~5–50 ms) with lateral resolution of ~12 µm. It is
compact and lightweight (0.55 kg). Clinical evaluation of the prototype has shown its
superior performance compared to the surgeons’ visual preoperative assessment of lateral
cancer margins. Overall, the presented results point towards the significant potential of
optical polarization collagen imaging for guiding skin cancer treatments and improving
their outcomes without altering clinical workflows. Future research directions include
further miniaturization of the technology and exploring its potential for cancer screening
and guiding treatments other than surgery.
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