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Protected area networks 
do not represent unseen 
biodiversity
Ángel Delso1,2*, Javier Fajardo3 & Jesús Muñoz2

Most existing protected area networks are biased to protect charismatic species or landscapes. We 
hypothesized that conservation networks designed to include unseen biodiversity—species rich 
groups that consist of inconspicuous taxa, or groups affected by knowledge gaps—are more efficient 
than networks that ignore these groups. To test this hypothesis, we generated species distribution 
models for 3006 arthropod species to determine which were represented in three networks of 
different sizes and biogeographic origin. We assessed the efficiency of each network using spatial 
prioritization to measure its completeness, the increment needed to achieve conservation targets, and 
its specificity, the extent to which proposed priority areas to maximize unseen biodiversity overlap 
with existing networks. We found that the representativeness of unseen biodiversity in the studied 
protected areas, or extrinsic representativeness, is low, with ~ 40% of the analyzed unseen biodiversity 
species being unprotected. We also found that existing networks should be expanded ~ 26% to 46% 
of their current area to complete targets, and that existing networks do not efficiently conserve the 
unseen biodiversity given their low specificity (as low as 8.8%) unseen biodiversity. We conclude that 
information on unseen biodiversity must be included in systematic conservation planning approaches 
to design more efficient and ecologically representative protected areas.

The biodiversity crisis is now beyond discussion1,2. Around one million of all described species (representing 25% 
of all assessed species) are estimated to be threatened3, a striking figure that emphasizes the need for increased 
conservation efforts. One of the most successful approaches to slow or stop species loss and ecosystem degrada-
tion is the establishment of protected areas (PAs)4. In recognition of this, nations worldwide agreed to a target 
to protect at least 17% of all lands and 10% of seascapes by 2020 through ecologically representative systems of 
PAs5. By 2018, 14.9% of global terrestrial lands were included in PA networks, nearing the target set for 20206. 
Despite this, there is mounting concern that satisfactory biodiversity outcomes will not be achieved not only in 
countries and regions that have not met their target, but also in the many that have6–8. This situation stresses the 
importance of networks being ecologically representative, and illustrates the complex endeavor of designating 
new PAs, which includes reconciling opposing views and managing shortages of funds and time. In the post-2020 
biodiversity framework9, this concern has raised the argument that new targets should focus on increasing the 
effectiveness of biodiversity conservation, emphasizing the value of lands selected for preservation10 to promote 
quality areas that enhance network properties such as representation.

Since the amount of area that can be protected is limited, it is crucial that the sites selected for conservation 
are efficient and representative of the three elements of biodiversity: genetic, species, and ecosystem diversity11–13. 
However, most existing PAs established before the 1980s were designed following criteria that aimed to protect 
“wild areas”14 or that were based on aesthetics, economics or socio-politics rather than representation11. As a 
result, the global PA network is biased towards certain biomes and ecoregions4, with an overrepresentation 
of high elevation or remote places where conflict with alternative land uses is low15. The bias of PA networks 
has raised doubts on their general effectiveness with regard to conservation of biodiversity representativeness 
(e.g.,16,17). More recently, however, the scope and design of PA networks in the last few decades have shifted 
towards more scientifically sound objectives, including representativeness4. A major milestone in the incorpo-
ration of biodiversity representativeness in conservation planning is the mainstreaming and formalization of 
the principles of Systematic Conservation Planning (SCP)12, a framework that promotes efficient conservation 
decision making that is based on explicitly declared scientific targets.
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When representativeness has been an explicit criterion for PA designation, it has been usually applied to the 
most well studied or charismatic taxonomic groups, such as mammals, birds or vascular plants, or coarse filter 
biodiversity surrogates such as ecosystems11,18,19. As a result, PA network representativeness is biased towards 
taxa that are usually among the least diverse19, and worse, that are poor surrogates for representativeness of 
highly diverse but less showy or less studied taxa, such as arthropods, mollusks and annelids18,20–22. The afore-
mentioned groups, among many others, account for most of the “unseen” or “hidden” biodiversity, and are rarely, 
if at all, included in conservation decisions23,24, breaching the criterion of representativeness. This problem is 
compounded if we consider that extinction rates are higher among the groups that contribute more to the unseen 
biodiversity25–28. Nonetheless, these taxa are important in conservation planning because they represent the 
majority of the biodiversity in any given area, inhabit all types of environments, and fulfil essential functions 
for the maintenance of many ecosystem services of immense economic value for humans. Indeed, the annual 
economic value of pollination, dung burial, pest control, and recreation services provided by insects alone in the 
USA has been estimated at $57 billion29. Other authors have estimated that, at the national scale, the pollination 
service provided by insects ranges from 1 to 16% of the market value of agricultural production30. Another one 
of nature’s contributions to people, although challenging to valuate, is the (unseen) biodiversity of saprotrophic 
fungi and soil invertebrates (e.g., nematodes, mites, collembolans, annelids, myriapods), and unseen biodiver-
sity their intricate interactions, which are crucial for the maintenance of soil fertility31.

Unseen biodiversity has been excluded from conservation planning partly due to the knowledge gap for the 
not-so charismatic groups. Two types of shortfalls affect this gap and hinder the ability of planners to include 
these groups in conservation planning: first, the Linnean shortfall, as there are still many undescribed species; and 
two, the Wallacean shortfall, given that knowledge about the distribution of many species is patchy32. However, 
spatial information for unseen biodiversity groups is growing (e.g., insect records added to GBIF per year grew 
from 1.6 million in 2000 to 5.8 million in 2014; www.​gbif.​org). Despite some limitations, such raw distribution 
data can be used in SCP, and are even more valuable when combined with the use of species distribution models 
(SDMs)33. SDMs relate georeferenced observations of well-identified individuals, although limited in number, 
to relevant ecological predictors, to produce suitability maps that show where a species might be found. This 
information, combined with data on actual species distribution, can reduce the existent information gap.

Once there is enough information on species distributions, either from actual data points or from data derived 
from SDMs, it is possible to test the ability of PA networks to represent different elements of biodiversity. This 
type of analysis typically starts with a representation analysis in which conservation features are classified as either 
represented or not in a given PA network on the basis of overlapping distributions12. Here, we define intrinsic 
representativeness as the degree of representation of the biodiversity elements considered by planners when they 
first designed a given network. As the notion of conservation planning aimed at representing elements of biodi-
versity is relatively new, and acknowledging that it has not been considered in the establishment of most exist-
ing PAs, we extend the concept of intrinsic representativeness to include the elements of biodiversity commonly 
represented in conservation planning, typically terrestrial vertebrates and charismatic or umbrella species. In 
fact, the lion’s share of the funds dedicated to biodiversity conservation are still spent on these types of species34. 
The question is whether the so generated PA also maximizes the representativeness of other elements such as 
unseen biodiversity, which is typically not considered in the design process. To address this, we define extrinsic 
representativeness as the degree of representation of unseen biodiversity groups. Related to this is the question 
of whether a PA network efficiently represents a group of species such as unseen biodiversity ones. Several SCP 
methods can be used to identify clusters of priority conservation areas that optimize representativeness for a 
given group of species (i.e., those that include a maximal percentage of the species represented, while minimiz-
ing costs). These methods can also be used to estimate specific shortfalls of current PA networks by exploring 
which areas should be added to the network, or to identify group-specific optimal representation areas, which 
can be contrasted against actual PAs to assess their specificity by determining the degree to which they overlap.

The objective of this study is to assess the potential of existing PA networks to correctly represent the unseen 
biodiversity. Specifically, we test (1) the extrinsic representativeness (i.e. of taxa not used for designation) of 
existing PA networks, and (2) the overall efficiency of these networks from two perspectives: (i) representation 
completeness, by exploring how much area would need to be added to current PAs to represent unseen biodiver-
sity; and (ii) representation specificity, by evaluating the extent to which the most efficient conservation areas (i.e., 
those identified using a spatial prioritization algorithm) designed using exemplary groups of unseen biodiversity 
overlap with existing PA networks.

Our hypothesis is that the almost-exclusive use of charismatic groups in SCP does not result in truly repre-
sentative PA networks, confirming the importance of including unseen biodiversity groups in SCP to increase 
both intrinsic and extrinsic representativeness of PA networks.

Results
The extrinsic representativeness of existing PAs was ~ 60% for the three test areas, with slight differences observed 
among countries (Fig. 1). Average extrinsic representativeness was highest for Costa Rica (62.28%), followed by 
Mexico (60.47%) and the USA (56%). Average representativeness also varied across taxa by countries: 56% for 
Hymenoptera, 54% for Lepidoptera, and 42% for Coleoptera. Coleoptera was the worst represented order at all 
sites, and also the one with the most neglected species (i.e., with less than half of their target met; see “Methods”). 
The best represented order in the USA and Costa Rica was Lepidoptera, while Hymenoptera was the best repre-
sented in Mexico, with more than 75% of the analyzed species satisfactorily included in PAs. Costa Rica had the 
fewest neglected species overall (< 5%). However, about 25% of the Coleoptera and 17% of the Lepidoptera in 
Mexico were classified as neglected, as were ~ 20% of the taxa of each of the three orders in the USA.

http://www.gbif.org
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The efficiency of the existing PA networks also differed by country and taxa for the two perspectives evalu-
ated (Table 1). Representation completeness was lowest for Mexico, which would require an expansion of 46.34% 
of its current PA to achieve unseen biodiversity targets. For Costa Rica and the USA, completeness was higher, 
although both would need to increase their existing PA coverage by around a third (26.28% and 29.82%, respec-
tively) to fully represent unseen biodiversity, if existing PAs are included in the proposed solution (Fig. 2).

Representation specificity was highest for Costa Rica, with ~ 50% of the priority areas for unseen biodiversity 
overlapping with the existing network. This value dropped to 20.1% for Mexico and plummeted to 8.8% for the 
USA (Table 1).

Discussion
This study reports the first wide-scale attempt to assess unseen biodiversity representativeness and PA repre-
sentation efficiency. By assessing three PA networks with varied characteristics, we demonstrated that existing 
PAs have considerable gaps, in terms of area, to protect highly diverse taxa (which are usually ignored in SCP), 
and limited efficiency in representing this diversity. Almost half of the analyzed species are not well represented 
in existing PA networks, and around 15% of them are neglected, demonstrating a deficiency in extrinsic rep-
resentativeness for unseen biodiversity. To improve extrinsic representativeness, large amounts of area would 
need to be incorporated into existing PA networks or the network configuration would need to be changed 
substantially, which is not entirely surprising given that unseen biodiversity has hardly played a role in previous 
PA planning and designation.

Our finding that about 40% of the analyzed unseen biodiversity species are not represented at all in current 
PA networks is consistent with the results of other studies that focused on other unseen biodiversity groups. 
For instance, D’Amen et al.35 found that 87% of the studied saproxylic beetles are not represented in the Italian 
PA network; Martín-Piera36 reported that five endemic dung beetle species are underrepresented in Spain; and 
Kohlmann et al.23 showed the presence of conservation gaps for dung beetles in Costa Rica. In terms of funding, 
a recent study showed that European Union conservation funds are strongly biased towards charismatic species, 
with birds and mammals alone accounting for 72% of species and 75% of the total budget, and that two of the 
species receiving the most money (the brown bear and the grey wolf) are not even threatened, according to the 
IUCN34. The lack of adequate representativeness coverage by existing PA networks has also been shown for other 
taxa, though it is less severe than that found for unseen biodiversity groups. For example, a study of conservation 
targets in Costa Rica showed that just 25% of the targeted mammalian species are not covered by its PA network, 
even though the authors used more demanding targets than we did37, and only 18% of mammals in Mexico are 
unprotected by current PAs38. This demonstrates that current PA networks, although not explicitly defined on the 
basis of charismatic taxa (in most cases), are better at protecting these animal groups than the less showy ones. 
Relying more or less exclusively on well-known and charismatic species introduces an additional bias for poorly 
known systems for which species data are scarce. This is the case for terrestrial ecosystems in poorly studied 
regions such as humid tropical forests, but also for “next door” ecosystems that are almost completely composed 
of unseen biodiversity groups, such as freshwater ones, which are often neglected in conservation plans despite 
the existence of thorough SCP studies focused on them39.

These differences reinforce the idea that conservation gaps are higher for species not included in SCP analy-
ses, and also challenge the capacity of charismatic groups to truly represent unseen biodiversity the distribution 
and richness patterns of unseen biodiversity species, as shown by Escalante et al.40. Although our study does 
not directly compare representation between seen and unseen biodiversity, our results support the existence of 

Figure 1.   Conservation targets achieved by the three test countries by insect order and country total. Orders 
from top to bottom: Lepidoptera, Hymenoptera, and Coleoptera. Green: extrinsic representativeness (100% 
conservation target achieved); orange: underrepresented species (> 50% but < 100% conservation target 
achieved); red: neglected species (≤ 50% conservation target achieved).

Table 1.   Percentage of extrinsic representativeness and efficiency in terms of representation completeness and 
specificity estimated for the three test countries.

Costa Rica Mexico USA

Extrinsic representativeness Unseen biodiversity targets achieved by the existing protected area 
network (%) 62.28 60.47 56

Efficiency
Completeness (%) 73.72 53.66 70.18

Specificity (% overlap with existing PA) 49.88 20.1 8.8
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this bias, as suggested by previous research. Spatial distributions of vertebrate and ant diversities do not match 
in Florida20, mosses in Europe show a reversed latitudinal richness pattern compared with vascular plants41, 
freshwater invertebrates in the Amazon of Ecuador peak at higher elevations than vertebrates42, and beetle and 

Figure 2.   Maps of the test countries showing proposed priority areas for unseen biodiversity (green) and 
existing PA networks (gray) in terms of completeness and specificity. As shown in the completeness maps, 
priority conservation areas complement existing PAs to achieve conservation targets. By contrast, the specificity 
maps show that priority conservation areas, which optimize the conservation of some elements of unseen 
biodiversity, do not necessarily complement or overlap with existing PAs. Maps created with Quantum GIS v. 
3.4.1 (www.​qgis.​org).

http://www.qgis.org
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polypore species richness is poorly related to bird species richness in boreal forests43. The mounting evidence 
emphasizes the need to include unseen biodiversity in SCP approaches in order for PA networks to be truly 
representative of biodiversity. If distribution data for inconspicuous taxa are not available or are poor, close 
surrogates should be included, such as better known species of the same family or genus44, but not species of 
taxonomically unrelated groups.

Our methods can be consolidated in a novel framework in which to assess the efficiency of PA networks to 
represent subsets of biodiversity by focusing on what we have termed here as extrinsic representativeness. The 
framework is conceived around two complementary spatial analyses involving the identification of optimal areas 
for the representation of a certain target group of conservation features, which can be obtained with the help of a 
site-selection algorithm. The first analysis (completeness) aims to assess the extent to which a PA network needs 
to be expanded in order to achieve complete representation of a target group. To do this, we start by identifying 
optimal areas for expansion of current PAs, then we calculate the magnitude of the expansion required. With this 
approach, we can identify PA networks that are close to completion (in terms of representation). A combination 
of factors influences the ability of a PA network to reach completion including the efficiency of the network in 
representing the target group, those related to biodiversity patterns such as species richness and turnover, and 
the current configuration of the PAs within the network. For instance, regions with high species richness and 
beta diversity will potentially need larger expansions. Such regions require large areas of protection because their 
biodiversity generally does not overlap due to high replacement, reducing the number of truly complementary 
opportunities45,46.

The second spatial analysis (specificity) evaluates a network’s efficiency in representing a target group by 
measuring how well proposed optimal PAs for unseen biodiversity are reflected in the current PA network. The 
idea is that highly congruent networks are indicative of high specificity in the representation of the target group, 
whereas a general spatial mismatch indicates poor specificity. This method has been commonly applied to evalu-
ate PA representation efficiency for whole countries or regions47,48. However, these analyses typically focus on 
maximizing the representation of taxonomic groups for which comparably more spatial data is available, such 
as terrestrial vertebrate species. Here, we propose adapting this analysis to other taxa, particularly those com-
prising unseen biodiversity, to assess efficiency in capturing extrinsic representativeness. In theory, efficiency 
in representing groups of species depends largely on how distinctive is the distribution pattern of the evaluated 
group compared with that of those elements that have been historically more influential in the establishment of 
PAs. In this context, conducting this analysis on taxonomic groups or conservation features with very unique 
distributions (e.g. freshwater biodiversity, uncharismatic species, soil biodiversity or agrodiversity, among oth-
ers) can potentially reveal low specificity levels of extrinsic representation. Lastly, considering completeness and 
specificity together, along with a standard representation gap analysis, provides a means to comprehensively 
evaluate the efficiency of PAs in representing a group of conservation features. For instance, in our results, the gap 
to completion of the networks in Costa Rica and the USA is similar, as both require an equivalent expansion in 
percent terms (see Table 1). However, it should not be assumed that the PA network of Costa Rica is less efficient 
than that of the USA because it needs a large expansion, especially considering its network accounts for a far 
greater percentage of the total area in comparison (Table 2). Indeed, the specificity analysis indicates that PAs 
in Costa Rica are more specific in representing unseen biodiversity. Therefore, the proposed framework is able 
to diagnose different types of shortfalls: the PAs in the USA are inefficient in representing unseen biodiversity 
because they are largely not specified for this objective and because they fall short in extent. By contrasting, the 
network in Costa Rica showed the highest specificity; however, due its high level of biodiversity, it still needs a 
considerable expansion to efficiently represent all of the evaluated species.

Unseen biodiversity plays important roles in ecosystem maintenance and in services to society, such as nutri-
ent cycling, primary production, soil formation, habitat provision, and pollination. We conclude that unseen 
biodiversity should be explicitly considered in the designation of PA networks in order to make them more 
representative but also more functional. Consideration of unseen biodiversity could also help in the design of 
more efficient restoration strategies. We acknowledge that information is poor or at a coarse scale for many of the 
groups providing these services (e.g., fine-grained distributions of pollinators), however, given their importance 
to nature and society, funding programs that close the taxonomic gap are worth the investment49–53. Until more 
data are available, we argue that SDMs, despite some limitations, represent a valuable source of information to 
overcome data gaps and to inform conservation planning. However, we must highlight a few methodological con-
siderations as these models represent potential distributions of species and model parameters do not fully reflect 
several factors54. The most important factors are: (1) evolutionary (geographic barriers and speciation processes), 
(2) ecological (biotic interactions), and (3) anthropogenic (habitat degradation). Consequently, these models 
can result in an overprediction, especially in areas and groups with a low sampling effort55,56. We demonstrated, 

Table 2.   Comparative metrics of the three test areas. Sources for insect species richness: Costa Rica59, 
Mexico60, and the USA61.

Costa Rica Mexico USA

Current protected area (% of total area) 27.60% 14.16% 12.99%

Area (km2) 51,100 1.97 * 106 9.83 * 106

Insect richness (described/estimated) 68,500/365,000 47,800/97,000 91,000/164,000

Number of described insect species/total area 1.341 0.024 0.009
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however, that potential problems can be minimized by simulating the effect of geographic barriers57 and by 
excluding sites in which ecosystems have been degraded from priority areas, thereby ensuring that only areas 
that maintain a certain level of ecological integrity are considered.

In conclusion, this study reveals the varying degree of representativeness and representation efficiency of three 
insect groups in three countries, highlighting the need to consider unseen biodiversity in conservation plan-
ning. Although these groups represent only a small part of the unseen biodiversity, we hypothesize that results 
found with almost any other taxonomic group comprising unseen biodiversity, and for any geographic area and 
resolution, will be similar to those found here. Finally, we emphasize the need for increased efforts to describe 
and sample other taxonomic groups, and for mainstreaming their inclusion in future conservation planning.

Methods
Testing areas.  Costa Rica, Mexico, and the USA were the test areas used to evaluate the representativeness 
of the unseen biodiversity in PA networks. These countries met three criteria that allow a richer portfolio of con-
texts relevant to the research question to be explored: (1) high availability of georeferenced data on megadiverse 
taxa, something uncommon for most countries, (2) follow a latitudinal gradient from tropical to temperate cli-
mates associated with a decrease in species diversity, and (3) PA networks have different sizes (Table 2).

Unseen biodiversity taxa selection.  Selecting taxa of unseen biodiversity for evaluation was difficult. 
Almost by definition, unseen biodiversity groups are poorly represented in public databases (e.g. GBIF); thus, 
the challenge was to find highly diverse taxa with enough information on distribution for all three test areas. For 
some groups (e.g., bryophytes), the information was good for one area but poor for the other(s), and information 
for most groups was poor worldwide. We explored insects as suitable candidates as they account for 5 to 6 mil-
lion of the 11 million animals described to date19. In addition, they are found in nearly all terrestrial ecosystems 
worldwide, and they provide fundamental ecosystem services29. Although it is estimated that less than 30% of 
extant insect species have been formally described58, certain insect orders are reasonably well known and repre-
sented in public databases. Moreover, studies have shown that insect richness at higher taxonomic ranks, such 
as genera or families, are good surrogates for total insect biodiversity at the species level44. Finally, insect biodi-
versity is reasonably well known for the three test areas, and it follows the latitudinal gradient criteria described 
above (Table 2). Thus, we concluded that insects represent an appropriate group with which to test extrinsic 
representativeness coverage in existing PA networks and guide conservation assessments.

We evaluated the representation of 1,002 species for each test area. Species were randomly selected from three 
of the most diverse orders of insects, Coleoptera, Hymenoptera and Lepidoptera, excluding exotic species listed 
in national catalogues62,63 and the IUCN online database (iucngisd.org). These orders were selected because the 
largest and most comprehensive sets of georeferenced data are available for these orders compared with other 
insect groups, and because they are diverse, allowing the greatest heterogeneity of niches and ecoregions to be 
represented in our analyses. For each order, we downloaded occurrence data from various sources (see below), 
discarding species with less than 15 unique occurrences at the pixel resolution of the environmental layers64,65, 
a practice common in studies combining SCP and SDMs66,67. After discarding these species, 334 were randomly 
selected for each order, for a total of 1002 species per study area (Supplementary Table 1). As the availability of 
data on the chosen taxonomic classes and countries was highly heterogeneous, we used a random, constant, and 
relatively high number of species across test areas to counterbalance any potential impact of biases in our results.

Species data.  We built a database of georeferenced occurrence points, obtained mainly from the Global 
Biodiversity Information Facility (GBIF), for Costa Rica (https://​doi.​org/​10.​15468/​dl.​zropvg), Mexico (https://​
doi.​org/​10.​15468/​dl.​kgaeqh), and the USA (https://​doi.​org/​10.​15468/​dl.​7vadxq). We also included records 
within a 100-km buffer zone around the borders of each country to avoid artifacts related to political borders in 
the SDM. The database was complemented with additional occurrence records gathered from diverse sources: 
Rosser et al.68 for species of Heliconiine, the “Datos Abiertos” database (datos.gob.mx) for insects in Mexico, 
Camero & Lobo69 for dung beetles in Costa Rica and Mexico, and the project Biodiversity Information Serv-
ing Our Nation (BISON, bison.usgs.gov) for species in the USA. To minimize the number of incorrect records, 
which are typical in public databases70, we used the package CoordinateCleaner71 in the R environment (v 3.4)72 
to remove records located at country centroids, natural history museums or research facilities, those with a 
coordinate uncertainty higher than 1 km, duplicates with identical coordinate values, and records unidentified 
at the species level.

Species distribution models.  We built SDMs to estimate the macroclimatic niche of the species33 using 
the ‘biomod2’ package73 in R. We generated models as ensembles of three techniques considered to have a higher 
prediction accuracy compared with others74: Generalized Boosted Models75, Random Forests76, and Maxent77. 
An ensemble approach using these three techniques was preferred to avoid problems related to the selection of 
a single modelling algorithm, which can influence results78. A total of 21 variables were considered as potential 
predictors, including the 19 climatic ones from Worldclim 2.079 and two related to vegetation: the Normalized 
Difference Vegetation Index (NDVI), which was calculated from MODIS (modis.gsfc.nasa.gov) by averaging 
data from 10-day periods, and the height of the tree canopy80. To eliminate multicollinearity between predic-
tors, we calculated the Variance Inflation Factor (VIF) using the package ‘VIF’81, discarding variables with a VIF 
equal to or higher than 10 and keeping the most ecological relevant variables for the study group. Eight variables 
remained in the final set of predictors for each country (Table 3). Due to computational limitations, variable 
resolution was proportional to the area of the country of study: 1 km for Costa Rica, 5 km for Mexico and 10 km 
for the USA. This resolution was maintained for all further analyses. Although using different resolutions may 

https://doi.org/10.15468/dl.zropvg
https://doi.org/10.15468/dl.kgaeqh
https://doi.org/10.15468/dl.kgaeqh
https://doi.org/10.15468/dl.7vadxq
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slightly affect the values obtained in the individual representativeness assessment performed for each country, 
this study does not make comparisons between countries but rather between before and after inclusion of taxo-
nomic groups by country.

We built SDMs using 10,000 background points that were randomly selected from the occurrence records of 
other species of the same order, a method that has the potential to reduce biases resulting from non-systematic 
occurrence sampling82. For each species, models were fitted with 70% of the occurrence data and validated with 
the remaining 30%. To increase robustness, we ran 10 replicates for each modelling technique and used the 
resulting mean in the final model. A final ensemble model was obtained for each species by a weighted averag-
ing of models in each replicate. Weights were calculated from the True Skill Statistic (TSS) of each model, using 
only those with a TSS > 0.783. Only species whose ensemble model had a TSS > 0.7 were kept, while those whose 
model had a lower TSS value were discarded. When species were discarded, a new species was analyzed in order 
to maintain the final number of analyzed species at 1,002 per country (334 per order). The species list, number 
of occurrences and modelling evaluation parameters can be found as Supplementary Table S1 online.

To limit extrapolations of the model deviating too far from a species’ known area of occurrence, we modified 
model outputs to restrict them to nearby areas using an exponential decay function57. This method is intended 
to reduce overprediction in areas far from known occurrence areas, simulating the effect of geographic barriers 
and limitations on species dispersal.

Finally, continuous models were transformed into binary maps (presence/absence) using maximum TSS as 
a threshold.

Representativeness assessment.  To assess the representativeness of PA networks, a conservation target 
must be defined for each conservation feature (in our case, species). The conservation target is the proportion of 
the distribution area of a given conservation feature that should be included in the PA network in order for it to 
be considered represented. In the case of species, it is considered to be the minimum fraction of the distribution 
area necessary for the species to thrive46. Here, targets were set inversely proportional to the size of the distribu-
tion area of each species, i.e. species with narrower distributions had higher targets than widespread species. 
Building on the approach in84, conservation targets ranged between 5% for species with a distribution area larger 
than 50,000 km2 and 80% for those with an area less than 100 km2. The lower threshold was set following the B1 
criteria (geographic distribution threshold) to declare a species as critically endangered85. Conservation targets 
of species between those thresholds were scaled using a loglinear function86.

Once species were assigned a target, we evaluated its achievement in current PAs by comparison with the area 
of SDM included in the PAs. Species with a distribution inside PAs greater than their target were considered as 
represented. We classified species that did not achieve their targets in two categories: underrepresented, when 
the area included in the solution was between 50 and 99% of its target, and neglected, when the area included in 
the solution was less than 50% of its target.

Representation efficiency assessment.  We tested the efficiency of PA networks to represent unseen 
biodiversity from two perspectives: representation completeness, to measure the amount of area that needs to be 
added to an existing PA network to represent all species, and representation specificity, to measure the overlap 
between proposed priority areas that optimize the representation of unseen biodiversity and the existing PA 
network.

The proposed framework to test efficiency requires contrasting current PA networks against “optimal” areas, 
which were obtained using the R package ‘prioritizr’ 4.1.187. Prioritizr uses the integer linear programming solver 
Gurobi Optimizer88 to find the combination of sites that maximizes the number of conservation targets achieved 
while minimizing costs (e.g. the amount of area or the cost of sites).

Representation completeness.  To assess network representation completeness, we executed Prioritizr 
and forced existing PAs into the solution, which then causes the algorithm to select additional complementary 
areas as necessary until all species targets are achieved. These solutions can provide information about how 

Table 3.   Variables used in the species distribution models for each country The Worldclim variable code 
(www.​world​clim.​org) is indicated in parentheses.

Costa Rica Mexico USA

Vegetation
NDVI NDVI NDVI

Canopy height Canopy height Canopy height

Temperature

Annual mean (bio 1) Annual mean (bio 1) Annual mean (bio 1)

Seasonality (bio 4) Mean diurnal range (bio 2) Mean diurnal range (bio 2)

Annual range (bio 7) Isothermality (bio 3) Seasonality (bio 4)

Precipitation

Annual mean (bio 12) Annual mean (bio 12) Annual mean (bio 12)

Mean wettest month (bio 13) Mean wettest month (bio 13) Mean wettest month (bio 13)

Mean driest month (bio 14) Mean driest month (bio 14) Seasonality (bio 15)

http://www.worldclim.org
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much additional area is needed if targets are not met, allowing the efficiency of networks to be measured as a 
function of the amount of area needed to achieve the desired level of species representation.

Representation specificity.  To assess network representation specificity, a second prioritization was con-
ducted, but without forcing existing PAs into the solution. With this setup, the algorithm identifies the optimal 
set of sites achieving targets without any prior constraint, which implies that current PAs (or portions of them) 
might or might not be part of the solution. The overlap between current PAs and resulting areas can then be used 
to measure how efficient existing PA networks are at representing unseen biodiversity.
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