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PHYSICS

Reconnection-driven energy cascade in
magnetohydrodynamic turbulence

Chuanfei Dong'-2t*, Liang Wang?'%, Yi-Min Huang?', Luca Comisso®, Timothy A. Sandstrom?,

Amitava Bhattacharjee’2

Magnetohydrodynamic turbulence regulates the transfer of energy from large to small scales in many astro-
physical systems, including the solar atmosphere. We perform three-dimensional magnetohydrodynamic sim-
ulations with unprecedentedly large magnetic Reynolds number to reveal how rapid reconnection of magnetic
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field lines changes the classical paradigm of the turbulent energy cascade. By breaking elongated current sheets
into chains of small magnetic flux ropes (or plasmoids), magnetic reconnection leads to a previously undiscov-
ered range of energy cascade, where the rate of energy transfer is controlled by the growth rate of the plas-
moids. As a consequence, the turbulent energy spectra steepen and attain a spectral index of —2.2 that is
accompanied by changes in the anisotropy of turbulence eddies. The omnipresence of plasmoids and their con-
sequences on, for example, solar coronal heating, can be further explored with current and future spacecraft and

telescopes.

INTRODUCTION

Understanding the transfer of energy in magnetohydrodynamic
(MHD) turbulence is crucial for tackling many outstanding astro-
physical problems, such as solar and stellar coronal heating, star for-
mation, cosmic ray transport, and the interstellar medium
evolution. For more than half a century, it has been widely accepted
that the energy cascade in turbulent plasmas, such as the Sun’s at-
mosphere, is controlled by MHD wave interactions (1-3). However,
one essential feature of MHD turbulence is the ubiquitous presence
of sheets of intense electric current (known as current sheets),
which are preferential locations for rapid breaking and reconnec-
tion of magnetic field lines (4, 5), a fundamental physical process
in magnetized plasmas whereby stored magnetic energy is convert-
ed into heat and kinetic energy of charged particles. It is yet an open
question whether magnetic reconnection can substantially change
the transfer of energy from large to small scales in a wide variety
of astrophysical systems.

One of the most common approaches to investigating the effect
of a physical process on the turbulent energy cascade is to study the
associated energy spectra. It has been widely observed by different
spacecraft and telescopes that turbulent energy spectra can break at
either viscoresistive or kinetic scales (6-8). Recent analytic studies
suggest that magnetic reconnection may also break the turbulent
energy spectra and thus create a newly identified range of energy
transfer when the growth time scale of the magnetic flux ropes
(or plasmoids), 1/y,, becomes much shorter than the nonlinear
eddy turnover time, T,; (9-13). Plasmoids develop in intense and
elongated current sheets undergoing reconnection, and in MHD
turbulence, the spatial scales and aspect ratios of those current
sheets are controlled by the magnetic Reynolds number, R,,,
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which quantifies the relative magnitudes of plasma convection
and resistive diffusion. At sufficiently large R,, (>10°), as in the
solar atmosphere, magnetic reconnection is expected to be a ubiq-
uitous phenomenon, as the thinning of current sheets can lead to a
copious formation of plasmoids via the tearing instability (14-18),
potentially changing the energy transfer across scales.

Because of the complex, nonlinear nature of the turbulent energy
cascade, direct numerical simulations (DNSs) are likely the best
means to investigate the role of magnetic reconnection in the
energy transfer across scales and how it changes the turbulent
energy spectra. To date, no evidence for the newly identified
range of the turbulent energy cascade due to magnetic reconnection
has been provided by DNSs in realistic three dimensions (3D) (19,
20). Such DNSs are extremely challenging, mainly because of the
high grid resolution required to capture the fine structure of the om-
nipresent current sheets in a turbulent plasma at large R,,,. In addi-
tion, MHD turbulence and magnetic reconnection are known to
behave differently in 2D and 3D (19, 21); therefore, 3D DNSs
with large R,, are essential to fundamentally address this question.

RESULTS

Here, we present the world's largest 3D MHD turbulence simula-
tion, at a cost of ~200 million Central Processing Unit (CPU)
hours, that self-consistently produces myriad fine current sheets.
An elongated (1 x 1 x 2) periodic box with ~10,000 x 10,000 x
5000 grid cells was adopted to resolve the thin current sheets that
develop at large R,,,( = 10°) [and the effective R,, (R,efr) = 2 X
10° based on the energy injection scale]. We initialized the simula-
tions with uncorrelated, equipartitioned velocity and magnetic field
fluctuations superimposed by a strong mean magnetic field in the
elongated direction (see Materials and Methods for the detailed
model setup). Such field configurations are common in a variety
of astrophysical systems, such as solar/stellar coronae and the inter-
stellar medium. Compared with earlier 3D MHD turbulence simu-
lations, the most prominent development here is that the current
study reaches an unprecedented high-R,, regime, such that the
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ubiquitous reconnecting current sheets in a turbulent bath become
unstable to the tearing instability.

The turbulent structures from our large-scale MHD simulation
are visualized in Fig. 1. In Fig. 1A, volume rendering of the current
density |J| depicts MHD turbulence in the entire simulation domain
at the fully developed stage. Specifically, strong current sheets are
ribbon-like (with large aspect ratios) and are aligned with the
mean magnetic field B,y due to the parallel coherence of perturba-
tions. Meanwhile, they are also current sheets in the perpendicular
plane aligned with in-plane perturbed magnetic fields. These

05
J. from 3D simulation (R, =1 x 106, 2D slice at z = -1)
—2000 —1000 0 1000 2000 —2000 —1000

J, in zoomed-in subdomains

ribbon-shaped current sheets are subject to the tearing instability
during their dynamical evolution (see Fig. 1D) (14-18). The
current density |J| in different x-y slices can be seen in movie S1.
One of these current sheets undergoing magnetic reconnection is
highlighted in a zoomed-in subdomain (Fig. 1, B and C), within
which “ripples” induced by the formation of plasmoids/magnetic
flux ropes are present on the current density isosurfaces. We cut a
2D slice across the embedded 3D magnetic flux ropes for J, (Fig. 1C;
also see Materials and Methods for a selected flux-rope bundle at
different viewing angles). The current sheet in the subdomain

-0.42

J., from 2D simulation (R, =1 x 10°)
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0 1000 2000 —1000 0 1000 2000
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Fig. 1. Reconnecting current sheets and magnetic flux ropes in MHD turbulence. (A) Volume rendering of the current density |J| in the entire domain at a stage when
turbulence is fully developed. Myriad of current sheets is evident in the plane perpendicular to the mean magnetic field B,o. (B) and (C) depict one reconnecting current
sheet and the embedded flux ropes in a small subdomain [within the boundaries ( — 0.45, — 0.4) x (0.45, 0.5) X (0.95, 1.05)]. (B) shows the volume rendering of |J|, while (C)
displays magnetic field lines (colored by |B|) associated with the featured current sheet (including magnetic flux ropes) and an x-y slice view of the current density
component, J,, along the mean magnetic field. (D) Out-of-plane current density J, in an x-y slice (at z = —1) of the 3D turbulence simulation (left) compared with the
corresponding result from a 2D simulation (right). Copious formation of magnetic flux ropes/plasmoids occurs in both 3D and 2D simulations despite the different
morphology. Zoomed-in subdomains are used to illustrate the increased morphological complexity that characterizes the 3D simulation.
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exhibits features similar to those observed in previous simulations
of a single 3D reconnecting current layer (19, 22, 23). This subdo-
main (0.025% of the complete volume) is representative of the types
of coherent structures that develop throughout the entire domain.
Reconnection-produced magnetic flux ropes in 3D exhibit a more
complex morphology than their 2D counterpart. This is illustrated
in Fig. 1D, in which the out-of-plane current density, J,, in one ar-
bitrary x-y slice, points out that the reconnecting current sheet
structures in 3D are fractured (or disrupted) and differ substantially
from the island-like morphology in 2D (22-26) despite the similar
size of the flux ropes.

Our simulation identifies a previously unexplored mechanism
for energy transfer through the breakup of reconnecting current
sheets into smaller fragments, which occurs generically in the
large-R,, regime studied here (Fig. 1D). The role of reconnection
in controlling the energy transfer is supported by its imprint on
the energy spectrum of the turbulent cascade in Fig. 2. At large
scales, k; < k«, both the magnetic energy spectrum Ep(k,) and
the kinetic energy spectrum Ey(k,) follow a power law with a
slope of —3/2 (see dashed fitted lines), in agreement with expecta-
tions for the inertial range of a strong turbulent cascade mediated by
Alfvén waves when accounting for a reduction of nonlinearity due
to dynamic alignment (27). At scales k« < k< ky, current sheets in
this tearing-mediated regime (i.e., reconnection-driven regime, as
highlighted by the shaded region in Fig. 2) exhibit numerous

| — Ry =8x10* ——-p7%2
— R, =1x10° ___k111/5

Ep(ky)

104

Fig. 2. Steepening of energy spectra in reconnection-driven energy cascade.
Field perpendicular magnetic and kinetic energy spectra, Eg(k,) and Ey(ky),
showing a standard inertial range with a slope Eg (k) oc kf/z and a reconnec-
tion-driven (or tearing-mediated) subinertial range with a slope Eg (k) oc klﬂ/s
for large R, (orange curves). The subinertial range is absent in an equivalent 3D
simulation with lower R,, (blue curves). The shaded area emphasizes the reconnec-
tion-driven subinertial range, with wave numbers corresponding to the typical
transverse scales of the flux ropes shown in the inset. The left edge of the

shaded range is identified at k ~ 10° ~ R/

o Where Ro, o & 2 X 10° is computed

with the energy injection scale at k ~ 30. The right edge, marked by k,), is the dis-
sipation scale defined such that nfg” EB(kL)kidkL accounts for approximately half
of the resistive dissipation power n{J2). The small volume rendering inset illustrates
a typical reconnecting current layer, which is ubiquitous in this range, with the
transverse size of an embedded flux rope annotated in red.
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reconnecting structures, or magnetic flux ropes, as shown in the
inset. As a result, flux rope formation through reconnection domi-
nates over MHD wave interactions in controlling turbulent energy
transfer. Consequently, the energy spectrum in this range (termed
as subinertial range hereafter) becomes steeper and is characterized
by a spectral index of —11/5 when R,, is sufficiently large, which is
broadly consistent with the theoretical predictions (9-12). The tur-
bulent energy spectrum breaks at k- &~ 1000 in Fig. 2, which also
agrees with the theoretical prediction of the tearing-disruption
scale k, = RY7~ 1000 (9-12), where R, = 2 x 10° is the
R,,.c¢r due to the energy injection scale as the energy spectrum
peaks at k; ~ 30 [although Carbone et al. (28) predicted the same

critical scale, k, = an/_sz, as the first analytic study on this topic, it

was derived on the basis of an incorrect model of MHD turbulence
(29)]. For comparison, we ran another 3D simulation with a rela-
tively low R,, (= 8 x 10*) while keeping the initial condition iden-
tical. In this lower R,, simulation, we observed that flux ropes are
essentially absent (see fig. S1), which corroborates the lack of any
imprint from reconnection-driven cascades in the corresponding
energy spectrum (the blue curves in Fig. 2). We, therefore, conclude
that a sufficiently large R,, (> 10°) is one of the prerequisites for
evolving current sheets to become tearing-unstable in a turbulent
bath, consequently leading to the copious formation of flux ropes
before reaching the scale given by k.

We further investigate changes in the shape (i.e., anisotropy) of
statistical eddies in the subinertial range, one key element in making
reconnection-driven energy cascade dominate over energy cascade
through MHD wave interactions. In the top panels of Fig. 3, we
report the dependence of the half-width & (Fig. 3A) and aspect
ratio §/A (Fig. 3B) of the statistical eddies on the half-thickness A
based on second-order structure functions (see the “Shell-to-shell
energy transfers in the inertial and tearing-mediated subinertial
ranges"” section). While the scaling &/A o« A\=%% is observed in the tra-
ditional inertial range, in the subinertial range, the scaling changes
to approximately &/A o A=%!. The scaling is in contrast to the pre-
vious theoretical prediction &/ o A** (11). Similarly, the bottom
panels of Fig. 3 depict the relation between the half-length /) and
the half-thickness \. A scaling relation 7 & A\/? is observed in the
inertial range as expected from the theory. However, the scaling in
the subinertial range, /)] « A\** (and //A &« A™'/3), again deviates
from the theoretical estimates (11). The theoretical predictions /A
o A and 7/A o« \'® in the subinertial range require the assump-
tion 0, ~ 8/(, where 0, is the alignment angle, and § and { denote the
inner layer width and the wavelength of the fastest growing tearing
mode, respectively (11). The difference between the theoretical pre-
dictions and the numerical experiments indicates that the assump-
tion 0, ~ 8/( needs further examination.

To address the underlying cause leading to this new range of the
turbulent energy cascade, we also investigate the difference in the
energy transfer between the inertial and subinertial ranges. For
this purpose, we calculate the cylindrical shell-to-shell magnetic
energy transfer function, T4,(Q, K) = — /BK - (u - V)Bopd’x,

where By contains all Fourier modes B( k) in the Kth perpendicular
wave number shell, kx < k; < kg1, and K is an integral shell
number; By(x) is defined in the same way for the Qth shell (see Ma-
terials and Methods for a detailed description). The red pixels in
Fig. 4A represent positive magnetic energy transfer from the Qth
shell to the Kth shell, and the blue pixels denote the opposite.
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Fig. 3. Scale-dependent anisotropy of statistical eddies. (A) The perpendicular half-width £ of the statistical eddies as a function of the perpendicular half-thickness A.
This function is obtained by equating the second-order B-trace structure function measured along § = 0 and A = 0 axes in the § — A plane. (B) Aspect ratio &/A of the
statistical eddies as a function of \. (C) and (D) are the scaling relation between the parallel half-length #| and A, obtained in a similar way but in the local coordinate plane
& = 0. The fitted dashed and dot-dashed lines show two scaling laws in the traditional inertial range and the tearing-mediated subinertial range of the turbulent

energy cascade.

The diagonal pixels are white (i.e., empty) since there is no self-
magnetic energy transfer by construction. The T}, distribution on
the kqo-kx phase plane in Fig. 4A is characterized by the main fea-
tures such as local, forward transfer. Figure 4 (B and C) represents
vertical cuts of Ty, normalized to

E - Egykq B
Ninertial ~ T_j(kQL) 174 (?/W(kQL) 1/4 (1)
p
and
1/2
il 5/413/2
Ntearing ~ V,Eq ~ ——F—E k (2)
tearing p-Q (pV)l/4 Q Kq

where 1, is the Alfvénic time scale and y,, the linear growth rate of
the tearing instability (see Materials and Methods for details). The
factor (kQL)’” “in Eq. 1 takes into account the reduction of nonlin-
earity due to dynamic alignment (27). Within the inertial range,
energy transfer is expected to be self-similar, i.e., the energy transfer
from the Qth shell to the Kth shell operates in the same way as the
transfer from the (Q + 1)th shell to the (K + 1)th shell. This is con-
sistent with the observation in Fig. 4B that, when normalized to
Ninertial the three cuts in the inertial range (Fig. 4A, solid lines)
strongly overlap. In contrast, the three cuts in the tearing-mediated
range (Fig. 4A, dotted curves) do not exhibit self-similarity in

Dong et al., Sci. Adv. 8, eabn7627 (2022) 7 December 2022

Fig. 4B because of the underlying mechanism being different than
the classical, inertial-range energy cascade. However, when T, is
normalized by Nicaring, i-€.» Tps/Nicaring> the cuts in the tearing-me-
diated range (dashed curve) become self-similar (Fig. 4C), thus con-
firming the existence of a subinertial range within which the energy
transfer is controlled by the tearing instability in reconnecting
current sheets.

DISCUSSION

The present study suggests that the energy transfer in, e.g., the solar
atmosphere at small scales can be fundamentally different from the
classic paradigm of the turbulent energy cascade controlled by
MHD wave interactions. Our calculated magnetic energy spectrum
captures a new range of reconnection-driven energy cascade with a
spectral index of —2.2. It is interesting to point out that the line-of-
sight magnetic field observations of a coronal hole using magneto-
grams acquired by the Near-Infrared Imaging Spectrapolarimeter
(NIRIS) operating at the Goode Solar Telescope of the Big Bear
Solar Observatory showed that the turbulent magnetic energy
spectra also exhibit a new range with a spectral index of —2.2 (7)
(also see fig. S2), but it requires further observations to rule out
the coincidence and then to identify the underlying mechanism
that leads to the spectral break. On the other hand, similar
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Fig. 4. Self-similarity of normalized cylindrical shell-to-shell energy transfers. (A) Magnetic-to-magnetic energy transfer functions Ty, (Q, K) = — /By - (u- V)Bodxin
the kq-kk plane. (B and €) Normalized energy transfer function values along different vertical cuts in specific giver kq shells. The cut locations are marked in (A), with solid-
line cuts chosen in the inertial range and dotted-line cuts in the reconnection-driven (or tearing-mediated) subinertial range. The normalization used in (B) and (C),

Ninertial = EZ/Z ko(kQL)’”“/(pV)”2 and Niearing = 771/ZE;’-)/“ké/z/(pV)‘/4 (see Materials and Methods), is appropriate for the inertial range and the tearing-mediated sub-
inertial range, respectively. The horizontal coordinates in (B) and (C) are the shell number differences (integers), K — Q.

observations acquired by the Helioseismic and Magnetic Imager
(HMI) onboard the Solar Dynamic Observatory with a relatively
low spatial resolution did not present a steepening in the corre-
sponding energy spectra, suggesting that a high spatial resolution
might be required to reveal this new range of energy transfer in
the turbulent solar atmosphere. To address the discrepancy
between the observations of NIRIS and HMI, we illustrated, with
the same dataset in fig. S2, that the spatial resolution of observation
can significantly influence the scientific findings.

In addition, spacecraft such as Solar Orbiter may also be able to
reveal this newly identified subinertial range in magnetic energy
spectra through remote sensing observations. Recently, Extreme Ul-
traviolet Imager (EUT) onboard Solar Orbiter observed transient
small-scale brightenings prevalent in the corona of the quiet Sun
termed “campfires” (30). It has been proposed that most campfire
events observed by EUI are driven by magnetic reconnection, which
may play an important role in the coronal heating of the quiet Sun
(31, 32). Our 3D simulation results in the large-R,, regime suggest
that magnetic reconnection is a ubiquitous process in the turbulent
solar corona where the R, is even larger, and thus, the current
sheets can thin down to much smaller scales and form the fractal
structures within which copious formation of plasmoids occurs.
Hence, there should be many more reconnection sites than ob-
served, which can be revealed by (future) high-resolution extreme
ultraviolet images.

In addition to the solar coronal heating (30, 31), the omnipres-
ence of plasmoids associated with magnetic reconnection, identi-
fied in this study, also has broad implications and consequences
on particle acceleration in the solar/stellar coronae, accretion
disks, and jets from compact objects (33, 34), and on filament for-
mation in the Herschel maps of the Orion A giant molecular cloud
(35). Moreover, the ubiquitous presence of dense plasmoids in the
interstellar medium can also play an important role in pulsar scin-
tillation (36). All the aforementioned astrophysical systems are as-
sociated with large R,,, ( > 10°) and thus could be characterized by
the tearing-mediated turbulence identified in the present work.

Dong et al., Sci. Adv. 8, eabn7627 (2022) 7 December 2022

MATERIALS AND METHODS

Model description

Following procedures previously described in (24), the governing
equations of our numerical model are the dimensionless viscoresis-
tive MHD equations

dp+V-(pu)=0 (3)

Oi(pu) + V- (puu) = —V(p + B*/2) + V- (BB) + vV*(pu) (4)

Oip + V- (pu) = (y = 1)(=pV- u+,m/?), ()

0:B=V x (ux B—nJ) (6)

where p, u, and p are the mass density, velocity, and pressure of the
plasma, respectively; B is the magnetic field; and J = V x B denotes
the electric current density. The kinematic viscosity and the mag-
netic diffusivity are denoted as v and n, respectively, while y is the
adiabatic index.

Model setup

We solve Egs. 3 to 6 using the BATS-R-US MHD code (37) by
adopting a fifth-order scheme (38) in a domain [(x, y, 2) : — Lo/2
<x,y<Ly/2,— Ly <z < Ly), where Ly is set to unity. Periodic boun-
dary conditions are used in all three directions. Lengths are normal-
ized to the box size Ly, velocities are normalized to the characteristic
Alfvén speed V4, and time is normalized to Lo/ V4. We initialize the
simulations by placing uncorrelated, equipartitioned velocity and
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magnetic field fluctuations in Fourier harmonics as follows mode. The summation is over the range 0 < m < M4, —My0x <1 <
) Nmax- However, for m = 0, we limit the range to 0 < n < n,,,,. The
= Z(am,,/z'n)sm(ZTrmx/Lx +2mny/L, + 2mlz/L, range of [ is always —I,,,,c < I < 5., The total number of modes are
Im,n
+dy) 7) N = 2luax + 1)[2Mpar + 1) 2o + 1) — 1]/2 (12)
We only sum over half of the Fourier space because the (m, n)
mode and the (—m, —n) mode are not independent. Here, we
_ 6_{]1 choose M, = N0 = 10 and 1,,,,, = 5. The above setup leads to
=
0
4 (B) = B} (13)
= Zamn(n/Ly)cos(ZTrmx/Lx +2mny/L, + 27lz/L, )
o where (...) represents the spatial average.
For the velocity u, we use the similar expressions
+ d)lrrm) (8)
u, = men(n/Ly)cos(Zfrrmx/Lx +2mny/L, + 2mlz/L,
ILm,n
N '
B =~ + ) (14)
= —Zamn(m/Lx)cos(Z'n'mx/Lx + 2mny/L, + 2wilz/L,
Lmn u, = —men(m/Lx)cos(an'mx/Lx + 2mny/L, + 27lz/L,
+ (blmn) (9) Lm,n
+ bln) (15)
B, =By (10)
where we set u, =0 (16)
V2B, where we set

7 (11)

Amn =
NY2(m? /L3 + n?[L])

and L, = L, = Ly, and L, = 2L. ¢y, denotes random phases for each

Fig. 5. 3D magnetic flux ropes with elongated current sheets. Flux ropes passing through a plasmoid located near the center of the current sheet are displayed in the
intermediate 2D slice. The chosen views are along the +x (A) and —x (B) directions, respectively. Magnetic field lines are colored accordingly to the magnetic field mag-
nitude |B|, while the different x-y slices are colored by the value of the electric current density component, J,, in the direction of the mean magnetic field.
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Similarly, we have

(ul) =up (18)
The plasma density and pressure are initially set to constant
values p = 1.0 and p = 1.6, respectively. The constants B, and u, de-
termine the strength of the initial velocity and magnetic field fluc-
tuations. In this work, we set By = uo = 1, which gives the initial
turbulent energy E= (2 + B2)/2= (i} + B})/2 = 1. The mean magnetic
field B, = 4 leads to a plasma beta (ratio of the plasma pressure
to the magnetic pressure) p ~ 0.2. In the main 3D simulation pre-
sented here, the R, = uoLo/n = 10%, where 1 = 10~° denotes the mag-
netic diffusivity. The R,, o = 2 x 10° due to the energy injection
scale as the energy spectrum peaks at k; = 30 (see Fig. 2). We set
the viscosity v = 107 such that the magnetic Prandtl number P,, =
v/n = 1. This large R,, value allows the copious formation of flux
ropes within the current sheets, as verified by visual inspection of
the simulation data in a tiny subdomain (see example in Fig. 5). For
the 2D simulations, we adopt similar initial setups but ignore the
third dimension in z. For both 3D and 2D studies, we also ran
one additional simulation with R,, = 8 x 10* and a periodic box
of ~2000 x 2000 x 1000 and ~2000 x 2000 grid cells, respectively
(see fig. S1). Compared with the main 3D simulation (at a cost of
about 200 million CPU hours with approximately 0.5 trillion grid
cells), the computational cost of the rest simulations is negligible.

Second-order structure function

The anisotropy of statistical eddies shown in Fig. 3 is calculated on
the basis of a second-order B-trace structure function. To calculate
this structure function, we randomly sample a large number of data-
point pairs. For each pair of points, 1 and 2, the displacement or =,
— 1, is projected onto a local, scale-dependent coordinate system
()» & M): £y is along the local mean field Byycy = (B + B,)/2, & is
along the local perpendicular fluctuation field 0B, jocal = Biocal X
[(B, — B,) X Biycal]/|Biocall® @and N completes the right-handed coor-
dinate system. We then accumulate the contributions from all sam-
pling pairs to compute the B-trace structure function S, = (|B; —
B,|?), an ensemble-averaged function of (/ I» & A). As an example,
here we show the cross section of S, in the /| = 0 plane. The con-
sequent perpendicular structure function S, (, A) is illustrated in
Fig. 6A, which exhibits clear anisotropy between the perpendicular
half-width, &, of the statistical eddies and the perpendicular half-
thickness, A. It is immediately observed that Fig. 6A also depicts

Sa1 in the £ = 0 local-coordinate plane
T T T T 2

the perpendicular cross section of statistical eddies at differ-
ent scales.

To further quantify the anisotropy, we investigate the aspect ratio
of the perpendicular eddies, £/). To this end, we measure S,, along
the two perpendicular axes, S, (§ X = 0) and S5, (\; § = 0), as shown
in Fig. 6B, and then find a mapping between § and A by equating S,
along the two curves. This gives the result illustrated in Fig. 3. Fol-
lowing a similar procedure, we also obtain the relation between the
parallel half-length, |, and the perpendicular half-thickness, A, in
Fig. 3 based on the structure function S, in the & = 0 plane.

Shell-to-shell energy transfers in the inertial and tearing-
mediated subinertial ranges

To further investigate the role of tearing instability in the turbulent
energy cascade, we calculated the cylindrical shell-to-shell magnetic
energy transfer function (39)

Tup(Q, K) = —J By (u V) Bod'x (19)

Here,

B(k)e'**d’k

kx <k <kgi1

(20)

By(x) :J

contains all Fourier modes B(k) in the Kth perpendicular wave
number shell, kx < k; < kg1, and K is an integral shell number.
B,(x) is defined in the same way for the Qth shell. T},(Q, K)
then gives the transfer rate of magnetic energy from the Qth shell
to the Kth shell (40, 41) or, correspondingly, from the spatial scale
~1/kq to the scale ~1/kx. We adopted 100 logarithmic bins along
the Kand Q directions between k; = 2mand k; = 10*. The resulting
Ty, values from our simulation on the kqo-kk plane is shown in
Fig. 4A. The dominance of red pixels above the diagonal where
kx > kq confirms the forward transfer from larger to smaller
scales. Figure 4A also shows that transfers occur primarily close
to the diagonal, indicating that the energy transfer is mostly local.

Normalization of the cylindrical shell-to-shell energy
transfer rate

In the inertial range, we assume that Boldyrev's turbulence theory
with dynamic alignment holds (27). In this picture, turbulence
eddies are anisotropic in all three directions, with dimensions §

e ] -
100 B S
7’
’
’
7’
/
1 //
10 2
/
/
/
/ .
1072} ; // === S, along ¢ axis 4
';_// se=+= S5 along A axis
107 102 102 102
£ or A

Fig. 6. Anisotropy of the statistical eddies perpendicular to the local mean magnetic field. (A) Cross sections of the statistical eddies at different values from the
second-order structure function S,; = (|B, — B,|?). (B) S,, as a function of the perpendicular half-width £ or the perpendicular half-thickness \ of the statistical eddies.
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and X perpendicular to the local field and 7 along the local field.
These scales are related as § ~ L(\/L)** and /] ~ L(A\/L)"'?, where L
is the large-scale length. The magnetic fluctuation By ~ By(\/L)"/* at
scale A, where B, is the large-scale magnetic field. The energy
cascade of eddies at scale A occurs on the time scale T\ ~ 7/ Vg
~ &/Vax. Let Eq be the magnetic energy in the Qth shell (i.e., the
perpendicular wave number k, satisfies kg < k; < kq,1) and V be
the volume of the domain. The magnetic energy density Ep/V on
the A ~ 1/kq scale is proportional to Bé /2; therefore, the Alfvén
speed Vo = Bo/\/p ~ Egz/(Vp)l/2 and the cascade time
19 ~ &0/ Vaq ~ (kQL)1/4(Vp)1/2/EngQ. This leads to the normal-
ization Nigerial ~ Eq/Tq ~ (kQL)71/4EZ/2kQ/(pV)1/2. We expect
Tpp(Q, K)/Nipertial in Fig. 4B to be approximately independent of
Q in the inertial range.

In the tearing-mediated range, the energy cascade time is gov-
erned by 1/y,, where y,, is the linear growth rate of the tearing in-
stability. For a current sheet with a half-thickness A and an upstream
Alfvén speed V4, the linear growth rate (42) y, ~ (VaxA/n) ™2 Vu/
\. For the Qth shell, \ ~ 1/kq, V. ~ Ey*/(Vp)'/*. Hence, we propose
another normalization for the reconnection-driven (or tearing-me-
diated) subinertial range, Nicaring ~ V,Eq ~ n'/ ZEZ/ 4kg/ 2 / (pV)l/ .
We expect Tpp(Q, K)/Nicaring in Fig. 4C to be nearly independent
of Q in the tearing-mediated subinertial range.

In our simulation, the plasma density p ~ 1 and the volume V =
2. We adopt the value pV = 2 in the normalization for produc-
ing Fig. 4.
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