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Abstract: This study investigated smoke dispersion inside a street canyon in a series of numerical
simulations. The building height and street width as well as the cross-wind velocity were changed
during the simulation, and the smoke recirculation behavior inside the canyon is presented and
discussed. The results show that the smoke recirculation behavior could be distinguished into two
different stages, i.e., the “fully recirculation stage” and “semi recirculation stage”, which is strongly
determined by the canyon aspect ratio (the building height divided by street width). It was found that
the critical wind velocity at which the smoke recirculation would take place was almost constant for
an ideal street canyon with an aspect ratio of 1; however, this velocity was decreased with increasing
building height or decreasing street width, indicating a much more dangerous circumstance when the
aspect ratio is greater. Finally, a new piecewise function is proposed for the critical smoke recirculation
velocity for all cases, which can provide some theoretical basis for building designs and emergency
rescue for human beings inside the street canyon.
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1. Introduction

Street canyons, consisting of one street area with tall buildings standing on both sides
of the street [1], have been widely applied in modern cities to keep pace with the rapid
development of urban constructions. There are many commercial and residential buildings
inside the canyon, and, regarding potential environmental issues to public safety and
human health, the diffusion model of pollutants in urban street canyons has attracted more
and more attention in recent decades [2–5]. Normally, the aspect ratio of street canyons
(n = H/W, where H and W are the building height and street width, respectively) is a key
factor determining the diffusion of pollutants [6,7]; pollutants can be dispersed into the
surroundings more easily in a street canyon with a lower aspect ratio [8]. The flow pattern
in the street canyon when the incoming ambient wind is perpendicular to the building
direction was analyzed by Oka [9], who concluded that the flow field fell into three different
regimes according to the variations in the aspect ratio of the street canyon, i.e., isolated
roughness flow (with n < 0.3), wake interference flow (with 0.3 < n < 0.7) and skimming
flow (with n > 0.7). A change in the above flow pattern would influence the entrainment
of ambient air to the pollutants inside the canyon, and hence, the diffusion behavior of
pollutants could be different [10,11].

Since then, weak buoyancy-driven flow behavior in different kinds of street canyons
has been addressed all around the world, and the most representative factors are solar
radiation, ground heating, etc. For instance, Kim [12] studied variations in pollutant
diffusion within a ground-heated street canyon by changing the aspect ratio from 0.6 to 3.6.
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Wang [13] found that the thermal buoyancy generated by solar radiation heating on both the
ground and buildings could significantly affect the flow field pattern in the street canyon.
Furthermore, the natural convection field in urban street canyons under the condition of
uniform heating by solar radiation on the street canyon ground and buildings on both
sides was investigated [8,14–18]. More recently, the flow pattern and temperature field in
the street canyon for different heating conditions were acquired by Lin [19] through the
particle image velocimetry method (PIV), indicating that the presence of thermal buoyancy
can significantly enhance the turbulence in the street canyon, resulting in a more complex
flow field in the street canyon.

It should be noted that all of the above studies are based on the study of the street
canyon under no thermal buoyancy or weak thermal buoyancy conditions; however, as
we know, the street canyon is always a densely populated area with a large number of
fire causative factors. When a fire occurs in the street canyon (e.g., car collisions), the
strong buoyancy caused by fire can make the flow dispersion completely different. In the
meantime, strong buoyancy-driven flows will also be affected when the ambient wind
is stronger, resulting in the most representative smoke recirculation behavior inside the
canyon. In recent years, some scholars started to investigate the smoke recirculation
behavior under different street canyon configurations. The important concept of “critical
recirculation velocity” was initially proposed by Hu [20]; namely, when the cross-wind
velocity is greater than this critical level, fire smoke will be recirculated back inside the
canyon, imposing much more serious fire and smoke hazards for evacuation and emergency
rescue. The critical recirculation velocity for different fire locations and heat release rates
was further obtained by Hu [20,21], Pesic [22–24] and Wang [25], and then a dimensionless
factor called the Froude number (denoted as Fr) was introduced to reflect the competition
of inertia force (due to ambient wind) versus thermal buoyancy (due to fire). Zhang [26]
studied an urban street canyon formed by wedge roof buildings and found that the flow
pattern of pollutant plume dispersion inside the street canyon with increasing wind speed
for different roof inclination angles could be divided into three regimes.

However, we have noticed that most of the previous studies are concerned with fires in
an ideal street canyon with a height–width aspect ratio of 1 [27–29], but in real life, we can
see many different kinds of street canyons. Considering the different flow patterns due to
various aspect ratio conditions, when a fire occurs in the street canyon, the aspect ratio effect
on the smoke dispersion could be another issue to be addressed. The aspect ratio effect on
the critical wind velocity and CO concentration was discussed by Zhang [30] and Hu [31].
It was found that the critical wind velocity does not fall into a simple linear correlation;
however, the building height did not surpass 24 m in their models, which might not be
enough. Physically, if the building is high enough, the smoke may not completely sink to
the ground as a result of mechanical balance on the facade wall of a leeward building, but
this has not been addressed in previous investigations.

For this purpose, this paper aims to further investigate the aspect ratio effect on
smoke dispersion in a street canyon. Applying the well-known Fire Dynamic Simulator
software (FDS), a series of street canyon models with building heights ranging from 9–36 m
and street widths of 12–24 m were set up to cover different canyon aspect ratios ranging
from 0.38–3. Keeping the heat release rate (HRR) of fire constant at 5 MW according to
normal combustion due to vehicle collision, the flow patterns of smoke dispersion were
compared and analyzed. Finally, the relationship between critical recirculation velocity and
the canyon aspect ratio was determined and discussed. This study could provide some
theoretical basis for building designs and the emergency rescue of human beings inside the
street canyon.

2. Modeling
2.1. Physical Model Configuration

A 1:1 street canyon model was set up by using the software of Fire Dynamic Simulator
(FDS, version 6) developed by the National Institutes of Standards and Technology (NIST),
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which is a well-known CFD-based software in fire engineering. In order to minimize the
calculation duration, the Large-Eddy Simulation (LES) method is predefined in FDS model-
ing. The governing equations for LES simulation, which consist of conservation of mass,
momentum and the transport of sensible enthalpy, can be found in McGrattan et al. [32].
Previous studies [20,21] have verified the accuracy of FDS model predictions in terms
of wind velocity fields, gas diffusion characteristics and plume parameters under wind
conditions, respectively.

In this study, we thought that the association between the wind and building could be
complex. In general, there are two categories of wind–building configuration: in category
(a), the wind inlet adheres to the left side of the first building, and in category (b), a small
gap occurs between the wind inlet and the left side of the first building (see Figure 1 below,
containing a single-street canyon model and a multiple-street canyon model).
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Figure 1. Two categories of wind–building configuration: (a) single-street canyon model with wind
inlet adhered to the building; (b) single-street canyon model but with a small gap between the wind
inlet and the building; (c) multiple-street canyon model with wind inlet adhered to the building;
(d) multiple-street canyon model but with a small gap between the wind inlet and the building.

Thus, it should be noted that the two-category configuration could cause the results
to be completely different. As seen in Figure 2, for the category (a) cases, except for a
short distance above the building top, the wind velocity profile is relatively uniform at
the entrance of the last street canyon. This would not have a strong impact on the smoke
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recirculation inside the street canyon. However, for category (b) cases, the wind velocity
profile is completely different at the entrance of the last street canyon and is not stable (e.g.,
in Figure 2a, the maximum wind velocity can be almost 11 m/s and then finally reduced,
but the maximum wind velocity can be lower in Figure 2b).
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model; (b) multiple-street canyon model.

To simplify the model configuration and avoid wasting calculation resources, we set
up a single-street canyon model, as shown in Figure 3, with two parallel buildings (40 m
in length and 3 m in width) located on both sides of a street. The building height (H)
and separation distance (W) are changeable to represent different aspect ratio conditions
(n = H/W) of the street canyon. The height of the building ranges from 9 m to 36 m,
whereas the building separation distance is set to 12 m, 15 m, 18 m, 21 m or 24 m. It should
be noted that the above configuration matches well with a typical street canyon in a city
(e.g., 3–6 traffic lanes inside the canyon and 3–12 levels for the building alongside the street,
while the aspect ratio n = H/W also matches well with practical building configurations,
which is strongly associated with sunlight, ventilation and population requirements). In
order to limit the errors caused by modeling, a calculation domain of 40 m in length and
24 m in width was created, the height of which (Hm) increases with the height of the
building (H), due to the effect of areas of insufficient height on the airflow over the roof of
the building. A fire source fueled by n-heptane was set in the center of the street canyon
with a constant heat release rate (HRR) of 5 MW, reflecting a fire scenario due to small car
collisions inside the canyon.

Then, a uniform inlet velocity boundary condition was set on the left side of the
simulation domain as representative of the ambient cross-wind. The configuration abides
by some previous works by Hu [20,21,31], Zhang [26,30] and Pesic [23], but the wind profile
was not considered in these works. The wind direction was perpendicular to the building,
but the velocity of the cross-wind was altered step by step in the simulation to search for the
critical smoke recirculation velocity of the street canyon, which was determined visually
from the smoke dispersion throughout the simulation time period. The top and the other
three sides of the domain were set as free boundary conditions. Related studies [33] have
shown that for a street canyon with W/H = 1, FDS still predicts the flow field measurements
from wind tunnel experiments, and predictions are in good agreement with uniform inflow
boundary conditions where no turbulence intensity is specified. It was also shown [34] that
in the skimming flow regime for such a square canyon, the level of turbulence within the
canyon is not very sensitive to external turbulent conditions because the shear layer at the
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interface acts as a filter for the incoming turbulent structure. In order to have a better view
of the smoke dispersion behavior and flow pattern, an observation slice was employed
through the centerline in the Y direction of the street canyon. The simulation time was 400 s
when the flow field and pollutant distribution in the street canyon reached stability. Initial
conditions were set to an ambient temperature of 20.0 ◦C, ambient pressure of 1.0 atm,
relative humidity of 40.0%, ambient oxygen mass fraction of 23% and ground level of 0.0 m.
All the simulation conditions are listed in Table 1.
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Figure 3. Model configuration of the street canyon with different aspect ratios: (a) 3D model in FDS;
(b) top view (H—building height; W—separation distance; and Hm—height of the calculation domain).

Table 1. Simulation scenarios.

Test No.
Street Canyon Configurations (Length: L = 40 m)

W H

1–10
12 m 9 m 12 m 15 m 18 m 21 m 24 m 27 m 30 m 33 m 36 m

n = H/W 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

11–20
15 m 9 m 12 m 15 m 18 m 21 m 24 m 27 m 30 m 33 m 36 m

n = H/W 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40

21–30
18 m 9 m 12 m 15 m 18 m 21 m 24 m 27 m 30 m 33 m 36 m

n = H/W 0.50 0.67 0.83 1.00 1.17 1.33 1.50 1.67 1.83 2.00

31–40
21 m 9 m 12 m 15 m 18 m 21 m 24 m 27 m 30 m 33 m 36 m

n = H/W 0.43 0.57 0.71 0.86 1.00 1.14 1.29 1.43 1.57 1.71

41–50
24 m 9 m 12 m 15 m 18 m 21 m 24 m 27 m 30 m 33 m 36 m

n = H/W 0.38 0.50 0.63 0.75 0.88 1.00 1.13 1.25 1.38 1.50

Global condition HRR: 5 MW; Ambient: 20 ◦C; Wind velocity: from 1.9–3.6 m/s, with intervals by 0.1 m/s

2.2. Grid Sensitivity

Before the simulation, normally, we need to check the grid size to see if it is appropriate
to accomplish the simulation. According to the FDS user’s guide [35], the validation study
sponsored by the U.S. Nuclear Regulatory Commission [36] and some relevant research
works [37], when the grid size δx is between D*/16 and D*/4, the simulation can be well
established, in which D* is the characteristic diameter relative to HRR of the fire source:

D∗ =

( .
Q

ρ∞CpT∞
√

g

)2/5

(1)
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where
.

Q is HRR; ρ∞ is the ambient air density; Cp is the specific heat of air; T∞ is the
ambient air temperature; and g is the acceleration of gravity. On this basis, the mesh size
is preferred to be 0.11–0.46 m. Here, taking the fire scenario of H = W = 18 m with no
cross-wind as a reference, a series of cubic mesh dimensions, i.e., 0.2 m, 0.25 m, 0.4 m,
0.5 m and 1.0 m, were selected for comparison with McCaffrey’s model, which is the
most representative one regarding the temperature profile of fire plumes. Based on the
thermocouple results at 3 m, 6 m, 9 m, 12 m, 15 m and 18 m above the fire source, it is
seen in Figure 4 that, when the grid size is 0.25 m, the simulation results are more similar
to McCaffrey’s model, but the calculation duration would be still very extensive. Then,
to reduce calculation resources to the greatest extent, a 0.25–1.0 m hybrid grid size was
applied in this study; i.e., for the near-fire region with −10 m ≤ Y ≤ 10 m, the grid size was
0.25 m, but for other regions somewhat farther from the fire source (−20 m < Y < −10 m,
10 m < Y < 20 m), the grid size was changed to 1.0 m. The results show that the 0.25–1.0 m
hybrid grid size is similar to the 0.25 m cubic grid, so it can be applied to accomplish the
simulation, while the calculation duration can also be significantly shortened.
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3. Results and Discussion
3.1. Smoke Recirculation Behavior in Street Canyons

As we know, with an increase in the cross-wind velocity, the smoke recirculation
behavior will be much more obvious inside the canyon. Specifically, the most representative
smoke dispersion behavior in street canyons (W = 18 m and H from 9–36 m) under critical
recirculation velocity conditions is depicted in Figure 5. We can see that, generally, the
smoke dispersion can be categorized into two different regimes:

(1) When the height of the building is greater than 9 m and less than 18 m (i.e., the
canyon aspect ratio is 0.5 ≤ n ≤ 1, see Figure 5a), the smoke first rises due to buoyancy
(slightly tilted toward the windward building), then moves downward under the action of
ambient wind and finally sinks to the floor. After that, the entrainment from the fire source
will drag the smoke, moving to the fire and rising up again, and thereby smoke recirculation
will take place. Such a phenomenon is similar to previous research [20], reflecting a “fully
recirculation stage” until the building height reaches H = 18 m, as seen in Figure 5b.

(2) When the building height is greater than 18 m (i.e., the canyon aspect ratio 1 < n ≤ 2,
see Figure 5c), the smoke will tilt directly toward the leeward building, but the sinking of
the smoke at the building facade is different. As seen in the figure, the smoke cannot reach
the floor as in the “fully recirculation stage” but is instead recirculated in the middle-upper
part inside the street canyon, which we suggest is a “semi recirculation stage”. The main
reason is that the mechanical equilibrium condition can be reached for a higher leeward
building, so the smoke sinking stops and then rises again due to buoyancy.
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Vc = 3.2 m/s; (b) H = 18 m, Vc = 2.8 m/s; and (c) H = 24 m, Vc = 2.6 m/s (red arrows represent the
direction of smoke movement).

The typical flow patterns (200–400 s) for the above conditions are depicted in Figure 6.
It is seen that for a relatively low building height (i.e., H ≤ 18 m), there is an obvious
clockwise vortex in the vicinity of the leeward building, which can slightly push the
fire plumes tilted toward the windward building. However, with increasing building
height, this vortex disappears, but a relatively weaker vortex close to the wall appears at a
higher position near the leeward building, showing good evidence for the smoke “semi
recirculation stage”. Moreover, since the buoyancy will become weaker at a higher position,
a small clockwise vortex is presented at the top of the windward building, but the smoke
will not be dispersed in the street canyon.
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vortex position and relative impact on the smoke recirculation).

3.2. The Critical Smoke Recirculation Velocity for Different Street Canyon Conditions

The smoke recirculation behavior inside the street canyon was visually observed
according to previous research. The minimum cross-wind velocity that causes smoke
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recirculation is known as the “critical recirculation velocity” and is expressed as Vc. It
should be noted that even though the smoke can hardly reach the floor in the “semi
recirculation stage”, the wind velocity at which the smoke starts to sink down on the
leeward building is considered to be critical in this work.

The critical smoke recirculation velocity for different street canyon conditions is pre-
sented in Figure 7. In general, we can see that the critical recirculation velocity is decreased
with increasing building height for a given street width. On the contrary, when the canyon
width is broadened, the critical recirculation velocity will increase. As we discussed before,
the smoke recirculation behavior will reflect the competition between inertia force and
thermal buoyancy. Relative to the building height, the thermal buoyancy is weakened at a
higher elevation, but the inertia force remains constant, so the smoke recirculation is easier
to observe when the building is higher. However, since the smoke traveling distance from
the fire source to the leeward building is increased for a wider street, the smoke dispersion
to the surroundings becomes easier, and hence, smoke recirculation is more unlikely to take
place. The decrease in the critical velocity for different street widths could be effectively
proposed through a series of simple equations, such as Vc = αHβ, displayed in the right
corner of Figure 7. It is seen that the β coefficients are all close to −0.3, which is consistent

with previous investigations by Hu [31], where Vc ∝
.

Q
1/3

H−1/3. In the meantime, for an
ideal street canyon with an aspect ratio of n = 1, the critical recirculation velocity is shown
to be almost constant at around 2.8–2.9 m/s (see the ellipse in Figure 7); hence, the average
critical recirculation velocity for ideal street canyons is suggested to be 2.84 m/s.
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Figure 7. Relationship between critical recirculation velocity and building height for different street
canyon widths (the red dashed ellipse marks the ideal street canyon with an aspect ratio of n = 1, and
the critical recirculation velocity is shown to be almost constant at around 2.8–2.9 m/s).

Based on the above analysis, we suggest the aspect ratio of the street canyon (i.e.,
n = H/W) to be a main factor determining the smoke recirculation behavior. The relation-
ship between the critical recirculation velocity and the street canyon aspect ratio is further
discussed in the next section.

3.3. Correlation of the Smoke Critical Recirculation Velocity for Different Street Canyon Aspect
Ratio Conditions

Referring to the critical recirculation velocity for an ideal street canyon, we employed a
dimensionless critical recirculation velocity (Vc*) regarding the critical recirculation velocity
for various aspect ratio conditions:

V∗c = Vc/Vc,0 (2)
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in which Vc is the critical recirculation velocity in each case, and Vc,0 is the critical recir-
culation velocity for an ideal street canyon with an aspect ratio of n = H/W = 1. Thus,
Figure 8 shows the relationship between the dimensionless critical recirculation velocity
(Vc*) and the aspect ratio of the street canyon (n). It is clear that with the increasing aspect
ratio, the dimensionless critical velocity decreases as the buoyancy becomes weaker and
inertial force dominates the smoke recirculation. As we stated before, the smoke will be
fully recirculated inside the canyon for n ≤ 1 cases, but as it becomes semi-recirculated for
n > 1 cases, we suggest a piecewise function with a distinguishing point at n = 1 to be used
here. From Figure 8, the data can be well correlated by linear fitting in each stage:

Vc
∗ = −0.37 n + 1.37 f or n ≤ 1 (3)

Vc
∗ = −0.19 n + 1.19 f or n > 1 (4)
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Figure 8. Relationship between dimensionless critical recirculation velocity and aspect ratio un-
der different building separation distances (the transition of smoke “fully recirculation” to “semi
recirculation” will take place when the aspect ratio of the street canyon is n = 1).

It is noted here that when the aspect ratio n = 1, the dimensionless critical recirculation
velocity Vc* should also be 1, even though it might not be the best fit. Considering that the
average Vc,0 is 2.84 m/s for all aspect ratio n = 1 cases, the correlation of the smoke critical
recirculation velocity with the street canyon aspect ratio condition can be well achieved as:

Vc = 3.89− 1.05 n (m/s) f or n ≤ 1 (5)

Vc = 3.38− 0.54 n (m/s) f or n > 1 (6)

Figure 9 shows the comparison of the predicted and simulated results of the critical
wind velocity for smoke recirculation from street canyon fires with different aspect ratio
conditions, and Zhang’s work is also included [30]. In general, the relative errors of the
results are mostly within ±5%, and the results of Zhang’s study are very close to the
predicted values in this paper. Here, we should note that the above model would not be
appropriate when the building height is too low or the street is too narrow due to the
fact that the flow would become much more complex in lower places near the ground,
while the evolution of the fire plume is strongly dependent on the exterior building wall
boundary conditions.
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Figure 9. Relative error between predicted value and simulation value in this paper and Zhang’s
study (the relative errors of the results are mostly within ±5%).

4. Conclusions

This paper investigates the smoke recirculation behavior inside a street canyon with
different aspect ratio conditions. The smoke dispersion behavior and flow pattern for
different groups are presented and compared, and the transition of smoke recirculation
inside the street canyon is discovered. The relationship between the critical smoke re-
circulation velocity and the aspect ratio of the street canyon is further discussed. Major
findings include:

1. The smoke recirculation behavior inside the street canyon can be divided into two
different regimes for different aspect ratio (n = H/W) conditions. The transition of
smoke from the “fully recirculation stage” (smoke recirculation in the entire canyon)
to the “semi recirculation stage” (smoke recirculation in the middle-upper part of the
canyon) will take place when the aspect ratio of the street canyon is n = 1.

2. For street canyons with higher buildings and narrower streets, the critical velocity
for the presence of smoke recirculation is found to be lower; however, this critical
velocity will increase with decreasing building height and increasing street width.
The critical smoke recirculation velocity is found to be almost constant at 2.84 m/s
when the aspect ratio of the street canyon is n = 1.

3. A piecewise function with a distinguishing point at n = 1 is proposed for the nor-
malized critical velocity Vc* (i.e., the critical velocity Vc upon the standard critical
velocity for an ideal street canyon Vc,0). Within the “fully recirculation stage” and
“semi recirculation stage”, the critical velocity decreases linearly with the increasing
street canyon aspect ratio.

The present study provides a simple way to predict the critical recirculation velocity
in a street canyon, which is beneficial for a better understanding of the flow behavior.
From the results, it is found that if the aspect ratio is greater than 1, the risk of smoke
recirculation inside the street canyon will be strongly enhanced, imposing much more
potential hazards on the health of residents and pedestrians within the street canyon. Still,
we should note that the results for the variation in the critical recirculation velocity with
the aspect ratio should be limited to a small range of street canyon models, as this work
shows. We suggest that some more relevant factors, such as adjacent street canyon groups
or structures, asymmetric street canyons (i.e., different building heights on windward and
leeward sides) and the ambient wind profile effect, need to be further addressed in the
near future.
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