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Abstract

Viral nervous necrosis (VNN) is an acute and serious fish disease caused by nervous necro-

sis virus (NNV) which has been reported massive mortality in more than fifty teleost species

worldwide. VNN causes damage of necrosis and vacuolation to central nervous system

(CNS) cells in fish. It is difficult to identify the specific type of cell targeted by NNV, and to

decipher the host immune response because of the functional diversity and highly complex

anatomical and cellular composition of the CNS. In this study, we found that the red spotted

grouper NNV (RGNNV) mainly attacked the midbrain of orange-spotted grouper (Epinephe-

lus coioides). We conducted single-cell RNA-seq analysis of the midbrain of healthy and

RGNNV-infected fish and identified 35 transcriptionally distinct cell subtypes, including 28

neuronal and 7 non-neuronal cell types. An evaluation of the subpopulations of immune

cells revealed that macrophages were enriched in RGNNV-infected fish, and the transcrip-

tional profiles of macrophages indicated an acute cytokine and inflammatory response.

Unsupervised pseudotime analysis of immune cells showed that microglia transformed into

M1-type activated macrophages to produce cytokines to reduce the damage to nerve tissue

caused by the virus. We also found that RGNNV targeted neuronal cell types was GLU1

and GLU3, and we found that the key genes and pathways by which causes cell cytoplasmic

vacuoles and autophagy significant enrichment, this may be the major route viruses cause

cell death. These data provided a comprehensive transcriptional perspective of the grouper

midbrain and the basis for further research on how viruses infect the teleost CNS.

Author summary

NNV is one of the most contagious and economically devastating viruses of marine fish,

which lead to severe central nervous system (CNS) damage. Because of the functional
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diversity and highly complex anatomical and cellular composition of the CNS, it is hard to

identify the specific type of cell targeted by NNV, and to decipher the host immune

response. In this study, we conducted single-cell RNA-seq analysis of the midbrain of

healthy and RGNNV-infected fish and identified 35 transcriptionally distinct cell sub-

types, including 28 neuronal and seven non-neuronal cell types. An evaluation of the sub-

populations of immune cells revealed that macrophages were enriched in RGNNV-

infected fish, and the transcriptional profiles of macrophages indicated an acute cytokine

and inflammatory response. Unsupervised pseudotime analysis of immune cells showed

that microglia transformed into M1-type activated macrophages to produce cytokines to

reduce the damage to nerve tissue caused by the virus. Finally, we found that RGNNV tar-

geted GLU1 and GLU3 neuronal cells, and we screened for genes that cause GLU1 and

GLU3 cell vacuole morphology changes and death. These data provided a comprehensive

transcriptional perspective of the grouper midbrain and the basis for further research on

how viruses infect the teleost CNS.

Introduction

Nervous necrosis viruses (NNVs) are non-enveloped positive-strand RNA viruses classified

into the family Nodaviridae [1,2]. NNVs are about 25–30 nm in diameter, icosahedral, non-

enveloped, and have a bipartite positive-sense RNA genome. The genome of NNV is bipartite,

consisting of two positive-sense RNA molecules (RNA1 and RNA2). RNA1 encodes the RNA-

dependent RNA polymerase (RdRp), which is responsible for viral genome replication, and

RNA2 encodes the capsid protein (CP), which is the sole structural protein of NNV [3]. Fish

infected with this virus show clinical signs that include abnormal swimming behavior and

darkening of the fish [4]. NNVs can cause massive mortality of the larval and juvenile popula-

tions of more than 50 marine and freshwater teleost species [5–9], which illustrates their strong

infectivity of a wide range of hosts.

Many viruses cause serious damage to the nervous system, including Japanese encephalitis

virus [10], pseudorabies virus [11], Zika virus [12], herpes simplex virus (HSV) [13], porcine

hemagglutinating encephalomyelitis virus (PHEV) [14], and these neuronal viral infections

cause high mortality. Similarly, NNV infection can lead to severe central nervous system

(CNS) damage. Vacuolization of the brain can occur in infected fish and is the main cause of

their death [15,16]. Viral infection is a dynamic process driven by the interplay of antiviral cel-

lular pathways and viral mechanisms, which have evolved to suppress antiviral activity. The

membrane receptors and process of virus invasion are already well understood for many non-

nervous system viruses, but little is known about the entry process and molecular signatures of

CNS viruses.

The cellular heat shock cognate protein 70 (HSP70) [17] and cell surface sialic acid [18] are

essential for NNV infection, and endosomal acidification also is required for effective infection

[19]. However, these results do not provide information about the unique molecular signatures

that arise when NNVs infect CNS cells. It is difficult to identify the specific type of cell targeted

by the virus and to decipher the host immune response because of the functional diversity and

highly complex anatomical and cellular composition of the CNS [20,21]. Thus, it is important

to classify the cell types present in the fish brain in order to understand the molecular mecha-

nisms involved in viral pathogens of the CNS.

Single-cell RNA sequencing (scRNA-seq) have been applied to investigate the immune sys-

tem under physiological and pathological conditions [22–25]. The method provides a detailed
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view of the complicated immune system at single-cell resolution [26–28]. The scRNA-seq is a

particularly powerful tool for identifying viral target cells, as it allows effective analysis of viral

mRNAs and host signature genes in a single cell [29–32]. In addition, it can provide an unbi-

ased characterization of virus-host interactions in individual cells, which are masked at the

population level [29,30,33–38].

In this study, we profiled the deep transcriptomes of tens of thousands of individual mid-

brain cells of orange-spotted grouper (Epinephelus coioides) harvested from control and red

spotted grouper NNV (RGNNV) infected fish. We determined the transcriptional profiles of

immune cells to identify those enriched in infected cells and their potential functions. Our

data also indicated which cell types were targeted by RGNNV infection and the activity of spe-

cific host cell genes and pathways. The extensive datasets generated during this study will be a

useful resource for detailed examination of the grouper midbrain and can serve as the basis for

further research on how viruses infect the teleost CNS.

Results

Main infection and replication sites of RGNNV in grouper brain tissue

To identify areas of the brain that are damaged by RGNNV, we performed real-time quantita-

tive polymerase chain reaction (RT-qPCR) and fluorescent in situ hybridization (FISH) to

measure RGNNV content in different brain regions. The grouper (E. coioides) brain was

divided into 5 parts of olfactory bulb (OB), pituitary, hypothalamus, forebrain (FB), midbrain

(MB), cerebellum (CB), and spinal cord (SC). The expression levels of capsid protein (CP) and

RNA-dependent RNA polymerase (RdRp) were significantly higher in the MB than in other

brain regions (Fig 1A and 1B). We generated tissue slices of the entire grouper brain and

detected the replication of RGNNV in each brain region using FISH. CP-positive signals were

mainly found in the MB (Fig 1C and 1D), which indicated that this part of the brain was the

main point of RGNVV infection (Fig 1D5–D7). The most infected areas were the torus semi-

circularis (TS), rostral tegmental nucleus (RT), reticular formation (RF), nucleus of the medial

longitudinal fascicle (NMLF), and vascular lacuna of the area postrema (Vas) (Fig 1F–1I).

Overview of the cell types in the midbrain identified by scRNA-seq

Because we observed that RGNNV mainly infected grouper midbrain regions, we performed

scRNA-seq on midbrain samples from uninfected and RGNNV-infected fish to characterize

cellular heterogeneity in the midbrain (Fig 2A). Any cell with fewer than 400 genes or more

than 10% mitochondrial unique molecular identifier (UMI) counts was filtered out, and only

genes with at least one UMI count detected in at least one cell were used for further analysis.

After removing cells with minimum and maximum thresholds for read numbers per cell

(nUMI), number of genes detected per cell (nGene), and mitochondrial RNA genes, 13,533

and 12,464 midbrain cells were obtained from one control fish (C) and one RGNNV-infected

fish (NNV), respectively (S1 Table). The nUMI, nGene, and mitochondrial mRNA percentages

(pMito) are shown in S1A–S1D Fig and S1 Table. We classified cell types for all samples

together and based on T-distributed stochastic neighbor embedding (tSNE) dimensionality

reduction and unsupervised cell clustering. 35 cell clusters were identified based on the

expressed unique transcriptional profiles as well as the top five expressed genes in each group

(Fig 2B and S2 Table).

Based on the expression of the neuronal markers synaptotagmin-1 (Syt1) and synapto-

somal-associated protein 25 (Snap25), the 35 cell clusters were divided into 28 neuronal

(Snap25/Syt1-high) and 7 non-neuronal clusters (Snap25/Syt1 negative or low) (Fig 2C and

2D). The 28 neuronal clusters were further divided into 15 glutamatergic (GLU1–GLU15) and
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Fig 1. The main attack site of RGNNV in the grouper brain tissue. After infection with RGNNV, the relative

quantities (compared to β-actin) of viral genomic RNA of CP (A) and RdRp (B) in different brain regions were

examined using RT-qPCR (n = 5). (C) Dorsal view of the grouper brain; the horizontal line represents the slice

position. (D) Localization of RGNNV as indicated by in situ hybridization. The NNV-positive signals were mainly

found in midbrain (MB) regions, and the mainly replicated intercept of the MB was the position of slices 4, 5, 6, and 7.

The most replicated areas were the torus semicircularis (TS), rostral tegmental nucleus (RT), reticular formation (RF),

nucleus of the medial longitudinal fascicle (NMLF), and vascular lacuna of area postrema (Vas). The white arrow

indicates positive staining for a probe targeting the CP region of the RGGNV genome. (E) Schematic MB drawing of

the grouper. (F–I) high magnification of the boxed areas in D 4–7. OB: olfactory bulb, FB: forebrain, CB: cerebellum,

SC: spinal cord, TeO: tectum opticum, PGZ: periventricular gray zone of optic tectum, TL: torus longitudinalis, TLa:

torus lateralis, DIL:diffuse nucleus of the inferior lobe, HC: caudal zone of periventricular hypothalamus. Scale bars of

D, 400 μm. Scale bars of F-I, 50 μm.

https://doi.org/10.1371/journal.ppat.1009665.g001
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Fig 2. Cell sorting and categorization of cell types in the grouper midbrain. (A) Overall strategy for cell sorting and single-cell

data analyses. (B) The tSNE plot clustering of cells (top): different cell clusters are color coded; in the tSNE plot showing

expression of pan marker genes in distinct cell clusters (bottom), the gene expression level is color coded. (C) Violin plot showing

the expression of pan marker genes across the 35 cell clusters. Each cluster is color coded. Snap25 and Syt1, pan-neuronal markers;

Gad1 and Gad2, GABA neuronal markers; Sox10 and Disc1, oligodendrocyte (Olige) markers; Ephx2 and Cyp26b1, astrocyte

(Astro) markers; Spi1 and Vav1, immunology (Im) cell markers; Pdgfra, endothelial (Endo) cell marker. (D) tSNE plots showing

expression of pan marker genes in distinct cell clusters. The gene expression level is color coded.

https://doi.org/10.1371/journal.ppat.1009665.g002

PLOS PATHOGENS Landscape midbrain cell responses to RGNNV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009665 June 29, 2021 5 / 26

https://doi.org/10.1371/journal.ppat.1009665.g002
https://doi.org/10.1371/journal.ppat.1009665


13 GABAergic (GABA1–GABA18) subtypes based on the gamma-aminobutyric acid (GABA)

neuronal markers Gad1 and Gad2 (Fig 2C and 2D). Among the non-neuronal clusters, there

was a subset of oligodendrocyte cells with high expression of the oligodendrocyte marker

genes SRY-related HMG-box 10 (Sox10) and disrupted-in-schizophrenia 1 (Disc1) (Fig 2C

and 2D) as well as a subset of astrocyte cells including Astro1, Astro2, and Astro3 with high

expression of the astrocyte marker genes epoxide hydrolase 2 (Ephx2) and cytochrome P450

family 26 subfamily B member 1 (Cyp26b1) (Fig 2C and 2D). There also was a subset of

immune cells with high expression of the immune cell marker genes spleen focus forming

virus proviral integration oncogene 1 (Spi1) and vav1 oncogene (Vav1) (Fig 2C and 2D) and a

subset of endothelial cells with high expression of the immune cell marker gene platelet-

derived growth factor receptor a (pdgfra) (Fig 2C and 2D). The gene expression heat maps for

the top five marker genes were generated in the 35 clusters and the genes were identified

which were significantly enriched in each of the 35 clusters (S2 Fig).

Classification of non-neuronal cell types in the midbrain

The marker genes were identified for each of the seven non-neuronal clusters. Endothelial

cells were marked by glycine amidinotransferase (Gatm) and lysyl oxidase-like 3 (Loxl3) (Figs

3A and 3B and S3), and Im cells were marked by CD53 antigen (Cd53) and FYN-binding pro-

tein 1 (Fyb1) (Figs 3A and 3B and S3). The two Sox10+ cell clusters indicative of oligodendro-

cytes could be distinguished from one another by subtype markers myelin protein zero (Mpz)

and pyridoxal phosphate binding protein (Plp) (Oligo1) and inositol polyphosphate-5-phos-

phatase D (Inpp5d) and apelin receptor b (Aplnrb) (Oligo2) (Figs 3A and 3B and S3). The

three Cyp26b1+ astrocyte clusters could be distinguished from each other by the expression of

protein patched homolog 1 (Pthc1) and PR domain zinc finger protein 16 (Prdm16) (Astro1),

roundabout guidance receptor 1 (Robo1) and solute carrier organic anion transporter family

member 1C1 (Slco1c1) (Astro2), and kinase binding protein (Kpb) and prosaposin receptor

GPR37L1 (Gpr37l1) (Astro3) (Figs 3A and 3B and S3). The tSNE plots showed that Astro1 and

Astro2 were grouped together, suggesting much more subtle differences in gene expression

between these subtypes (Fig 3B). Astro3 formed distinct clusters, suggesting distinct molecular

fingerprints (Fig 3B).

The expression of the non-neuronal subtype markers in grouper midbrain was confirmed

by in situ hybridization (ISH) (Fig 3C). Even though the tSNE plot showed that Astro3 (kbp)

was far removed from Astro1 (pthc1) and Astro2 (Robo1), the ISH results showed that the kbp

marker gene of Astro3 was expressed in the same region as Astro1 and Astro2, indicating that

all three kind of cells may be the same type of cell. The Oligo 1 Plp+ was mainly localized in the

periventricular gray zone of the optic tectum (PDZ), RF, and NMLF areas (Fig 3C), and the

Oligo2 Aplnrb+ was mainly localized in the PDZ and NMLF regions (Fig 3C). This indicated

that Oligo1 and Oligo2 may be the same type of cell but that there were differences between

them, and our marker genes distinguished between them.

Subpopulations of astrocytes and oligodendrocytes

Nine subpopulations of astrocytes were identified, and tSNE plots showed distinct clusters,

which suggested distinct molecular fingerprints (Fig 4A). The gene expression heat maps were

generated for the top five marker genes in nine clusters and identified the genes which were

significantly enriched in each of the nine clusters (Fig 4C and S3 Table). Additionally, tSNE

plots showed the expression of selected marker genes enriched in subsets of astrocytes (Fig

4E). Six subpopulations of oligodendrocytes also were identified (Fig 4B). The gene expression

heat maps were generated for the top five marker genes in 6 clusters and identified the genes
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which were significantly enriched in each of the six clusters (Fig 4D and S4 Table). The tSNE

plots showed the expression of selected marker genes which were enriched in subsets of oligo-

dendrocytes (Fig 4F).

Subpopulations of immune cells, compositions and functions of

macrophage cell subtypes during RGNNV infection

The gene expression heat maps were generated and identified marker genes for each of the

subpopulations of immune cells. The four subpopulations of immune cells (Figs 5A and 5B

and S6 and S5 Table) could be distinguished from each other by the expression of macrophage

marker gene (Mrc1) for macrophages, Pard3b for microglia, Rbfox1 for undefined, and Rhdr2

Fig 3. Overview of the non-neuronal cell clusters in the midbrain. (A) Violin plot showing the expression profile of representative marker genes in the

seven non-neuronal cell clusters. Different clusters are color coded. Astro, astrocyte cell; Olige, oligodendrocyte cell; Im, immunology cell; Endo, endothelial

cell. (B) The tSNE plots showing the expression of representative marker genes are restricted to specific non-neuronal clusters among all of the cells. The

expression level is color coded. See also S3 Fig. (C) ISH data showing the expression of non-neuronal subtype markers Ptch1, Robo1, Kbp, Plp, Aplnrb, Fyb1,

and Gatm in the midbrain. Above: the coronal sections of the entire midbrain region, Scale bar, 500 μm. Below: enlarged images of the regions in black

squares. Scale bar, 200 μm.

https://doi.org/10.1371/journal.ppat.1009665.g003

PLOS PATHOGENS Landscape midbrain cell responses to RGNNV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009665 June 29, 2021 7 / 26

https://doi.org/10.1371/journal.ppat.1009665.g003
https://doi.org/10.1371/journal.ppat.1009665


for T cells (Figs 5B and S6). Among these cell types, macrophages were the major type of

immune cell. The number of macrophages increased with RGNNV infection (Fig 5C and 5D

and S6 Table), which confirmed the findings revealed by scRNA-seq. In the FISH probe test of

the macrophages in the midbrain of control and RGNNV-injected fish, the Mrc1-positive sig-

nal was significantly increased after RGNNV infection (Fig 5E), which also was consistent with

our scRNA-seq result. These findings suggested that macrophages played an important role

during RGNNV infection.

To further investigate the changes in gene transcription levels of macrophages after

RGNNV infection, we compared the expression patterns of genes between the control and

RGNNV-infected cells. Expression of most immune-related genes was significantly up-regu-

lated by viral infection, and these differentially expressed genes (DEGs) were involved in mye-

loid leukocyte activation and related to nuclear factor (NF)-κB signaling. Analysis of gene

expression levels in midbrain cells from control and RGNNV-infected fish revealed that

expression of most of the pro-inflammatory cytokine genes was higher in infected fish, includ-

ing tumor necrosis factor alpha (TNFα), interleukin 1 (IL1), lipopolysaccharide induced TNF

factor (LITAF), Toll-like receptor 18 (TLR18), CD97, and NFκB (Fig 5E). The RT-qPCR

results also showed high expression of these genes after RGNNV infection (Fig 5F). Together,

these findings illustrated a consistent response by innate immune cells to RGNNV infection.

Fig 4. Astrocyte and oligodendrocyte subtypes in the midbrain. (A) The tSNE plot showing the nine astrocyte

subtypes identified in the midbrain. Different astrocyte subtypes are color coded. (B) The tSNE plot showing the six

oligodendrocyte subtypes in the midbrain. Different oligodendrocyte subtypes are color coded. (C) Heat map of the

top five markers for the nine astrocyte subtype clusters. (D) Heat map of the top five markers for the six

oligodendrocytes subtype clusters. (E) The tSNE plots showing the expression of representative marker genes are

restricted to specific astrocyte clusters among all of the astrocyte subtype cells. The expression level is color coded. See

also S4 Fig. (F) The tSNE plots showing the expression of representative marker genes are restricted to specific

oligodendrocyte clusters among all of the oligodendrocyte subtype cells. The expression level is color coded. See also S5

Fig.

https://doi.org/10.1371/journal.ppat.1009665.g004
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Fig 5. Immunological features of immune cell subsets. (A) The tSNE plot showing the four immune cell subtypes identified in the midbrain.

Different immune cell subtypes are color coded. (B) Heat map showing the top five DEGs by various immune cell clusters. The gene names are listed

to the left, and their corresponding cell types are at the top of the panel. (C) Number of cells in the four subpopulations of immune cells in the

control and RGNNV-infected grouper. (D) The tSNE plots align the macrophage clusters between the control and RGNNV-infected grouper. (E)

FISH results showing that macrophages in the midbrain were upregulated by RGNNV infection. The green stain shows the Mrc1-positive signals
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Differentiation of macrophages during RGNNV infection

Immune cells differentiate to resist virus invasion. For example, macrophages differentiate

into M1 or M2 types to exert their immune function. To evaluate this process in macrophages

during RGNNV infection, we performed an unsupervised pseudotime analysis. The main cell

differentiation observed was from microglia to macrophages (Fig 6A). Furthermore, the cell

trajectory branching analysis showed that Il-23, Tnf-α, and Il-1β (genes highly expressed in

M1-type macrophages) were highly expressed in branch 1-2-3, but expression was significantly

decreased in branch 1-2-4. Expression of Il-4, Il-10, and Tgf-β (genes highly expressed in M2

type macrophages) was significantly increased in branch 1-2-4 but significantly decreased in

branch 1-2-3 (Fig 6B and 6C).

To further characterize the transcriptional program underlying macrophage differentiation,

we then identified five groups of genes with distinct expression patterns along the differentia-

tion process (Fig 6C). These results suggested that RGNNV infection may lead to the transfor-

mation of microglia into macrophages, which then mainly transformed into M1-type activated

macrophages.

RGNNV mainly attacked nerve cells during infection

Of the nerve cell subgroups, cell numbers in the two groups GLU1 and GLU3 were reduced

the most after RGNNV infection (reduced by 40% and 47%, respectively) (Fig 7A and 7B and

S7 Table). To confirm that RGNNV attacked GLU1 and GLU3 subgroup cells, FISH was used

to test the co-localization of GLU1 and GLU3 nerve cells and RGNNV. Slc17a7, which was

specifically highly expressed in both GLU1 and GLU3 subgroup cells, was used as the marker

gene to mark GLU1 and GLU3 cells (Fig 7C and 7D). The FISH results showed that Slc17a7--

positive and CP-positive signals were co-located in all five RGNNV-infected fish (Fig 7E),

which indicated that RGNNV co-localized with GLU1 and GLU3 nerve cells. These results

supported the premise that RGNNV mainly attacked GLU1 and GLU3 nerve cells.

To further investigate the transcriptomic changes of GLU1 and GLU3 after RGNNV infec-

tion, we compared the expression patterns of control and RGNNV-infected fish. We found

that DEGs associated with membrane formation, transfer, and autophagy related pathway

were significantly enriched in the RGNNV infection group, and high levels of protein tyrosine

phosphatase receptor type F (ptprf), vasoactive intestinal peptide receptor 2 (vipr2), heat shock

protein 90 (hsp90), lysine (K)-specific demethylase 6B (kdm6b), rho-GTPase activating pro-

tein 6 (arhgap6), and solute carrier family 6 member 6 (slc6a6) were detected (Fig 8A and 8B).

The RT-qRCR results also showed that membrane receptor, membrane lysis, transmission,

and autophagy related genes were highly expressed in the RGNNV infection group (Fig 8C).

Discussion

Red spotted grouper nervous necrosis virus is a common fish pathogen that destroys the ner-

vous system, and vacuolization of the brain is the main cause of death caused by the virus

[15,16]. Identifying the specific areas and cell types in the CNS targeted by the virus is crucial

for understanding the pathogenesis of RGNNV infection. However, it is difficult to obtain an

integrated scenario of the cellular and molecular immune responses that occur upon RGNNV

(macrophage marker gene), and the positive signal in the RGNNV infection group was higher than that in the control group. Scale bars, 500 μm. (F)

The volcano plot shows the selected DEGs from macrophages cells in the comparison of the control and RGNNV-infected fish. DEGs of control

comparison with RGNNV infection group in macrophages. Each red dot denotes an individual gene with adjust P< 0.05 (P-value adjusted by false

discovery rate in MAST), other indicates non-significant genes. Example genes are labeled with the gene name. (G) The gene expression levels of IFN

and inflammation-related genes increased in macrophages after RGNNV infection. Data are expressed as means ± SD. (��p< 0.01, or ���p< 0.001).

https://doi.org/10.1371/journal.ppat.1009665.g005
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infection. To address this issue, we performed scRNA-seq and identified 35 transcriptionally

distinct cell subtypes in the grouper midbrain, including 28 neuronal and seven non-neuronal

cell types. Analysis of the transcriptional profiles of immune cells revealed macrophage enrich-

ment in RGNNV-infected fish, and the macrophages were mainly polarized into M1-type

macrophages and showed a strong inflammatory response. We also found that RGNNV

mainly targeted GLU1 and GLU3 nerve cells and that RGNNV infection induced significant

enrichment of membrane formation, lysis, and vesicular transport related pathways.

These results provided a comprehensive overview of midbrain cell types based on their

Fig 6. Transcriptional dynamics during development of macrophages. (A) Pseudotemporal ordering of different clusters based on their gene

expression profiles. Arrows indicate the direction of differentiation. (B) Pseudotemporal ordering of differentiated states in the macrophage cells. The

dashed line represents branch 1-2-3; the solid line represents branch 1-2-4. Cells are colored by state. (C) Expression of M1-type macrophage and

M2-type macrophage marker genes along the two primary branches ordered in pseudotime. Solid lines represent expression in branch 1-2-3 (M1-type

macrophages), and dashed lines represent expression in branch 1-2-4 (M2-type macrophages). (D) Branched heat map showing macrophages with

highly significant branch-specific expression patterns in pseudotime. The root of the tree is in the middle of the plot, and expression from the earliest to

the M1-type macrophages progresses to the left, whereas the progression of M2-type macrophages progresses to the right of the root.

https://doi.org/10.1371/journal.ppat.1009665.g006

PLOS PATHOGENS Landscape midbrain cell responses to RGNNV infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009665 June 29, 2021 11 / 26

https://doi.org/10.1371/journal.ppat.1009665.g006
https://doi.org/10.1371/journal.ppat.1009665


Fig 7. Screening of cell types attacked by RGNNV. (A) The number of cells in each cell cluster in control and RGNNV-infected grouper. (B) The

tSNE plots showing the GLU1 and GLU3 clusters for control and RGNNV-infected grouper. (C) The tSNE plot showing that expression of the
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transcriptional features, identify cell types involved in the antiviral response, and revealed

which cell types are targeted by RGNNV.

Researchers previously conducted a detailed census of cell types in the nervous system of

mice [39,40], and cell types in part of the brain of reptiles also have been reported [41]. How-

ever, the types of cells in the brain of fish are poorly known, even though fish play an important

role in the evolution of vertebrates. In this study, we using RGNNV infected young orange-

spotted grouper (E. coioides) (mean weight 3.3 ± 0.4 g, mean body length 3.7 ± 0.3 cm) and

obtained 13,533 and 12,464 cells from one control fish (C) and one RGNNV-infected (NNV)

fish midbrain after single cell collection. Also, we identified cell type-specific markers to allow

for unambiguous cell type definition, which will enable the development of genetic or viral

marker gene slc17a7 was restricted to specific GLU1 and GLU3 clusters among all of the cell clusters. (D) Violin plot showing the expression of pan

marker genes across the 35 cell clusters. (E) Multicolor FISH staining to validate the Slc17a7 and RGNNV states, GLU1 and GLU3 cells were marked

with Slc17a7. The middle row (1) shows high magnification of the boxed areas 1 in the top row (panorama). FISH staining shows that Slc17a7 and

RGNNV were co-located in the same neuron (scale bars 10 μm). The bottom row (2) shows high magnification of the boxed areas 2 in the top row

(panorama). RGNNV and Slc17A7 did not co-locate, but they localized in different areas of the same neuron (scale bars 10 μm). Scale bars in the

panorama view are 200 μm.

https://doi.org/10.1371/journal.ppat.1009665.g007

Fig 8. Comparison of gene expression of GLU1 and GLU3 cells between control and RGNNV-infected fish. (A) The

volcano plot shows the selected DEGs of immune cells from control vs. RGNNV-infected fish. Only genes specifically

upregulated in GLU1 and GLU3 cells were evaluated. Each red dot denotes an individual gene with adjusted P< 0.05 (P-

value adjusted by false discovery rate in MAST), others are non-significant genes. (B) GO terms are labeled with name and

ID and sorted by −log10 (P) value. The top 20 enriched GO terms are shown. (C) The genes for which expression levels

increased after RGNNV infection in GLU1 and GLU3 cells. Data are expressed as means ± SD. �p< 0.05, �� < 0.01, or ��� <

0.001.

https://doi.org/10.1371/journal.ppat.1009665.g008
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tools to achieve cell type-specific labeling and manipulation. This ability is essential for analysis

of cell type-specific functions in the complex midbrain region. Major classes of cells, such as

neurons, astrocytes, endothelial cells, oligodendrocytes, and immune cells, can be distin-

guished by large sets of class-specific genes that are related to the specific function of each class

of cells. In mammals and reptiles, cells in different brain regions can be divided into neuronal

and non-neuronal clusters based on the expression of the pan neuronal markers Snap25 and

Syt1, and neuronal clusters can be further divided into glutamatergic (GLU) and GABAergic

(GABA) subtypes based on the GABA expression of Gad1 and Gad2 [41,42]. We found the

neuronal markers Snap25 and Syt1 in 28 clusters, which in turn could be divided into 15 GLU

(GLU1–GLU15) and 13 GABA (GABA1–GABA13) subtypes based on their differential

expression of Gad1 and Gad2. This indicated that the mammalian nervous system divisions

also applied to fish [43]. We also identified potential subtype-specific marker genes for each of

the 28 neuronal clusters (S2 Table). The majority of them contained subtype-specific genes

unique to that cluster, but in some cases a neuron cluster could be defined by the combinato-

rial expression of marker genes (Fig 2C and S2 Table). We distinguished a number of neuron

subtypes by the expression of specific genes. For example, Cbln1 and TBR1 were only found in

Glu1 and Glu4 cell clusters, respectively (S2 Table). Some genes were expressed only in certain

types of nerve cells. Lhx9 was only expressed in Glu nerve cells, such as Glu6, Glu2, Glu5, and

Glu13 (S2 Table). These results demonstrated that our unbiased scRNA-seq analyses were able

to identify cell types as well as cell type-specific transcriptional features in the midbrain.

In mammals, the nervous system tends to consist of both nerve cells and non-nerve cells,

and non-nerve cells mainly fall into four categories according to special marker genes: astro-

cytes, oligodendrocytes, immune cells, and endothelial cells [40]. The types of non-nerve cells

in the fish nervous system were previously unknown. Based on non-neuronal clusters marker

genes in mammals and amphibians, we identified four non-nerve cell types in grouper: astro-

cytes (Ephx2+ and Cyp26b1+), oligodendrocytes (Sox10+ and Disc1+), immune cells (Spi1+

and Vav1+), and endothelial cells (Pdgfra+) (Fig 2) [39–42]. However, we also identified

unique non-nerve cell marker genes in the grouper midbrain. For example, based on grouper-

specific gene expression, astrocytes were divided into three clusters [Astro1 (ptch1+ and

prdm16+), Astro2 (robo1+ and slco1c1+), and Astro3 (kpb+ and gpr37l1+)] and oligodendro-

cytes were divided into Oligo1 (plp+ and mpz+) and Oligo2 (aplnrb+ and inpp5d+). The

expression of some non-neuronal subtype markers in the grouper midbrain were confirmed

by ISH with riboprobes that were synthesized according the marker gene sequence (S1 Supple-

mentary Sequence) of each non-neuronal subtype. These results suggested that the classifica-

tion of CNS cells in the fish midbrain was comparable to that of other vertebrates, but the

orange-spotted grouper also had its own unique marker genes.

The host immune response against acute RGNNV infection plays an antiviral role but also

leads to simultaneous pathogenic injury to organs and tissues, especially in the brain of grou-

per. Several researchers have reported the characteristics of innate and adaptive immune

responses after virus infection [43–48] which has allowed us to speculate about the potential

pathogenesis of RGNNV infection. However, it is difficult to obtain an integrated scenario of

the cellular and molecular immune responses in fish infected by RGNNV. To address this

issue, we profiled the immunological response landscape in RGNNV-infected grouper at sin-

gle-cell resolution to identify the critical factors responsible for antiviral immunity and patho-

genesis in infected fish. We identified expanded effector macrophage clusters, which may

provide a possible immune response in RGNNV-infected fish. We also found that RGNNV-

infected grouper showed a concerted and strong inflammatory response. Additionally, com-

pared to control fish, viral infection led to changes in host cell transcription of several inflam-

matory cytokines, including TNFα, IL1, LITAF, TLR18, and NFκB. Previous studies of
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RGNNV showed that the virus could harness the inflammatory response to antagonize innate

immunity in in vitro cell infection experiments [49–51]. In fish, interferon (IFN) is an impor-

tant barrier against viral invasion [52–54]. However, none of the IFN-related genes was signifi-

cantly overexpressed after RGNNV infection. Studies have shown that many RNA viruses

could evade the host’s immune response. For example, the rabies virus can prevent the acidifi-

cation of IRF3 by TBK1 [55], Ebola virus can inhibit the activation of IRF3 [56], and porcine

reproductive and respiratory syndrome virus suppresses type I IFN production and signaling,

manipulates the cytokine responses, and modulates apoptosis to establish persistent infection

in pigs [57]. A recent study in grouper spleen cells (GS) demonstrated that the B2 protein of

RGNNV could inhibit the host IFN response by suppressing host transcription directed by

RNA polymerase II [58]. This suggests that RGNNV may have a potential mechanism to evade

the host immune response. Based on our data, we confirmed that RGNNV infection caused a

concerted and strong inflammatory response in vivo, and we identified the inflammatory cyto-

kines with high expression during RGNNV infection. However, the state of the immune sys-

tem was not fully restored, as exemplified by the IFN-related subset. A long-term follow-up

study is needed to investigate how fish achieve full immunity to persistent RGNNV.

In fish, macrophages are a key component of the innate immune system. Activated macro-

phages can produce active molecules to guide the occurrence and regression of inflammation,

so they are crucial for antivirus activity and survival of organisms [59]. Microglia cells are

widely considered to be immune effectors in the CNS and to play an important role in the

treatment of the injured CNS. However, it is not clear whether they have any effect on the ner-

vous system damage caused by the virus’s attack [60]. Our results showed that microglia cells

could be transformed into M1-type activated macrophages after viral invasion of grouper

brain tissue. Studies have shown that microglia can activate macrophages to express cytokines

such as IL-1 to reduce neuron damage [61,62]. We also found that IL-1 levels were significantly

increased in brain macrophages of RGNNV-infected grouper. These results suggested that

viral attack of nerve cells might stimulate microglia cells to transform into M1-type activated

macrophages to produce cytokines to reduce the damage to nerve tissue caused by the virus.

Previous studies reported that RGNNV mainly attacked grouper nerve cells, leading to fish

death, but it was not clear which types of nerve cells are targeted by RGNNV. Previous studies

also showed that the viral infection did not lead to cells being differentially excluded from the

scRN-seq dataset [63–65]. Thus, in the present study we used scRNA-seq to divide nerve cells

into 28 classes, and we compared control and RGNNV-infected fish to determine which cell

types were lost due to virus infection. Our results showed that the number of GLU1 and GLU3

nerve cells was reduced seriously (decreases of 39.58% and 46.80%, respectively) in infected

fish. Furthermore, the marker genes of GLU1/GLU3 nerve cells and virus CP genes were co-

localized, which illustrated that they were the main nerve cells attacked by RGNNV. Further

analysis of the genes in the GLU1/GLU3 cells that were differentially expressed between the

control and RGNNV-infected fish indicated that many receptor genes were highly expressed,

and these receptors may be receptors for RGNNV. Like the significantly overexpressed gene

HSP90, which is a receptor for Dengue virus and Japanese encephalitis virus [66,67], many

other receptor genes, such as Ptprf and Vipr2, were significantly highly expressed in grouper

after RGNNV infection. However, identifying which receptor is the RGNNV receptor requires

further study.

Previous study reported that RGNNV infection grouper spleen cells (GS) cell resulted in

the fusion and enlargement of numerous cytoplasmic vacuoles [68]. However, the origin and

mechanism of cytoplasmic vacuolization remain unknown. The vacuolization effects caused

by viral infection have been investigated in members of 15 viral families, including hepatitis A

virus, hepatitis C virus, bovine virus diarrhea virus, murine leukemia virus, Zika virus,
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hepatitis B virus, and polyomaviruses [69,70]. Although the origin of virus-induced vacuoles

has not been fully characterized, several reports demonstrated that the mechanisms underlying

the virus-induced vacuolization effects differed among viruses. For example, 3C protease of

hepatitis A virus induced numerous non-acidic cytoplasmic vacuoles, which originated from

the endosome and lysosome compartments [71]. Simian virus 40 was found to induce substan-

tial cytoplasmic vacuoles at the late productive infection stage, and binding of the viral major

capsid protein VP1 to the cell surface ganglioside, GM1, triggered the formation of cyto-

plasmic vacuoles [72,73]. All of these studies indicated that virus-induced vacuoles derived

from different membrane organelles, including mitochondria, endoplasmic reticulum, lyso-

somes, Golgi apparatus, and autolysosomes. In this study, we showed that RGNNV targeted

GLU1/GLU3 nerve cells, and we found that pathways related to membrane formation, lysis,

and transmission were significantly enriched in these two cell types. Additionally, cytoplasmic

vacuole formation and apoptosis-related genes were significantly highly expressed in these cell

types after RGNNV infection. For example, lysine (K)-specific demethylase 6B (Kdm6b) was

the most important gene involved in the induction of neuro-dysmorphia and it promotes cell

apoptosis [74,75]. Furthermore, rho-GTPase activating protein 6 (Arhgap6) is an important

gene for cytoskeleton rearrangements and may play an important role in cytoplasmic vacuole

formation [76]. Both genes were significantly highly expressed after RGNNV infection, which

indicated that they may had important functions in the death of GLU1/GLU3 nerve cells.

Additionally, Kaul and Lipton showed that HIV could induce injury and apoptosis in rodent

and human neurons in vitro and in vivo via the release of macrophage toxic factors [77]. We

found that the number of macrophages increased significantly in grouper after RGNNV infec-

tion, thus we speculated that nerve cell death may also be induced by toxic factors released by

macrophages, but further research is needed.

In summary, this is the first report of the cell types present in the grouper midbrain. It pro-

vided a comprehensive transcriptional perspective of the fish midbrain, which will be a valu-

able resource for identifying cell type-specific functions of this complex brain region. Using

scRNA-seq analysis, we demonstrated many new phenomena involved in the pathogenesis of

RGNNV infection in grouper. We found that macrophages may be the key cell type required

for elimination of RGNNV. Furthermore, we speculated that microglia may differentiate into

M1-type activated macrophages, and this may be an immune response of grouper during

RGNNV infection. Based on the analysis of DEGs of macrophages cells, we also speculated

that cytokines may contribute to the persistence of RGNNV. Finally, we found that RGNNV

attacked GLU1 and GLU3 cells, and we screened for genes that cause GLU1 and GLU3 cell

vacuole morphology changes and death. Results of this study provided greater understanding

of how fish viruses attack the nervous system and how the CNS resists viruses.

Materials and methods

Ethics statement

All animal experiments were carried out in strict accordance with the guidelines and regula-

tions of the Animal Research and Ethics Committees of South China Agriculture University

(SYXK-2019-0136).

Animals and RGNNV infection

Two hundred orange-spotted grouper (E. coioides) (mean weight: 3.3 ± 0.4 g, mean body

length: 3.7 ± 0.3 cm) were used in this experiment. Fish were maintained at 25–30˚C in fresh

seawater, which was disinfected and sterilized. The fish were fed a commercial diet according

to a standard feeding scheme. For the RGNNV treatment, 50 fish were placed in each of two
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tanks and injected intraperitoneally with 20 μL of 107 TCID50/ml RGNNV (NNV group here-

after). For the control group (C), 50 individuals were placed in each of the two tanks and

injected with 20 μL of phosphate buffered saline (PBS). when more than 50% of the fish in the

virus injected group showed clinical signs of disease one control and one diseased fish were

sacrificed, and midbrain were collected for single cell RNA-Seq analysis. At the same time 15

control fish and 15 diseased fish were sacrificed, and each brain was dissected and fixed in 4%

buffered paraformaldehyde overnight at 4˚C, rinsed twice with cold PBS, transferred to 30%

sucrose solution for 48 h, and stored at 4˚C. The samples dried with sucrose were frozen using

dry ice and embedded in optimal cutting temperature (OCT) compound (Sakura, USA) and

used for FISH analysis. The remaining fish (eight control and 15 showing typical disease signs)

were sacrificed and whole midbrain (approximately 30 mg) tissues were frozen in liquid nitro-

gen immediately and stored at -80˚C before RNA extraction. This work received approval

from the Animal Research and Ethics Committees of South China Agriculture University

(SYXK-2019-0136).

Single-cell collection and cDNA amplification

Single-cell capture was performed using a Chromium Controller instrument (10x Genomics,

Pleasanton, CA, USA), which is a highly repeatable, efficient, and stable device for cell charac-

terization and gene expression profiling of thousands to millions of cells (https://www.

10xgenomics.com/solutions/single-cell/). Single cells were collected from the whole midbrain

(approximately 30 mg) of one control fish and one RGNNV-infected fish showing typical dis-

ease signs of disease as follows. Midbrain tissue was transferred from the cryopreserved tube to

a Dounce homogenizer, and 500 μL of precooled cracking buffer were added. The nuclei

extraction was perform as described previously [78]. Briefly, after homogenizing the tissue, the

homogenate was filtered through a 70 μm cell screen, and iodoxanol gradient solution was

added prior to centrifugation. The obtained white nuclear layer was washed with nuclear

cleaning buffer. After trypan blue staining, the nuclear suspension was assessed using a cell

counting plate under a microscope, and the total amount, concentration, and nuclear ratio of

cells with an intact nuclear membrane were calculated. The target concentration of the nuclear

suspension was 700–1,200 nuclei/μL. Nucleus suspensions were loaded on the Chromium

Controller instrument to generate single-cell gel bead-in-emulsions (GEMs) using Chromium

Single Cell 3’ Reagent v3 Kits (10× Genomics) containing a pool of ~750,000 barcodes sampled

to separately index the transcriptome of each cell. Thousands of individual cells were isolated

into droplets together with gel beads coated with unique primers bearing 10× cell barcodes,

unique molecular identifiers (UMI), and poly (dT) sequences. According to the single cell 3’

reagent kit protocol, GEM-reverse transcriptions were performed in a Veriti 96-well thermal

cycler (Thermo Fisher Scientific, Waltham, MA, USA). After reverse transcription, GEMs

were broken and the barcoded single-strand cDNA was cleaned up using DynaBeads MyOne

Silane Beads (Thermo Fisher Scientific) and a SPRI Select Reagent Kit (Beckman Coulter,

Brea, CA, USA). Global amplification of cDNA was achieved using the Veriti 96-well thermal

cycler, and the amplified cDNA product was cleaned up using the SPRIselect Reagent Kit.

Library construction and sequencing

The indexed sequencing libraries were constructed using the reagents in the Chromium Single

Cell 3’ Library v3 Kit for fragmentation, end repair, and A-tailing; size selection with SPRI

select beads; adaptor ligation; post ligation cleanup with SPRI select beads; and sample index

PCR and final cleanup with SPRI select beads. The final single cell 3’ library contained the

standard Illumina paired-end constructs which begin and end with P5 and P7 primers used in
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Illumina bridge amplification. The barcoded sequencing libraries were quantified using a

Bioanalyzer Agilent 2100 System with a High Sensitivity DNA chip (Agilent, Santa Clara, CA,

USA) and quantitative PCR using a KAPA Library Quantification Kit (KAPA Biosystems).

Finally, two sequencing libraries were loaded onto a HiSeq2500 (Illumina, San Diego, CA,

USA) with a custom paired-end sequencing mode (26 base pairs for read 1 and 98 base pairs

for read 2).

Initial quality control

The single-cell sequencing files (base call files) were processed using the Cell Ranger Single-

Cell Software Suite (v2.0) for quality control, sample demultiplexing, barcode processing, and

single-cell 3’ gene counting [79]. The raw base call files for each sample were first multiplexed

into fastq data using bcl2fastq conversion software. In the raw data analysis, the fastq data

were aligned to the orange-spotted grouper genome sequence (china national genebank:

CNA0000026, https://db.cngb.org/search/assembly/CNA0000026/) using STAR with default

parameters. Quality control of the fastq data was performed using FastQC software, and the

data were aligned to the Nucleotide Sequence Database (https://www.ncbi.nlm.nih.gov/

genbank/) using the basic local alignment search tool (BLAST) to avoid the data distortion

caused by experimental contamination by other species, especially bacterial infection or con-

tamination. After the initial quality control, the sequences with low quality barcodes and

UMIs were removed.

For further counting of the UMI tags, the CellRanger count algorithm was used to generate

single-cell gene counts for a single library. This approach can provide the most stable and

accurate clustering solutions for 10x Genomics scRNA-seq data [80].

Only confidently mapped, nonPCR duplicates with valid barcodes and UMIs were used to

generate the gene-barcode matrix. To quantitatively identify intracellular viral segmented

mRNAs to track the cells from the midbrain of fish infected with RGNNV at single-cell resolu-

tion, the scRNA-seq data of two midbrain samples were reanalyzed using the CellRanger

count algorithm based the union of the mm10 and PR8 (txid211044, NCBI) reference

genomes. To compare the scRNA-seq data among different libraries, the gene-cell-barcode

matrix of each sample was normalized by equalizing the read depth between libraries for fur-

ther merging using the CellRanger aggregate procedure, which was confirmed using the Seurat

integrated analysis method [81].

The reads from higher-depth libraries were subsampled until all libraries had an equal

number of confidently mapped reads per cell. The gene-cell-barcode matrix from each of the

two midbrain samples was concatenated, log-transformed, and filtered based on the number

of genes detected per cell. Any cell with fewer than 400 genes or more than 10% mitochondrial

UMI counts was filtered out, and only genes with at least one UMI count detected in at least

one cell were used for further analysis, which was performed using CellRanger R version 2.0.0

and Seurat suite version 2.0.0.

Clustering, differential expression, and visualization

To cluster the cells, principal component analysis (PCA) was run on the normalized filtered

gene-barcode matrix to reduce the number of feature (gene) dimensions. The top five princi-

pal components were selected and passed to t-distributed Stochastic Neighbor Embedding

[82] for clustering visualization in a two-dimensional space. Graph-based clustering was then

run to group cells with similar expression profiles, thereby building a sparse nearest-neighbor

graph without pre-specification of the number of clusters. Clusters were grouped into 35 unsu-

pervised categories according to the differential expression profile of hallmark genes. To
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identify genes that were enriched in a specific cluster, the mean expression of each gene was

calculated across all cells in the cluster. Each gene from the cluster then was compared to the

median expression of the same gene from cells in all other clusters, and the log2 fold-change of

differentially expressed genes (DEGs) was calculated. For hierarchical clustering, pairwise

Pearson’s correlation between each cluster was calculated based on the mean expression of

each gene across all cells in the cluster, and the log2 fold-change of DEGs was used to create a

heat map to visualize the results using MEV software (http://www.tm4.org/). Specific gene

expression was graphically represented using T-distributed stochastic neighbor embedding

(tSNE) plots implemented using Loupe Cell Browser software and Cell Ranger R.

Single-cell PCA analysis and gene ontology enrichment

The transcriptional profile data for immune cell and GLU1 and GLU3 were retrieved from the

NIH SRA database with the accession code SRP040656 (https://www.ncbi.nlm.nih.gov/sra/).

The most marker genes used for grouper cell classification can aligned with mouse marker

gene well, most of them can identity over 60% (S8 Table). After z-score normalization, the

transcriptional profile data for immune cell and GLU1 and GLU3 from the database together

with the specific cell clusters in our study were used for pairwise Pearson’s correlation and

PCA analysis implemented in R language (http://www.r-project.org) to demonstrate the phy-

logeny of specific clusters. Functional pathways representative of each gene signature was ana-

lyzed for enrichment in gene categories from the Gene Ontology Biological Processes

(GO-BP) database (Gene Ontology Consortium) using DAVID Bioinformatics Resources

[83].

Pseudotime inference

Monocle 2 was used to infer the pseudotemporal ordering of immune cells. We assumed the

raw UMI counts were distributed according to a negative binomial distribution with fixed var-

iance expression family to model the raw UMI count data, as recommended by the authors of

Monocle 2 [83]. The Monocle 2 function BEAM was used to identify immune cells that were

enriched along particular branches in the pseudotime tree. Branched heat maps were con-

structed using genes with q-values < 5 × 10−5 from the BEAM.

Real-time quantitative polymerase chain reaction (RT-qPCR)

Eight midbrains were collected from control and RGNNV-infected fish respectively. Viral

RNA was extracted from samples using the QIAamp RNA Viral kit (Qiagen, Hilden, Ger-

many) according to the manufacturer’s instructions. cDNA was reverse transcribed with oligo

(dT) and random hexamers using the PrimeScript RT Reagent Kit (Takara, Kyoto, Japan). RT-

qPCR was performed using a Light Cycler②480 II (Roche, Basel, Switzerland). The RT-qPCR

conditions were as follows: 95˚C for 30 s, followed by 40 cycles of 95˚C for 5 s, 60˚C for 30 s,

and 72˚C for 30 s. Relative expression was determined by normalization to the housekeeping

gene β-actin. We analyzed relative gene expression using the typical 2–44Ct method [84]. The

primers used in RT-qPCR are listed in S9 Table.

Fluorescent in situ hybridization (FISH) and in situ hybridization (ISH)

Sense and antisense digoxigenin (DIG)-labeled riboprobes were synthesized from the open

reading frame sequence of the RGNNV CP, ptch1, robo1, kbp, plp, aplnrb, fyb1, and gatm

genes using the DIG RNA Labeling Kit (Roche Diagnostics, Mannheim, Germany), and the

biotin-labeled probes were synthesized from the open reading frame sequence of the slc17a7
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gene using the biotin RNA Labeling Kit (Roche Diagnostics). The riboprobe sequences are

provided in S1 Supplementary Sequence.

The procedures for RNA FISH were as follows: briefly, the brain tissues from grouper were

fixed in buffered 4% paraformaldehyde overnight at 4˚C, then rinsed twice with cold PBS,

transferred to 30% sucrose solution for 48 h, and stored at 4˚C. The samples dried with sucrose

were frozen using dry ice and embedded in OCT compound (Sakura, USA). The tissue was

sliced at -21˚C, and sections were attached to cationic anti-off slides (Thermo Fisher Scientific)

and then covered and incubated at 42˚C for 1 day. Tissue sections were first prehybridized for

30 min, and then 250 μL of hybridization buffer containing 150 ng of DIG-labeled sense or

antisense igf3 riboprobe were added to each slide. Slides were incubated in a humidified box at

42˚C for 16 h. After hybridization, sections were sequentially washed twice in 2×saline-sodium

citrate (SSC) (1×SSC = 0.15 M NaCl, 15 mM Na citrate) at room temperature for 15 min, then

in 1×SSC and 0.1×SSC at 55˚C for 1 h, and then they were mounted using Fluoroshield with

DAPI (Sigma-Aldrich, St. Louis, MO, USA). Fluorescent signals from FISH were imaged using

a Zeiss confocal microscope (Oberkochen, Germany).

The procedures for ISH were as follows. The slides were permeabilized three times with

PBT (PBS solution containing 0.1% Tween-20) for 10 min and then treated with proteinase K

in PBT (10 μg/mL) for 10 min at room temperature. They then were hybridized with sense

and antisense probes at 55˚C overnight. After hybridization, sections were sequentially washed

twice in 2× SSC at room temperature for 15 min and then in 1× SSC and 0.1×SSC at 55˚C for

1 h. Probes were detected with an alkaline phosphatase conjugated anti-DIG antibody (Roche

Diagnostics), stained using the NBT/BCIP reagent (Roche Diagnostics), and imaged using the

Zeiss microscope (Oberkochen, Germany).

Supporting information

S1 Fig. The distribution of basic information of each sample cell and scatter diagram of

the basic information of each sample after filtration. (A) The number of genes detected in a

single cell of each sample (Y axis) is distributed. (B) The total amount of UMI detected in a sin-

gle cell of each sample (Y axis) was distributed. (C) The percentage of mitochondrial gene

expression in a single cell of each sample (Y axis) is distributed. (D) Relationship between

nUMI and nGene. The dots in different colors represent cells from different samples. X axis is

the number of UMI and Y axis is the number of genes percentage. The number at the top of

the figure is the Pearson correlation coefficient between the number of UMI and the number

of genes/mitochondria percentage. (E) Relationship between nUMI and pMito. The dots in

different colors represent cells from different samples.X axis is the number of UMI and Y axis

is the percentage of mitochondria. The number at the top of the figure is the Pearson correla-

tion coefficient between the number of UMI and the percentage of mitochondria.

(TIF)

S2 Fig. Heatmap showing the cell type-specific genes are differentially expressed across the

35 clusters. Columns represent individual cells and rows represent individual genes. The

expression level of a gene in different cells is represented by different colors. The more yellow

the color, the higher the expression level is, while the more purple the color, the lower the

expression level is.

(TIF)

S3 Fig. tSNE plots showing the expression of representative marker genes are restricted to

specific non-neuronal clusters among all of the cells. The expression level is color-coded.

(TIF)
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S4 Fig. tSNE plots showing the expression of representative marker genes are restricted to

specific astrocytes clusters among all of the astrocytes subtypes cells. The expression level is

color-coded.

(TIF)

S5 Fig. tSNE plots showing the expression of representative marker genes are restricted to

specific oligodendrocytes clusters among all of the oligodendrocytes subtypes cells. The

expression level is color-coded.

(TIF)

S6 Fig. tSNE plots showing the expression of representative marker genes are restricted to

specific immune cells subtypes among all of the immune cells subtypes cells. The expres-

sion level is color-coded.

(TIF)

S1 Table. Before and after removing cells with minimum and maximum thresholds for

cells numbers, read numbers per cell (nUMI), number of genes detected per cell (nGene).

(XLSX)

S2 Table. Potential subtype-specific marker genes for each of the 35 clusters.

(XLSX)

S3 Table. Identified the genes which were significantly enriched in each of the 9 subpopu-

lations of astrocytes.

(XLSX)

S4 Table. Identified the genes which were significantly enriched in each of the 6 subpopu-

lations of oligodendrocytes.

(XLSX)

S5 Table. Potential subtype-specific marker genes for 4 subpopulations of immune cells.

(XLSX)

S6 Table. The cell numbers of 4 subpopulations of immune cells between control group

and RGNNV infection group.

(XLS)

S7 Table. Cell numbers of 35 cluster in midbrain between control group and RGNNV

infection group.

(XLSX)

S8 Table. The identity of marker genes used for grouper cell classification and mouse

marker gene.

(XLSX)

S9 Table. Primers used in the riboprobes synthesis and RT-qPCR.

(DOCX)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

and statistical analysis for Figs 1A and 1B and 5G.

(XLSX)

S1 Supplementary Sequence. The sequence used for synthesis ISH and FISH riboprobes.

(DOCX)
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