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Abstract
Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however,

the precise underlying molecular mechanism has not been fully defined. Wnt was recently

identified as an important regulator of adipogenesis. This study aimed to investigate the

involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentia-

tion. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adi-

pogenic transcription factors and Wnts and the phosphorylation level and subcellular

localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte

differentiation and lipid accumulation, which were accompanied by the expression of adipo-

cyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte

differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an impor-

tant mediator of the Wnt pathway, was immediately dephosphorylated and translocated

from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1,

however, β-catenin was redirected to the cell plasma membrane leading to its decreased

accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular

localization of β-catenin and expression level of adipogenic transcription factors. Our find-

ings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-

catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new

target for the treatment of metabolic disease.

Introduction
Chronic nutrient overload causes an increase in adipose depots. This effect has often been asso-
ciated with the development of type 2 diabetes, atherosclerosis, and hyperlipidemia [1;2]. The
growth of adipose tissue involves cellular hypertrophy (cell size increase) and hyperplasia (cell
number increase) [3]. It is believed that, in adult humans,the recruitment and proliferation of
pre-adipocytes occur in addition to adipocyte hypertrophy [4;5]. In fact, during persistent
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positive caloric balance, if adipogenesis is impaired after initial adipocyte hypertrophy, then
further adipocyte hypertrophy can result in adipocyte metabolic and immune abnormalities
[6;7]. Therefore, adipogenesis is an important physiological process, and its function or dys-
function could prevent or promote metabolic disease [6;8].

The stimulation of adipogenesis consists of the sequential activation of a transcription factor
cascade [9]. The transient induction of CCAAT/enhancer-binding protein-β (CEBPB) and -δ
(CEBPD) directly induces expression of CEBP-α (CEBPA) and peroxisome proliferator-acti-
vated receptor-r (PPARG). Subsequently, many downstream target genes are activated, the
expressions of which define the adipocytes, including lipoprotein lipase (LPL), adipocyte
protein 2 (aP2) and adiponectin [9;10]. This process is regulated by the balance of local and
endocrine factors, which either stimulate or inhibit the differentiation of pre-adipocytes into
adipocytes [11]. Well-known factors that stimulate differentiation include glucocorticoid ago-
nists, high concentrations of insulin, PPARG agonists and agents that elevate cAMP [12]. Fac-
tors that counteract these positive stimuli include wingless-type MMTV integration site family
members (Wnts), tumor necrosis factor α (TNFα), transforming growth factorβ (TGFβ), epi-
dermal growth factor, and prostaglandin F2A [11]. Among these factors, Wnt is believed to be
an important physiological regulator of adipogenesis [13;14].

TheWnts are a family of secreted proteins that act through paracrine and autocrine mecha-
nisms to regulate many aspects of cell fate and development [15]. The canonical Wnt signaling
cascade converges on the transcription factor β-catenin. In the absence ofWnts, cytoplasmic
β-catenin is recruited to a degradation complex nucleated by Axin and adenomatous polyposis
coli (APC), facilitating its sequential phosphorylation by casein kinase I and glycogen synthase
kinase-3β (GSK3β). This phosphorylation primes β-catenin for ubiquitination and proteasomal
degradation. The binding of Wnt to frizzled (FZD) receptors and low-density lipoprotein-recep-
tor-related protein-5 and -6 (LRP5/6) co-receptors leads to inactivation of the degradation com-
plex, resulting in the hypophosphorylation of β-catenin and its translocation to the nucleus,
where it binds to the lymphoid-enhancer-binding factor/T-cell-specific transcription factor
(LEF/TCF) family of transcription factors and activates Wnt target genes. ‘Non-canonical’Wnt
signaling has been only poorly identified. This term usually refers to the pathways activated by
Wnt proteins that do not lead to β-catenin stabilization or β-catenin-mediated gene transactiva-
tion [16].

The incretin system andWnt-signaling pathway interact at different stages. Activation of
the incretin hormone glucagon-like peptide-1 (GLP-1) signaling pathway by its receptor ago-
nists increases Wnt member 4 (Wnt4) expression and activates the canonical Wnt signaling
pathway to promote β-cell proliferation [17–19]. On the other hand, canonical Wnt signaling
regulates the expression of GLP-1 in intestinal L cells [20;21]. It has been shown that GLP-1
regulates adipogenesis in 3T3-L1 pre-adipocytes and mesenchymal stem cells originating from
human bone marrow (hMSC) [22;23]. To explore the potential mechanism coupling GLP-1
receptor activation to enhanced adipogenesis, we sought a connection between adipogenic
markers and Wnt signaling following GLP-1 treatment in 3T3-L1 cells. We show here that the
engagement of GLP-1 receptor (GLP-1R) directly regulated the Wnt4-β-catenin pathway dur-
ing adipocyte differentiation, providing a mechanism for adipose tissue to adapt to metabolic
stress.

Methods and Procedures

Materials
Cell culture reagents, 5-bromo-2'-deoxyuridine (BrdU), anti-BrdU antibody, DNase I and TRI-
zol, were purchased from Life Technologies (Carlsbad, CA, USA). GLP-1, Exendin9-39 (Ex9),
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isobutylmethylxanthine (IBMX), dexamethasone (Dex), 4',6-diamidino-2-phenylindole
(DAPI), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Oil Red O
were acquired from Sigma Chemical (St. Louis, MO, USA). Complete Protease Inhibitor Cock-
tail was purchased from Roche Applied Science (Mannheim, Germany). TaKaRa Prime-
ScriptTM RT reagents kits and TaKaRa SYBR premix Ex Taq were acquired from TaKaRa Bio
(Kyoto, Japan). Antibodies for β-catenin, (Ser37/Thr41) non-phospho-β-catenin and FITC-con-
jugated anti-rabbit and anti-mouse IgG antibodies were purchased from Cell Signaling Trans-
duction (Boston, MA, USA). Antibodies for Wnt4 and GAPDH were acquired from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Lifectamine2000 and siRNA control were pur-
chased from Life Technologies (Grand Island, New York, USA). All other chemicals of analyti-
cal grade were acquired from Dingguo Bio (Shanghai, China).

3T3-L1 Cell culture and differentiation
3T3-L1 pre-adipocytes were cultured as previously described [24]. Briefly, until confluence, the
cells were maintained in high glucose DMEM containing 25 mM glucose, 10% fetal bovine
serum and antibiotics, and confluent pre-adipocytes were grown for another 2 days in culture
medium supplemented with 1 μM insulin, 0.5 mM IBMX, and 0.1 μMDex (MDI) and for fur-
ther 3 days in culture medium with 1 μM insulin. After this period, 3T3-L1 cells were grown
for 3–6 more days in culture medium, after which at least 95% of the cells had accumulated fat
droplets.

Assessment of 3T3-L1 lipid accumulation
Lipid accumulation of differentiated 3T3-L1 adipocytes was determined by quantitative Oil
Red O staining. Briefly, 14 days after the induction of differentiation, the cells were fixed for 20
min with 4% formaldehyde, followed by incubation with Oil Red O for 30 min. The dye was
eluted by the addition of 100 μl (96-well plate) of isopropanol per well and then was measured
by reading its absorbance at 540nm.

RNA extraction and quantitative real-time PCR
Total RNA was extracted from 3T3-L1 adipocytes using TRIzol reagent. After the RNA was
treated with DNase I, 1.0 μg of RNA was reverse-transcribed using TaKaRa PrimeScriptTM RT
reagents kits, according to the manufacturer’s instructions. Quantitative real-time polymerase
chain reaction (qPCR) was performed with ABI Prime 7500, using approximately 2–4 μl
reverse-transcribed reaction diluted 10 times each. Samples were prepared using TaKaRa
SYBR premix Ex Taq, according to the manufacturers’ instructions. After the reaction, each
PCR product was verified for its single amplification by melting curve analysis. The gene-spe-
cific primers for amplification are listed in Table 1. Gene expression levels were normalized to
the expression of GAPDH.

RNAi experiment
Two target regions (1:591–611 and 2:651-671ref) for Wnt4 were selected using the QIANGEN
siRNA online design tool. The scrambled fragment 5’-AAGAGGAGCATATTGGGAAGA-3’,
which does not have similarity with any mRNA listed in Genebank, was used as a negative con-
trol. Transfection of siRNA into 3T3-L1 cells was performed with Lifectamine 2000 according
to the manufacturer’s instruction.
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Western blot analysis and subcellular fractionation
Cytoplasmic and nuclear protein fractions were prepared as described previously [25]. Briefly,
10-cm dish-cultured cells were washed with ice-cold phosphate buffered saline (PBS) and were
removed from the culture plate by gentle scraping with a cell-scraper in 2 ml of ice-cold frac-
tionation buffer (250 mMsucrose, 20 mMHEPES, pH 7.4, 1 mM EDTA, 1 mM EGTA, 10 mM
KCl, 1.5 mMMgCl2, 1 mM dithiothreitol and complete protease inhibitor cocktail). The lysate
was passed through a 25 G needle 10 times using a 1 ml syringe and was left on ice for 20 min.
The nuclear pellet was centrifuged out at 720 g at 4°C for 5 min, and the supernatant was col-
lected for membrane fraction by ultracentrifugation. The nuclear pellet was further washed
with fractionation buffer and was passed through a 21 G needle 21 times. Then, the nuclear
fraction was collected after centrifugation at 3000 rpm for 5 min at 4°C. For the membrane
fraction, the supernatant was centrifuged at 150,000 G for 1 hr. The supernatant was the cyto-
solic fraction, and the pellet was washed and centrifuged again at 100,000 G for 45 min to
obtain the membrane protein pellet. The fractionated proteins were lysed with RIPA buffer (20
mM Tris-HCl pH 7.5, 150 mMNaCl, 1% Nonidet P-40, 0.1% SDS, 2 mM EDTA, 2 mM EGTA,
10% glycerol, 20 μg/ml leupeptin, 20 μg/ml aprotinin, 1 mM phenylmethylsulfonyl fluoride
(PMSF), 25 mM β-glycerophosphate, 5 mM sodium orthovanadate, and 5 mMNaF). The cell
lysates were resolved by SDS-PAGE as previously described [24]. The proteins were transferred
to PVDF membrane (Immun-Blot PVDF membrane; Bio-Rad, Hercules, CA, USA) and
immunoblotted with primary antibodies overnight. Specifically bound primary antibodies
were detected with horseradish peroxidase (HRP)-coupled secondary antibody and enhanced
chemiluminescence.

Immunostaining of β-catenin
Cells were induced for differentiation for the indicated amount of time as described in the leg-
end, with or without GLP-1. After fixation, the cells were permeabilized and then stained with
anti-β-catenin antibody. Finally, FITC-conjugated anti-rabbit IgG antibody was added. Images
were obtained using a Nikon fluorescence microscope.

MTT colorimetric assay
At 60% confluence, 3T3-L1 pre-adipocytes were kept in serum-free DMEM for 6 h and then
induced in DMEM with 0.5% BSA medium for proliferation, with or without GLP-1. For MTT

Table 1. Forward and reverse primers used for qPCR.

Forward Reverse

Wnt4 CTCAAAGGCCTGATCCAGAG TCACAGCCACACTTCTCCAG

Wnt5a ACTGGCAGGACTTTCTCAAGGACA GCCTATTTGCATCACCCTGCCAAA

Wnt5b CCCCAGGCCAGAGAAAGC CCTCCCCGATGTAGGACAT

Wnt6 TGTCAGTTCCAGTTCCGTTTCCGA ACACGAAAGCTGTCTCTCGGATGT

Wnt10b TGGCTGTAACCACGACATGGACTT CTGACGTTCCATGGCATTTGCACT

β-Catenin TGCAGCTTCTGGGTTCCGATGATA AGATGGCAGGCTCAGTGATGTCTT

PPARG2 TCGCTGATGCACTGCCTATG GAGAGGTCCACAGAGCTGATT

CEBPA CAAGAACAGCAACGAGTACCG GTCACTGGTCAACTCCAGCAC

CEBPB GGTCGAGCGCAACAACATC CTCGGGCAGCTGCTTGAACAA

CEBPD AACCCGCGGCCTTCTACGAG CACGGCGGCCATGGAGTCAA

LPL GGGAGTTTGGCTCCAGAGTTT TGTGTCTTCAGGGGTCCTTAG

GAPDH TGTGACGTTGACATCCGTAAAGAC TCCACACAGAGTACTTGCGCTC

doi:10.1371/journal.pone.0160212.t001
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assay, the cells were incubated with MTT for 4 h, and DMSO was then added to dissolve the
MTT formazan crystals. Absorbance was read at 590 nm.

BrdU incorporation assay
For Brdu incorporation assay, cells were incubated with 10 μM BrdU for 2 h and fixed with
Carnoy's fixative (3 parts methanol to 1 part glacial acetic acid) for another 20 min. Subse-
quently, the cells were denatured by 2 M HCl and were stained with anti-BrdU monoclonal
antibody. FITC-conjugated anti-mouse IgG antibody was added, followed by DAPI
counterstaining.

Statistical analysis
The values are presented as means ±S.E.M.s. Comparisons between groups were performed
with Student’s unpaired t-test and, in cases of multiple time points and treatments, by one-way
ANOVA. P values<0.01 were considered to be highly significant and<0.05 were considered
to be significant.

Results

1. GLP-1 enhanced gene expression and cell proliferation in 3T3-L1 pre-
adipocytes
We investigated whether GLP-1 regulated Wnt synthesis in vitro. 3T3-L1 pre-adipocytes were
cultured with or without GLP-1 (10nM and 50 nM) for 17 h. As demonstrated in Fig 1A, both
10 nM and 50 nM of GLP-1 significantly increased mRNA levels of CEBPB, Wnt4 andWnt6.
The effects of GLP-1 on Wnt10 were found to be dose-related; 50 nM of GLP-1 significantly
increased the production of Wnt10, while 10 nM had no significant effect (Fig 1A).These data
suggested that GLP-1 would regulate adipocyte differentiation through modulation of the Wnt
signaling pathway.

We next examined the effects of GLP-1 on the proliferation of pre-adipocytes. GLP-1
increased the gene expression levels of cyclin D1 at doses of 10 nM and 50 nM (Fig 1A). MTT
assay showed that GLP-1 increased cell numbers, which were blocked by pretreatment with a
specific GLP-1R antagonist, Ex9 (5 nM)[24] (Fig 1B), thus suggesting a GLP-1R dependent
mechanism. Consistently, BrdU staining (Fig 1C) showed that treatment with GLP-1 increased
proliferation of the pre-adipocytes. These data suggested that GLP-1-promoted pre-adipocyte
growth might contribute in part to mature adipocyte formation.

2. GLP-1 promoted adipocyte differentiation in 3T3-L1 cells
We found that the lipid accumulation in differentiated adipocytes treated with GLP-1 was
increased in a dose-related fashion (Fig 2A). The expression levels of adipogenic transcription
factors were determined in these cells undergoing differentiation. The mRNA levels of CEBPB,
PPARG and LPL were increased in a time-dependent fashion. After 3 h of incubation with
MDI, an increase in CEBPB expression appeared, and maximum mRNA levels were attained
before the 1st day after differentiation induction (Fig 2B). The increase in PPARG expression
occurred rapidly as well with a peak on the 4th day after induction (Fig 2C). Furthermore, the
expression of LPL increased on the 4th day after induction, and high levels persisted through-
out the time course studied (Fig 2D). When the 3T3-L1 cells were stimulated to differentiate in
the presence of GLP-1, the expressions of CEBPB, PPARG and LPLwere further increased.
This increase in expression was significant at the time when expression of all of these factors
was at a maximum (Fig 2B–2D).
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3. GLP-1 promoted adipogenesis by enhancing the dynamic expression
of Wnt4 in differentiating 3T3-L1 adipocytes
Wnts is reported to be an important regulator of adipogenic differentiation; we investigate
whether GLP-1 exerted its action on adipogenesis via regulating the expression of Wnts in pre-
adipocytes undergoing differentiation. After 3 h of incubation with MDI, we noticed an
increase in Wnt4 expression, with maximum mRNA levels occurring between the 1st day and
4th day after cell induction (Fig 3A). In contrast, the expression levels of Wnt6 and Wnt10
were found to decline rapidly after the initiation of differentiation (see S1 Fig). Interestingly,
when 3T3-L1 cells were stimulated to differentiate in the presence of GLP-1, the expression of
Wnt4 was found to be further increased statistically significantly at early time points (Fig 3A).
GLP-1 did not affect the dynamic expression of Wnt6 andWnt10 (see S1 Fig). Consistently,
the protein production of Wnt4 increased during cell differentiation, and GLP-1 treatment
enhanced this increase (Fig 3B).

Wnt4 is known to be an important accelerator of adipogenesis. Silencing Wnt4 via siRNA
(Fig 3C) significantly decreased the increment in PPARG and LPL level, while had no obvious
effect on CEBPB level (Fig 3D). These results suggest that Wnt4 signaling activated the tran-
scription of PPARG independent of C/EBPB. The effect of GLP-1 was blocked by knocking

Fig 1. GLP-1 regulated gene expression and proliferation in 3T3-L1 pre-adipocytes. At 60% confluence,
3T3-L1 pre-adipocytes were kept in serum-free DMEM for 6 h and then were treated with GLP-1 for 17 h. (A)
Extraction of total RNA and qPCR with gene specific primers were performed. The proliferation of cells was
measured by MTT assay (B) and BrdU staining (C). (B) Cells were pretreated with Ex9 for 30 min before GLP-1
was added. (C) FITC-conjugated antibody was added to detect BrdU, and DAPI was added to counterstain nuclei.
**P<0.01, *P<0.05, compared with controls. n = 3–6.

doi:10.1371/journal.pone.0160212.g001
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Fig 2. GLP-1 promoted adipogenic differentiation. 3T3-L1 cells were induced to differentiate by MDI with or
without GLP-1. (A) Mature adipocytes were stained with Oil-Red-O, and the color was then eluted in isopropanol
and was measured for absorbance at 540 nm. The expression profiles of CEBPB (B), LPL (C) and PPARG (D)
were quantified by qPCRwith gene-specific primers at the indicated time points after MDI induction. **P<0.01,
*P<0.05, compared with controls. n = 4–10.

doi:10.1371/journal.pone.0160212.g002

Fig 3. GLP-1 increased the adipocyte differentiation via enhancingWnt4 expression. 3T3-L1 cells were
induced to differentiate by MDI with or without GLP-1. The expression profiles of Wnt4 were quantified by qPCR (A)
and western blotting (B) at the indicated time points after MDI induction. Using siRNA651 to silenceWnt4, the
expression levels of Wnt4 (C), CEBPB, LPL and PPARGwere quantified. NC: negative control. *P<0.05,
**P<0.01, compared with controls at the same time point. n = 3–6.

doi:10.1371/journal.pone.0160212.g003
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downWnt4. Thus, our study showed that GLP-1 promoted the adipogenic differentiation via a
novel pathway through Wnt4 mediated transcriptional activation of PPARG.

4. GLP-1 promoted adipogenesis through translocation of β-catenin to
the plasma membrane
β-catenin is the major downstream mediator of Wnts. Stimulation of canonical Wnt signaling
led to the stabilization of β-catenin through inhibition of its phosphorylation at Ser37 and
Thr41 [26].We tested whether GLP-1 modified the phosphorylation level of β-catenin in cells
under differentiation. To accomplish this goal, we used an antibody that only recognizes β-
catenin that is not phosphorylated at residues Ser37 and Thr41 (np-β-catenin). When differenti-
ation was initiated, the level of np-β-catenin protein rapidly increased (at 6h time point) (Fig
4A) and the synthesis of β-catenin declined (afterwards) (Fig 4A) due to transcription inhibi-
tion (Fig 4B). GLP-1 treatment had no effect on the transcription and non-phosphorylated
proteins level of β-catenin at the early stage of differentiation, while on the 1st day after differ-
entiation the total protein level of β-catenin was modestly increased by GLP-1 treatment.
Silencing Wnt4 blocked the increase in β-catenin level by GLP-1 (Fig 4C). These results suggest
that GLP-1 might increase the stability of β-catenin via Wnt4.

β-catenin is reported to be a transcription repressor during adipogenic differentiation.
Wnt4 is able to antagonize canonical Wnt signaling by specifically redirecting β-catenin to the
plasma membrane [27]. We tested the subcellular localization of β-catenin in cells undergoing
differentiation. Initiation of differentiation induced a quick translocation of β-catenin from
cytoplasm to nucleus by immunofluorescence staining (Fig 5A). At 6 h after MDI induction,
the accumulation of β-catenin in the nucleus reached the maximum together with morphologi-
cal change of cells. Thus, it is much likely that the negative regulation mechanism mediated by

Fig 4. GLP-1 regulated β-catenin via Wnt4 in cells undergoing adipogenesis. 3T3-L1 cells were induced to
differentiate by MDI with or without GLP-1. (A) Western blotting was performed to measures the level of total (t-β-
cat) and (Ser37/Thr41) non-phosphorylated β-catenin (np-β-cat) and the expression profile of β-catenin was
quantified by qPCR (B) with gene-specific primers at the indicated time points after MDI induction. (C) Using
siRNA651 to silenceWnt4, the levels of (t-β-cat) and (Ser37/Thr41) non-phosphorylated β-catenin (np-β-cat) were
detected. NC: negative control.

doi:10.1371/journal.pone.0160212.g004
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β-catenin was quickly and transiently initiated at the very early stage of the differentiation. Fur-
thermore, cytoplasmic, plasma membrane and nuclear fraction extracts was prepared from the
differentiating cells with or without GLP-1 treatment (Fig 5B).The purity of the fractions was
estimated by measuring the amounts of Hspa5 (heat-shock 70 kDa protein 5) in the membrane
fraction, lamin C in the nucleus, and GAPDH in the cytosol. Membrane-bound β-catenin was
significantly increased in the GLP-1-treated cells, compared with the control cells (middle
panel, membrane, and the graphical representation), while a modest but significant decrease in
β-catenin in the nuclei was observed in cells treated with GLP-1 (left panel, nucleus, and the
graphical representation). These results suggested that GLP-1 might prevent the transcriptional
depression effect of β-catenin by directing it to membrane, thereby resulting in facilitating adi-
pocyte differentiation.

Fig 5. GLP-1 redirected β-catenin to the plasmamembrane to promote adipocyte differentiation. (A)
Immunofluorescence staining showed nuclear translocation of β-catenin after differentiation began. (B) Subcellular
fractionation was performed to qualify the subcellular distribution of β-catenin at 6 h after MDI induction. The purity
of the fractions was estimated by measuring the amounts of Hspa5 in the membrane fraction, Lamin C in the
nucleus, and GAPDH in the cytosol (upper). Densitometric analysis corresponded to three independent
experiments (lower). *P<0.05. n = 3–6. (C) Model depicting the proposedmechanism of Wnt4-dependent GLP-1
action on β-catenin translocation. Abbreviation: MDI: culture media with IBMX, Dex and insulin.

doi:10.1371/journal.pone.0160212.g005
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Translocation to membrane by Wnt4 avoids β-catenin to be degradated in the cytoplasm
[27], which might explain the β-catenin level increase at 1 day after differentiation by GLP-1
treatment (Fig 1A). These results suggested that the action of GLP-1 onWnt4 specifically trig-
gered β-catenin relocalization to the plasma membrane in cells undergoing adipogenic differ-
entiation, thereby preventing its involvement in gene transcriptional regulationin the nucleus.

Discussion
GLP-1 exerts a variety of biological functions, including enhancing glucose-dependent insulin
secretion, suppressing glucagon secretion, slowing gastric emptying, reducing food intake and
stimulating satiety [28]. Using a gene therapy strategy, we previously found that high-fat diet-
fed mice had decreased body weight gains, improved circulating lipidemia and greater insulin
sensitivity following GLP-1 treatment [29].These findings inspired us to explore the local
effects of GLP-1 on adipose tissues. The 3T3-L1 cell line is a widely used model for adipocyte
formation and function [30]. GLP-1R was cloned in 3T3-L1 preadipocytes and adipocytes, and
its activation stimulated the synthesis of visfatin [24]. Here, we demonstrated that GLP-1 pro-
moted the differentiation of adipocyte in 3T3-L1 cells by increasing the expression of adipo-
genic transcription factors. Our data were consistent with previous findings by Challa ID et al
[22].

Suppression of adipogenesis has been linked to increased insulin resistance [31], while
enhancement of adipogenesis resulted in increased glucose disposal and high adiponectin
secretion [32]. In addition, during positive caloric balance, increased storage of energy occurs
through adipogenesis from pre-adipocytes. Thus, it is likely that, in response to food intake,
secreted GLP-1 induces adipocyte precursors to differentiate into mature adipocytes. This pro-
cess could benefit whole body insulin sensitivity by decelerating ectopic lipid accumulation and
decreasing weight gain.Our data suggested that GLP-1 increased the adipogenesis of 3T3-L1
cells via multiple pathways, including by promoting the proliferation of pre-adipocytes (Fig
1B), enhancing CEBPB expression (Fig 2B) and blocking β-catenin action in differentiating
cells (Fig 4). Activation of CEBPA expression by CEBPB during adipogenesis requires a
PPARG -associated repression of HDAC1 at the CEBPA gene promoter, though they mutually
promote the expression of each other thereafter [33]. PPARG and CEBPA have been reported
to cooperate in activation of a few adipocyte genes with different patterns of synergy, whereas
the expression of LPL mRNA could be induced by both PPARG and CEBPA [34]. In our
study, GLP-1 enhanced the expression of PPARG while had no obvious effect on the expres-
sion of CEBPA, and then increased the transcription of LPL.

Wnt signaling possibly serves to regulate adipose expansiontightly, to meet energy storage
demands [11]. The finding that disruption of Wnt/β-catenin signaling led to spontaneous adi-
pogenesis indicated that endogenous Wnts restrained preadipocytes differentiation [35]. One
likely candidate for such an anti-adipogenic WNT signal is Wnt10b. In 3T3-L1 preadipocytes,
overexpression of Wnt10b stabilized β-catenin and blocked adipogenesis, while addition of
Wnt10b anti-sera to culture media promoted adipocyte differentiation [36]. Another candidate
is Wnt6. Overexpression of Wnt6 stabilized β-catenin and prevented adipogenesis [35]. MSCs
give rise to numerous cell types, including adipocytes and osteoblasts. Wnt/β-catenin signaling
is an important regulator of the fate of MSCs. Wnt6 was a more potent endogenous regulator
of MSC fate thanWnt10a or Wnt10b, at least in vitro[35]. Compared to 3T3-L1 cells, adipo-
genic differentiation of hMSCs was inhibited by GLP-1. Our data showed that GLP-1 had the
ability to regulate the expression of both Wnt6 and Wnt10. Thus, we propose that the regula-
tion pattern of GLP-1 onWnts in different cells might lead to the decrease in adipocyte forma-
tion from hMSCs.
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The phosphorylation level of β-catenin is tightly regulated by Wnt signaling. When adipo-
genesis was initiated, the expression levels of Wnt6 and Wnt10b rapidly and sharply
decreased. In addition, expression levels of the Wnt receptors Fz1, Fz2 and Fz5 also decreased
upon the induction of differentiation [13]. Thus, β-catenin should be phosphorylated and
degraded in the cytoplasm. However, we found rapid dephosphorylation and translocation
of β-catenin to the nucleus when differentiation was initiated. It was previously showed that
ectopically expressed, constitutively active chimeras between Wnt8 and Fz1 or overexpres-
sion of Wnt10b in pre-adipocytes and MSCs increased the levels of β-catenin and inhibited
adipogenesis by blocking the induction of the key transcription factors PPARG and CEBPA
[37]. Therefore, it is possible that, when differentiation was initiated, β-catenin translocated
to the nucleus to antagonize CEBPB and CEBPD by inhibiting the transcription activity of
PPARG and CEBPA.

Wnt4 is essential for cell proliferation and development in a broad range of tissues [38;39].
In particular, Wnt4 was abundantly expressed in pancreatic β-cells and acted as regulator of β-
cell proliferation and TNF-α release [17]. The GLP-1 analogue Ex4 dose-dependently increased
the expression of Wnt4 in the mRNA and the protein levels in pancreatic β-cells, and the GLP-
1 antagonist Ex9 abolished these effects. While knocking downWnt4 decreased the β cell pro-
liferation to 45% of the controls, it was suggested that GLP-1 promoted β-cell proliferation in
part via the Wnt4 pathway [17]. In adipocytes, inhibition of Wnt4 expression prevented the
cytoplasmic accumulation of triacylglycerol and decreased the expression of adipogenesis-
related genes [40]. Conversely, overexpression of Wnt4 reduced the transcription activity of β-
catenin by translocation to the plasma membrane [41]. Our present study showed that, when
adipogenesis was initiated, the expression level of Wnt4 changed dramatically and was closely
related to adipocyte differentiation [40]. During this time frame, GLP-1 increased the level of
membrane-bound β-catenin. Localization at the plasma membrane could help β-catenin to
avoid degradation by phosphorylation in the cytoplasm. In fact, in the early stage of differentia-
tion, when β-catenin expression decreased, and Wnt4 expression was at its peak time point, the
total β-catenin level was higher in GLP-1-treated cells. Later, when Wnt4 expression decreased,
GLP-1 lost its action on β-catenin. Thus, our data suggested that Wnt4 was an important medi-
ator of the effects of GLP-1 on the activity and stability of β-catenin during adipogenic differen-
tiation. A model for the Wnt4/β-catenin-dependent action of GLP-1 during adipocyte
differentiation is shown in Fig 5.

In conclusion, our data demonstrated that GLP-1 promoted adipogenesis, in part by
enhancing Wnt4 expression. On the molecular level, we revealed a novel pathway of β-catenin
based on its translocation and accumulation in the nucleus during the early stages of differenti-
ation. GLP-1 redirected β-catenin to the plasma membrane via the Wnt4 pathway. Therefore,
GLP-1 could exert part of its effects on adipocytes by upregulation of Wnt4, modulating β-cate-
nin signaling in pre-adipocytes undergoing differentiation.

Supporting Information
S1 Fig. The effect of GLP-1 on the expression profiles of Wnt6 andWnt10. The transcrip-
tion level of Wnt6 and Wnt10 were quantified by qPCR at the indicated time points after MDI
induction. n = 3–6.
(TIF)
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