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Abstract: Background: Excess body fat has been growing alarmingly among adolescents, especially
in low income and middle income countries where access to health services is scarce. Currently, the
main method for assessing overweight in adolescents is the body mass index, but its use is criticized
for its low sensitivity and high specificity, which may lead to a late diagnosis of comorbidities
associated with excess body fat, such as cardiovascular diseases. Thus, the aim of this study was
to develop a computational model using linear regression to predict obesity in adolescents and
compare it with commonly used anthropometric methods. To improve the performance of our model,
we estimated the percentage of fat and then classified the nutritional status of these adolescents.
Methods: The model was developed using easily measurable socio-demographic and clinical variables
from a database of 772 adolescents of both genders, aged 10–19 years. The predictive performance
was evaluated by the following metrics: accuracy, sensitivity, specificity, and area under ROC curve.
The performance of the method was compared to the anthropometric parameters: body mass index
and waist-to-height ratio. Results: Our model showed a high correlation (R = 0.80) with the body fat
percentage value obtained through bioimpedance. In addition, regarding discrimination, our model
obtained better results compared to BMI and WHtR: AUROC = 0.80, 0.64, and 0.55, respectively.
It also presented a high sensitivity of 92% and low false negative rate (6%), while BMI and WHtR
showed low sensitivity (27% and 9.9%) and a high false negative rate (65% and 53%), respectively.
Conclusions: The computational model of this study obtained a better performance in the evaluation
of excess body fat in adolescents, compared to the usual anthropometric indicators presenting itself as
a low cost alternative for screening obesity in adolescents living in Brazilian regions where financial
resources are scarce.

Keywords: obesity; adolescent; screening

1. Introduction

The prevalence of excess body fat has been growing alarmingly worldwide, this increase is also
observed among teenagers [1,2]. In certain developed, the prevalence of obesity among adolescents
has achieved high levels [3,4], as in the USA, that 17 % of teenagers are considered obese [4]. Statistics
are also alarming in developing countries like Brazil, since the rate of obesity also grows rapidly,
that nearly 20% of teenagers are obese [1]. Consequently, the assessment of nutritional status plays a
relevant role in the fluctuations in the body composition of the individual, as well as in the survival
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rate under pathological conditions, since it allows the early diagnosis of comorbidities associated with
overweight such as cardiovascular disease and endocrine disorders [5,6].

There are several techniques for assessing body composition, among which bioimpedance (BIA)
stands out, which is a fast, portable, and non-invasive method that uses the principle of electrical
impedance. Moreover, it has little technical difficulty and high correlation with dual energy X-ray
absorptiometry (DXA), and its use is indicated in epidemiological studies and clinical practice [7–11].
However, the use of anthropometric parameters is still more viable due to their low cost when compared
to BIA.

The most commonly used anthropometric indicator in the assessment of adolescent nutritional
status is the body mass index (BMI) due to its low cost, simplicity, and high reproducibility. However,
BMI has controversies regarding its efficiency, since it has low sensitivity in predicting excess body
fat [12–16]. Individuals who have a high percentage of lean mass will have their total weight affected,
and on BMI assessment, this individual will be mistakenly classified as obese.

Thus the identification of individuals with high body fat percentage subclinical is an important
measure to identify individuals who need earlier interventions and especially for adolescents.
Early detection of excess body fat through low cost and high sensitivity methods allows the
implementation of appropriate therapeutic approaches to mitigate the development of comorbidities
associated with excess body fat [17]. Therefore, we propose a statistical method to predict obesity in
adolescents, using low cost and easily verifiable variables (such as gender, age, height, and body mass).

2. Materials and Methods

2.1. Construction of The Database

The database is composed of 722 adolescents. The study included adolescents of both genders,
aged 10 to 19 years old, duly enrolled in public schools in São Luís, MA. Exclusion criteria were:
pregnancy, lactation, use of birth control pills, being on menstrual period, eating disorders, malnutrition,
dehydration, body water retention, refusal to participate in the study, and absenteeism in collections.
A single researcher performed each measurement with the same calibrated instrument. Based on
the protocol by Lohman [18], the measurements were performed in duplicate, in a single moment
(transversal study), and for data analysis, the mean values of the collected measurements were
calculated. The variables evaluated were socio-demographic (age and gender) and anthropometric
(body mass, height, body circumferences, and body fat percentage). The present study is approved by
the Ethics Committee in Research with Human Beings of the Federal University of Maranhão according
to legal opinion CAAE: 83206118.1.0000.5087.

2.2. Sample Calculation

The sample size was calculated by proportion estimation [19], based on the prevalence of
overweight in adolescents of 20.5% [20], which suggested a prevalence of outcome of 26.9% [21],
tolerable error of 5% (type I error), and test power of 90% (Type II error), with 10 % added for possible
losses or refusals. A minimum sample of 513 teenagers was reached.

2.3. Data Collect

Body mass was measured with a calibrated electronic scale (Omron® HBF 214 LA, Japan) with a
precision of 0.1 kg. Height was determined through a portable vertical stadiometer with precision of
0.1 cm (Sanny®, Brazil). For the measurement of circumferences, an anthropometric tape measure with
0.1 cm precision was used (Seca® 213, Hamburg, Germany). Waist circumference was measured at the
midpoint between the last rib and the iliac crest at minimum respiration [22]. Hip circumference was
measured at the widest point as described by Huang et al. [23]. Arm circumference was evaluated at
midpoint between olecranon and acromial process on the upper left-arm with the subject in standing
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position [24], and the calf was measured with the participant seated, knee bent at a ninety-degree angle
to the floor and this was considered the point of largest calf circumference [25].

The BMI was calculated according to the index of weight (kg)/height2 (m), and the cut-off

point used for classification of nutritional status was the one recommended by the World Health
Organization for gender and age, where >3 percentile and <85 percentile was classified as eutrophic
and >85 percentile was overweight [26,27]. The waist-to-height ratio (WHtR) was calculated using the
index of waist circumference (cm)/height (cm). For WHtR evaluation, the cutoff point used was 0.5 for
both genders and age [28]. Age was calculated as the difference between the date of birth and the date
of measurement, and the gender and ethnicity was self-declared by the participant.

The percentage of body fat was obtained through the (calibrated) tetrapolar bioimpedance
method (Maltron 906BF®, England). All procedures established were followed. It should be noted
that the participants were fasting 2 hours before the evaluation, did not drink alcohol or perform
vigorous exercises in the 24 hours prior to the exam, and urinated at least 30 minutes before the test.
Measurements were taken with the individual in supine position and without any metallic objects
on their body [29–31]. For the classification of the adolescents’ nutritional status through the body
fat percentage, the following cutoff points were used [32,33]: For males, 10.1–20% was considered
normal body fat percentage (BFP) and ≥20.1% as high BFP; and for females, 15.1–25% was considered
as normal BFP and ≥25.1 as high BFP.

For BFP measurement through DXA, the GE Healthcare Lunar Prodigy device was used, and the
scans were analyzed using software version 14.10 (GE Healthcare). This analysis was performed in a
subgroup of 12 adolescents also from the public school system of São Luís, MA, in order to show the
correlation between the value of BFP obtained by bioimpedance and by DXA.

2.4. Predictor Variables

All the characteristics used as input from the model (Table 1) were chosen based on low cost
indicators and easy application. They also had to be described in the literature for the assessment of
nutritional status and health of adolescents. The variables—age, body mass, height, and gender—are
indexes recommended by the World Health Organization and have been measured in several studies
for the nutritional analysis of this population [1,27,28,34–36].

Table 1. Entry attributes in our model.

Attribute Abbreviation Unit

Body Mass BM Kg
Height Ht M
Gender - -

Age - years
Arm Circumference AC cm
Waist Circumference WC cm
Calf Circumference CC cm
Hip Circumference HC cm

Abbreviations: kg—kilogram; m—meters; cm—centimeter.

Those variables are also used as a criterion for the evaluation and classification of BMI and
waist circumference (for example, References [17,22,37]). In contrast to the anthropometric indicators,
waist circumference is already a consolidated index for the analysis of central fat and cardiovascular
risk [37–39]. In addition, the circumference of the arm, hip, and calf are used to assess the nutritional
status and population health [22,23,25,40–46]. Other factors were considered, such as low cost,
reproducibility, and accessibility to the entry attributes, especially if the method is used in remote places.
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2.5. Statistical Model

In many areas of knowledge, such as engineering and health, many problems involve investigating
the relationship between two or more variables [47–50]. Multiple linear regression (MLR) is a statistical
technique widely used in the literature to verify the relationship between a dependent variable and
several independent variables [51]. Therefore, to build the computational model to predict body fat
percentage, the concept of multiple linear regression was applied, and MATLAB® was used to build
the model.

The MLR is based on least squares [51], which minimizes the error between the actual results
(BFP obtained by the BIA) of the model and the expected results of the training set. The multiple
linear regression aims to find an estimate of the real output by means of an equation, according to
Equation (1):

y = xiβi + . . .+ xnβn + ε (1)

where y represents the dependent variable, xi the independent variables, βi indicates the regression
coefficients, and ε is the error term.

Our model has eight predictive (independent) variables described in Table 1, and the model
output (dependent variable) will be the estimated body fat percentage value. After obtaining the BFP
value through the model, the participant’s nutritional status was assessed using the Lohman study
cutoff point [32,33].

For generalization, and in order to avoid overfitting in the proposed method, the K-fold cross
validation test was used, which consists of dividing the data into training and testing sets, where the
data is equally divided into equal or nearly equal k segments. In these partitioned folds, both the
training and the test are performed through k iterations. In each iteration, we leave a fold to test
and train the model in the remaining k-1 folds [52]. Based on Lopes et al. [53], Afzal et al. [54],
Song et al. [50], and Chang et al. [55], our dataset was randomly divided into five subsets (k = 5). Thus,
from the 772 adolescents, 618 were randomly chosen to compose the training set and 154 were used as
the test set (i.e., a proportion of 80% of the data for training and 20% for testing).

2.6. Performance Analysis

The performance of the method was evaluated in regard to the sensitivity (Sens—percentage of
the cases that are correctly identified as true), specificity (Spe—percentage of the cases that are correctly
identified as false), and accuracy (Accu—percentage of the cases that are correctly identified among
all subjects). To obtain these measurements, the values of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN) were calculated [56]. The area under receiver operating
characteristic (AUROC) and confidence intervals were determined. The cutoff points used for BMI,
WHtR, and BFP performance analysis are described in Section 2.3.

2.7. Statistical Analysis

For the statistical analysis, the SPSS software (Statistical Package for the Social Sciences, Inc.,
Chicago, IL, USA) version 25.0 was used. Data was treated with descriptive procedures (median and
interquartile range). To compare groups with normal and altered BFP, the Mann–Whitney U test was
used. The Chi-squared test was performed to verify the frequency of categorical variables. Pearson’s
correlation was used to evaluate the degree of correlation between the estimated value by the model
and the real one (obtained by BIA), as well as for the analysis of the correlation between BIA value
obtained by the BIA and DXA value. The results were considered statistically significant if the p-value
was < 0.05.

3. Results

Table 2 presents the general characteristics of the sample composed of 772 adolescents aged 10 to
19 years.
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Table 2. Socio-demographic, anthropometric, and hemodynamic characteristics from the database,
stratified through body fat percentage (BFP).

Variables Normal BFP *
(n = 233)

Elevated BFP *
(n = 539)

All #

(n = 772)

Ht (m) 1.67 (1.59−1.75) 1.62 (1.57−1.68) 1.64±0.09

BM (kg) 53.6 (45.7−61.5) 56.9(50.1−64.3) 57.18±11.67

Age (years) 17 (15−17) 16(15−17) 15.66±1.72

HC (cm) 86.5 (82−91) 92 (86.5−97) 90.31±8.6

WC (cm) 66 (62−71) 69 (65−75) 69±8.4

AC (cm) 23 (21−25.5) 25 (23−28) 24.9±3.90

CC (cm) 32 (30−34.7) 34 (31.5−36) 33.2±3.9

BFP (%) 15.7(12.7−19.8) 33.7 (28.4−39.1) 28.4±10.23

Gender §

Female 99 402 501
Male 134 137 271

Ethnicity §

Caucasian 53 124 177
Non-Caucasian 180 415 595

Abbreviations: Ht—height; BM—body mass; HC—hip circumference; WC—waist circumference; AC—arm
circumference; CC—calf circumference; kg—kilogram; m—meters; cm—centimeter; %—percentage; BPF—body
fat percentage; * Values are presented as median (interquartile range: 25–75%); # Results are presented using
mean ± standard deviation; § Values shown in frequency.

The BFP obtained by BIA showed a high correlation (R = 0.96) with DXA BFP in the validation
subgroup (n = 12), with a confidence interval of 0.85–0.98. Figure 1 presents the relationship between
the DXA value and the BIA BFP value, demonstrating the validity of BIA for BFP estimation in
this population.
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Figure 1. Relation between the DXA BFP and BIA BFP. BFP—body fat percentage; DXA—dual energy
X-ray absorptiometry; BIA—Bioimpedance.

When comparing the model in relation to the body fat percentage (BIA), there was a significant
association between the BFP and the chosen input attributes (Table 3).
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Table 3. Regression coefficient (Beta) and significance (p) for each analyzed variable of the model,
in relation to the body fat percentage.

Attribute Beta p

Body Mass −0.12 0.018
Height −6.84 0.005
Gender −11.5 <0.001

Age −1.32 <0.001
Arm Circumference 0.37 0.002
Waist Circumference 0.31 <0.001
Calf Circumference 0.40 0.001
Hip Circumference 0.30 <0.001

The proposed method presented high correlation with the BFP value obtained through
bioimpedance (R = 0.80), with a confidence interval of 0.73–0.85. Figure 2 presents the relation
between the real value (BIA) and the value estimated by our method.

Int. J. Environ. Res. Public Health 2019, 16, x 6 of 12 

 

Age −1.32 <0.001 

Arm Circumference 0.37 0.002 

Waist Circumference 0.31 <0.001 

Calf Circumference 0.40 0.001 

Hip Circumference 0.30 <0.001 

The proposed method presented high correlation with the BFP value obtained through 

bioimpedance (R = 0.80), with a confidence interval of 0.73–0.85. Figure 2 presents the relation 

between the real value (BIA) and the value estimated by our method.  

 

Figure 2. Relation between the real value (BIA) and value estimated by the proposed method. 

Abbreviations: BFP—body fat percentage. 

In Table 4, it is observed that BMI and WHtR present a low AUROC discriminatory power when 

compared to the proposed method. The WHtR showed low performance compared to the other 

methods evaluated, presenting a confidence interval less than 0.5 and low sensitivity. Similarly to BMI, 

the WHtR failed to diagnose more than 50% of the sample of adolescents with excess body fat. 

To verify the performance of our method, during the test phase and relative to the obesity 

indicators commonly used in clinical practices and epidemiological studies, the performance indicators 

AUROC, precision, sensitivity, and specificity were analyzed. Our model presented excellent 

discriminatory power, with respect to AUROC, as shown in Table 4 and represented in Figure 3. 

Besides, our model showed a better performance than the BMI and WHtR indicators, having high 

sensitivity with respect to these indicators (Table 4). The development and implementation of a sensible 

model is of great importance, as a screening method must present high sensitivity, especially if it is used 

in the analysis of high body fat in adolescents. 

Table 4. Analysis of the performance in the test set of the proposed methods relative to the 

anthropometric indicators BMI and WHtR. 

Indicators 
AUROC* 

(CI 95 %) 

Accu 

( %) 

Sens 

( %) 

Spe 

( %) 

TP 

( %) 

TN 

( %) 

FP 

( %) 

FN 

( %) 

MP 0.80 (0.70–0.90) 85.1 92 67.4 66 19 9 6 

BMI 0.64 (0.51–0.77) 47.4 27 100 19 28 0 53 

WHtR 0.55 (0.36–0.74) 35.1 9.9 100 7 28 0 65 

Abbreviations: CI 95 %—confidence interval; * Area under the ROC curve demonstrating 

discriminatory power for body fat (lower limit of CI 95 % > 0.50); MP—proposed method; 

WHtR—waist-to-height ratio; BMI—body mass index; Accu—accuracy; Sens—sensitivity; 

Spe—specificity; TP—true positives; FP—false positives; TN—true negatives; FN—false negatives; 

%—percentage. 
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Abbreviations: BFP—body fat percentage.

In Table 4, it is observed that BMI and WHtR present a low AUROC discriminatory power when
compared to the proposed method. The WHtR showed low performance compared to the other
methods evaluated, presenting a confidence interval less than 0.5 and low sensitivity. Similarly to BMI,
the WHtR failed to diagnose more than 50% of the sample of adolescents with excess body fat.

Table 4. Analysis of the performance in the test set of the proposed methods relative to the
anthropometric indicators BMI and WHtR.

Indicators AUROC *
(CI 95 %)

Accu
(%)

Sens
(%)

Spe
(%)

TP
(%)

TN
(%)

FP
(%)

FN
(%)

MP 0.80
(0.70–0.90) 85.1 92 67.4 66 19 9 6

BMI 0.64
(0.51–0.77) 47.4 27 100 19 28 0 53

WHtR 0.55
(0.36–0.74) 35.1 9.9 100 7 28 0 65

Abbreviations: CI 95 %—confidence interval; * Area under the ROC curve demonstrating discriminatory power
for body fat (lower limit of CI 95 % > 0.50); MP—proposed method; WHtR—waist-to-height ratio; BMI—body
mass index; Accu—accuracy; Sens—sensitivity; Spe—specificity; TP—true positives; FP—false positives; TN—true
negatives; FN—false negatives; %—percentage.

To verify the performance of our method, during the test phase and relative to the obesity indicators
commonly used in clinical practices and epidemiological studies, the performance indicators AUROC,
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precision, sensitivity, and specificity were analyzed. Our model presented excellent discriminatory
power, with respect to AUROC, as shown in Table 4 and represented in Figure 3.
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Besides, our model showed a better performance than the BMI and WHtR indicators, having
high sensitivity with respect to these indicators (Table 4). The development and implementation of a
sensible model is of great importance, as a screening method must present high sensitivity, especially if
it is used in the analysis of high body fat in adolescents.

Figure 3 is a graphical representation of AUROC, which is generated by plotting a routine (true
positive rate) without axis in relation to a specificity (false positive rate) on the x-axis. Thus, for a
diagnostic test to be ingested, it is necessary to have a curve without the upper left triangle above the
reference line. When higher, it will be better than the next model [57].

Adolescence can be divided into three stages [58]: early adolescence (10–14 years of age),
late adolescence (15–19 years of age), and young adults (20–24 years of age). Our test set was divided
into two groups, taking into account the gender: 10–14 years of age (precocious adolescence) and
15–19 years of age (late adolescence). For all groups, the measures of accuracy, sensitivity, and specificity
were calculated in order to evaluate our method against the anthropometric indicators. The values of
accuracy, sensitivity, and specificity are set forth in Table 5. Our method continued to present better
sensitivity than the BMI and WHtR anthropometric indices (Table 5).

Table 5. Analysis of the performance of the proposed methods in the data set relative to the
anthropometric indicators BMI and WHtR, stratified by gender and age.

(%)

Male Female

10–14 (n = 13) 15–19 (n = 44) 10–14 (n = 17) 15–19 (n = 80)

MP BMI WHtR MP BMI WHtR MP BMI WHtR MP BMI WHtR

Accu 84 46 46 82 73 64 76 53 23 89 32 20
Sens 75 12 12 80 40 20 100 38 0 96 23 8
Spe 100 100 100 83 100 100 0 100 100 40 100 100
TP 46 8 8 36 18 9 76 29 0 84 20 7
TN 39 39 39 46 55 55 0 24 24 5 13 13
FP 0 0 0 9 0 0 24 0 0 7 0 0
FN 15 53 53 9 27 36 0 47 76 4 67 80

Abbreviations: MP—proposed method; WHtR—waist-to-height ratio; BMI—body mass index; Accu—accuracy;
Sens—sensitivity; Spe—specificity; TP—true positives; FP—false positives; TN—true negatives; FN—false negatives;
%—percentage.
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4. Discussion

Adolescence is a stage of physical and intellectual changes [2,59] where there is intense body
growth that interferes with the accumulation and distribution of body fat [44]. It is therefore seen as
one of the most critical periods for the development of obesity [17]. In the assessment of nutritional
status, one of the most relevant indicators is the percentage of body fat (PBF), which is an independent
risk factor for insulin resistance and a strong predictor of morbidity, as well as being a key parameter
for the preventive and therapeutic intervention of pediatric obesity [60].

Measurements of body composition derived from BIA are valuable for the analysis of the
nutritional status of pediatric patients [11,61]. It is one of the most reliable and affordable methods for
assessing body fat and has a high correlation (r = 0.96–0.92) with dual energy X-ray absorptiometry [9],
corroborating our results (r = 0.96). Despite the advantages, BIA still has a high cost when compared
to the use of anthropometric indicators and clinical variables.

Thus, we built a method to assess nutritional status in adolescents by estimating body fat
percentage using low cost and easy application parameters. The method used for estimation was
the MLR, which was already successfully applied to solve several problems such as clinical data
analysis [47] to verify the association between autonomic cardiac function and clinical variables [49];
to investigate the effects of food contamination on gastrointestinal tract morbidity [50]; and soil density
measurement [48].

In the assessment of excess body fat, the proposed method obtained better performance (accuracy,
sensitivity, and AUROC) than the anthropometric indicators BMI and WHtR, which are usually used
to assess the nutritional status of adolescents. It is an attractive method with low cost and easy
application when compared to other methods of body composition analysis such as bioimpedance.
The best performance of our method can be explained by the use of predictor variables, such as
body circumferences (Table 1), which are widespread measures in the literature for the assessment
of obesity in this population and are associated with the presence of visceral fat and cardiovascular
risk factors [38,62–64], as well as the use of indicators such as gender, age, height, and body mass
together, which are widely used in the analysis of the nutritional profile and health status of the juvenile
population [1,17,34,65].

The body mass index, despite being the most used method in clinical practice and epidemiological
studies to assess excess body fat [21,66], is widely criticized for not correlating with body composition
and being a poor predictor of body fat [9,12,15,60,67]. In a recent review, it was observed that BMI has
high specificity (approximately 92%) and low sensitivity (approximately 50 %) to detect obesity based
on body fat percentage [68,69]. Therefore, more than half of individuals could be mistakenly classified
with normal BFP by BMI [68], corroborating the results of the present study.

This fact is concerning because the low sensitivity of BMI indicates that excess adiposity is being
underdiagnosed in several individuals. Moreover, because the first step in dealing with a risk factor is
the precise identification of the pathophysiological problem, late diagnosis of excess adiposity will
delay the treatment of associated comorbidities, as well as the implementation of intervention and
control measures [68,70,71], especially in the juvenile population [71].

Although used in several studies with adolescents, WHtR did not show efficient discriminatory
power in the evaluation of adolescents with high body fat in the present study. In a systematic review,
Lo et al. [72] observed that WHtR did not perform better in predicting cardiometabolic risk factors
than anthropometric indicators BMI and WC (waist circumference) in children and adolescents.

Thus, the use of high sensitivity methods is a major challenge for the early diagnosis of obese
adolescents. The model proposed here has predictive and practical advantages in situations with limited
resources, such as areas without access to equipment for body composition analysis (bioimpedance,
for example). Thus, this is an alternative for screening adolescents for excess body fat. In addition,
such a method may guide health professionals in decision-making and potentially expedite tests
such as lipid profile and insulin resistance, which are associated with high body fat levels and
cardiovascular risk.
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A limitation of this study was to use as a test set approximately 20 % of the sample, since a larger
sample could provide more robust results. However, in this study, the main goal was to present a new
method for screening obesity in adolescents. The authors believe that an external validation study
should be performed in other regions of Brazil and other countries due to variations in ethnic descent.

5. Conclusions

The computational model of this study obtained a better performance in the evaluation of excess
body fat in adolescents compared to the usual anthropometric indicators, thus presenting itself as a
low cost alternative for screening obesity in adolescents living in Brazilian regions where financial
resources are scarce.
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