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Introduction. Aerodigestive squamous cell carcinomas (ASCC) constitute a major source of global cancer deaths. Patients typically
present with advanced, incurable disease, so new means of detecting early disease are a research priority. Metabolite quantitation is
amenable to point-of-care analysis and can be performed in ASCC surrogates such as breath and saliva. The purpose of this
systematic review is to summarise progress of ASCC metabolomic studies, with an emphasis on the critical appraisal of
methodological quality and reporting. Method. A systematic online literature search was performed to identify studies reporting
metabolic biomarkers of ASCC. This review was conducted in accordance with the recommendations of the Cochrane Library
and MOOSE guidelines. Results. Thirty studies comprising 2117 patients were included in the review. All publications
represented phase-I biomarker discovery studies, and none validated their findings in an independent cohort. There was
heterogeneity in study design and methodological and reporting quality. Sensitivities and specificities were higher in
oesophageal and head and neck squamous cell carcinomas compared to those in lung squamous cell carcinoma. The metabolic
phenotypes of these cancers were similar, as was the kinetics of metabolite groups when comparing blood, tissue, and
breath/saliva concentrations. Deregulation of amino acid metabolism was the most frequently reported theme. Conclusion.
Metabolite analysis has shown promising diagnostic performance, especially for oesophageal and head and neck ASCC subtypes,
which are phenotypically similar. However, shortcomings in study design have led to inconsistencies between studies. To
support future studies and ultimately clinical adoption, these limitations are discussed.

1. Introduction

Squamous cell carcinomas of the aerodigestive tract (ASCC)
constitute a major health burden globally, with an estimated
4.3 million new cases and 2.6 million deaths annually [1].
Poor survival that is associated with ASCC reflects their often
delayed presentation to medical professionals, such that
many patients are not suitable for curative therapy [2–5].
Whilst the ability to diagnose ASCC at an early stage is asso-
ciated with improved long-term survival, current strategies
have inadequate diagnostic performance and are not recom-
mended in national guidelines. There remains an unmet clin-
ical need to develop reliable noninvasive and cost-effective
methods for the early detection of ASCC.

ASCC arise from nonkeratinising stratified squamous
epithelium lining the upper digestive tract (lips to lower
oesophagus) and respiratory tract. This convenient location

renders ASCC suitable for noninvasive testing using breath
and saliva. The use of proteomics and genomics has histori-
cally been at the forefront of diagnostic studies. However,
these techniques provide monothematic information and
are less suited to point-of-care technologies needed for
large-scale application [6]. Metabolites may be more appeal-
ing as they are amenable to noninvasive sampling and trans-
latable to point-of-care analytical tools [7]. For example, in
upper gastrointestinal adenocarcinoma (the other major
ASCC subtype), exhaled metabolites have demonstrated
promise for detecting treatable disease stages [8–10]. How-
ever, progress in this field has been hampered by inadequate
standardisation, inconsistent quality assurance, and evolving
analytical technology [11–14].

The purpose of this systematic review is to summarise
progress of ASCCmetabolomic studies. The specific objectives
are (i) to assess methodological quality, (ii) to summarise the
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discriminatory performance of the proposed metabolic bio-
markers, and (iii) to describe emerging metabolic themes
for these cancers.

2. Materials and Methods

2.1. Literature Search. This review set out to identify all stud-
ies that measured differences in metabolites between patients
with ASCC and relevant controls. A systematic literature
search was conducted in accordance with the recommenda-
tions of the Cochrane Library and MOOSE guidelines [15].
The following databases were searched: Medline (1946–pres-
ent) via OvidSP, Ovid Embase (1947–18th January 2019), and
Cochrane Library. Three strings using the following search
terms were used: biomarkers; metabonomics; metabolic pro-
filing; volatile organic compounds; magnetic resonance spec-
troscopy; mass spectrometry; and squamous cell carcinoma.
All variations in spelling including a truncated search term
using wild card characters and “related articles” function
were used in combination with the Boolean operators AND
OR. Full details of the search strategy were provided as a sup-
plementary file. The reference lists of identified articles were
also searched to identify other potentially relevant studies.

Two independent reviewers (YMG, PB) screened the
titles and abstracts of all studies identified by the primary
electronic search. The full texts of potentially relevant articles
were retrieved to assess eligibility for inclusion. Included
studies were those where metabolomic techniques to identify
biomarkers of ASCC were performed in treatment-naïve
human subjects. Studies were excluded if they reported on
mixed cancer subtypes where results for ASCC could not be
separately determined. Studies that did not report named
biomarkers of ASCC, animal and in vitro studies, studies
not published in the English language, and review articles
and conference abstracts were also excluded. A third reviewer
(SA) was consulted in the case of a disagreement.

2.2. Definitions. Metabolomics is defined as “the global and
unbiased definition of the complement of small molecules
in biofluids, tissues, organs, or organisms” [16]. Biomarkers
were defined as a naturally occurring molecule, which were
significantly different in a disease state. ASCC included
tumours affecting squamous mucosa of the oral cavity, oro-
pharynx, lung, and oesophagus.

2.3. Outcome Measures. The following data items were
extracted from included publications: year of publication,
country of origin, study design, recruitment time, total num-
ber of participants, tumour of origin, biomarker phase,
tumour stage, analytical platform used, sample type, number
of compounds identified, compounds noted to be increased/-
decreased in cancer, statistical analysis performed, prediction
model used, sensitivity and specificity, and area under the
receiver operating characteristic (ROC) curve derived from
diagnostic models.

2.4. Statistical Analysis. Statistical analysis was performed
using R (version 3.2.1, The R Project for Statistical Comput-
ing, http://www.r-project.org). Using the sensitivity, specific-
ity, and area under the ROC curves derived from individual

published models, bivariate meta-analyses were performed
to create pooled point estimates of the hierarchal summary
ROC curve of VOC analysis in accordance with previously
validated methods [17].

2.5. Metabolite Analysis. All metabolites identified were
classed in accordance to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway, and statistical analysis was
performed using the pathway analysis module in MetaboA-
nalyst version 4.0. Metabolites determined to be significantly
increased or decreased in each study were selected. Data pre-
processing included name check against the Human Metab-
olome Database (HMDB), data checks, and missing values.
Parameters used to analyse this data were the hypergeo-
metric test for overrepresentation analysis and the relative-
betweenness centrality test for pathway topology analysis
based on the KEGG pathway library [18–20]. Normalisation
was performed using the weighted means of identified
metabolite that were increased/decreased in squamous cell
carcinoma (SCC) in each sample type. The mean proportion
of each compound identified was analysed as the proportion
of the total number of compounds identified per metabolite
class per study, divided by the total number of compounds
identified in total in each SCC site subtype, multiplied by
the total number of studies; this compound was identified
in Figure 1.

2.6. Quality Assessment. Study quality was assessed with three
tools: first, Quality Assessment of Diagnostic Accuracy
Studies-2 (QUADAS-2) checklist [21] to assess methodolog-
ical bias. Second, the Standards for Reporting of Diagnostic
Accuracy Studies (STARD) checklist [22, 23] was used to
assess general reporting quality of a clinical diagnostic tool.
Third, the Chemical Analysis Working Group- (CAWG-)
Metabolomics Standard Initiative (MSI) criteria was used as
this focused on the reporting quality of metadata of metabo-
lomic studies [14]. The CAWG-MSI Metabolite Identifica-
tion Levels were used to summarise studies’ identification
rigour: level 1 (most confident, at least two orthogonal analyt-
ical data types, e.g., retention time, isotope labelling), level 2
(one data type, spectral similarity to commercial library), level
3 (one data type related to a spectral or chemical property).

3. Results

A systematic literature search identified a total of 30 studies
comprising of a total of 2117 subjects of which 1144 had a
diagnosis of ASCC (Figure 2). Details of included studies
were provided in Table 1. All studies were Phase I biomarker
discovery studies. Of the 30 included studies, 18 were from
Asia and the Far East [8, 9, 11–26], seven from Europe [27–
33], three from North America [34–36], and two from the
Middle East [37, 38]. ASCC tumour sites identified were
the head and neck (n = 17), oesophageal (n = 8), and lung
(n = 5). The majority of studies compared patients with can-
cer to normal controls and or benign conditions [16, 25, 26,
28, 29, 34, 38–43].

Liquid chromatography mass spectrometry (LC-MS)
was the most commonly used analytical platform (n = 14)
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followed by gas chromatography mass spectrometry (GC-
MS, n = 12). Sample types used in these studies were tissue
(n = 10), saliva (n = 13), plasma (n = 13), urine (n = 5), and
breath (n = 6). Several studies used more than one analytical
platform [34, 35, 38, 40] and/or sample types for analysis
[34, 35] (Table 1). Eight studies used targeted methods,
and 22 studies untargeted methods. All studies that used
untargeted methods covered a large range of commonly
identified metabolites, ranging from small fatty acids to

larger glycolipid and carbohydrate metabolites. Only five
studies identified volatile compounds [26, 30, 36–38].

3.1. Quality. Assessment of bias and applicability of out-
comes were analysed with QUADAS-2 (Table 1). The
QUADAS-2 was divided into risk of bias of the following:
patient selection, diagnostic test, reference standard, and
patient flow and timing. Additionally, this test investigated
applicability of patient selection, diagnostic test, and

1/(total number of
compounds identified per
metabolite class in each study)

Total number of compounds
identified in each SCC subtype

Total number of studies
that identified compound

Figure 1: Equation for weighted means of each identified metabolite. Key: SCC: squamous cell carcinoma.
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reference standard to the systematic review. There was an
overall low risk of bias of these diagnostic tests and high
applicability of these studies to the review question. In this
QUADAS-2 analysis, the nature of patient flow and timing
of sample analysis was least reported in studies in this
review (n = 11) [16, 28–30, 33, 36, 39, 40, 44].

General reporting quality of a clinical diagnostic tool was
assessed by the STARD checklist (Table 1). The STARD score
for reported studies ranged from 21 to 37 with a mean of 29.4
(±4.76 S.D) where the maximum score is 41. More than 75%
of studies reported inclusion and exclusion criteria, described
the reference test and standards, and reported potential bias
and analysis of diagnostic accuracy well. However, more than
two thirds of studies failed to clearly demonstrate patient
recruitment protocol, specifically, how patients were identi-
fied and recruited, the nature of recruitment, e.g., consecutive
or random series and [22, 37, 40, 41, 45–47] sample size esti-
mation [35, 42, 48], participant flow [24, 31, 35, 39, 49, 50],
and adverse effects as a consequence of the diagnostic tool.

Reporting of clinical demographics was not consistent in
each study. Of the 30 studies, only 10 fully reported all clini-
cal demographics [28, 30, 34, 35, 38, 41, 43, 47, 49, 51], 13
reported at least patient age, gender, and clinical stage [16,
25, 26, 31, 36, 39, 40, 42, 45, 46, 48, 52, 53]. Seven studies
did not report differences in metabolite profile at different
tumour stages [24, 27, 29, 32, 36, 37, 46]. In these seven stud-
ies, four compared differences in metabolic profile between
cancer and noncancer cohorts [24, 27, 32, 37].

Definitions of normal control differed most in tissue sam-
ple analysis, where Zhang et al. specified normal adjacent
control tissue samples a minimum of 5 cm from the tumour
site [54] in contrast to the other five tissue studies that used
adjacent normal controls [26, 29, 45, 46, 53] without demon-
strating adequacy of tissue clearance. Of all 30 studies in this
review, only Shoffel-Havakuk et al. used patients with benign
histology as controls [37]. No tissue study used normal sam-
ples from patients with no endoluminal pathology, which is
pertinent as metabolic field effects exist in endolumens [55].
Various exclusion criteria were given to control donors’ char-
acteristics, including use of nonsteroidal anti-inflammatory
drugs within the past week, antibiotic treatment and con-
sumption of specific food, history of mucosal disorder,
chronic and/or systemic disease such as diabetes, autoim-
mune disorders, heart disease, infection, and liver disease.
Twenty-six studies involving biofluids or breath used healthy
volunteer controls, one additionally used patients with
benign diseases [24, 25, 27, 28, 30–43, 46–49, 51, 52, 56,
57]. The definition for healthy volunteers was based on his-
tory (six studies) or endoluminal study (18 studies).

Reporting of metadata in metabolomics datasets was
assessed using CAWG-MSI [14] (Supplementary Table 2). A
summary of the minimum reported metadata is summarised
in Table 1. Twenty of the 30 studies included in this
systematic review used relative quantification of compounds
[16, 24, 25, 28, 29, 31, 33–38, 40–43, 45, 48, 49, 52], whilst
10 included studies provided absolute quantification of
compounds [27, 30, 32, 39, 46, 47, 51–53, 56]. Despite the
availability of reporting guidelines for metabolomics analysis,
only three studies reported greater than 50% of the CAWG-

MSI criteria [34, 39, 52]. Overall, studies reported sample
preparation, experimental analysis, and instrumental
performance well. However, the majority (80%) did not
provide method validation data [16, 24, 25, 27, 28, 30–38,
40–42, 45–49, 51, 52, 54, 56]. Thirteen studies that analysed
relative quantification of metabolites identified used either
internal standards or normalised the results to allow for
instrument variation [16, 24, 25, 29, 33–36, 40–42, 45, 49].
Six of the 10 studies that used absolute quantification did
not report accuracy or precision validation data for their
method on the instrument [30, 44, 46, 47, 51, 56] whilst
two of 10 studies reported the limits of quantification and
detection of their method [39, 52]. Out of 30 studies, only
12 declared evidence of data preprocessing [25, 29, 33, 34,
36, 37, 40, 41, 43, 45, 48, 49]. Levels one, two, and three
metabolite identification were reported in nine [25, 27, 30,
32, 36, 39, 40, 46, 52], 15 [16, 24, 26, 29, 33, 34, 37, 42, 43,
45, 47, 49, 51, 56, 58], and six [28, 31, 35, 38, 41, 48]
studies, respectively. Only two of the 30 studies reported
all of the statistical aspects suggested by the CAWG-MSI
guidelines [59].

3.2. Discriminatory Features. The highest sensitivity of
oesophageal squamous cell cancer (OSCC) diagnosis was
reported by Zhang et al. at 97.4% with a specificity of 95%
and AUC of 0.988 [44]. Jin et al. reported the highest specific-
ity at 96.67% with a sensitivity of 90% and AUC of 0.964 [42].
The highest sensitivities and specificities of lung squamous
cell cancer (LSCC) were poorer with Handa et al. reporting
the highest sensitivity of 97.4% [28] and Sanchez-Rodriguez
et al. reporting the highest specificity of 68% and AUC of
0.7 [30]. The highest sensitivity, specificity, and AUC were
reported for head and neck squamous cell cancer (HNSCC):
100%, 96.7%, and 0.997, respectively (Table 1). However, no
groups subsequently validated their initial findings in inde-
pendent cohorts. Of the 6 studies which reported AUC >
0:90, a high risk of bias was not present and CAWG-MSI
metabolite identification was level 1 or 2.

3.3. Metabolic Themes. A total of 181 metabolites identi-
fied were associated with an increase or decrease in con-
centration in patients with ASCC compared to their normal
controls (Supplementary Table 3). These compounds were
identified in a range of sample types including tissue,
plasma, urine, saliva, and breath. The majority were amino
acids, carboxylic acids, or fatty acids, and these were more
commonly identified in tissue, saliva, and plasma samples.
The least common metabolites identified were vitamins,
nitrogen, and sulphur containing compounds (Supplementary
Figure 1). Sixty-eight compounds that changed in ASCC
were reported in more than one study. These metabolites
were selected based on metabolites that were identified to
be increased or decreased in cancer in different studies. Of
these, 27 compounds were noted to be involved in amino
acid and lipid metabolism (Supplementary Table 4). All
biomarkers showed a consistent increase or decrease in the
sample types across different studies (see Supplementary
Tables 3 and 4).
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A particularly deregulated pathway was branched
chain amino acid metabolism (BCAAs, see Figures 3 and 4
and Supplementary Table 3). There were 36 significant
differences in BCAA concentrations, or their downstream
metabolites, across 12 studies [25, 28, 34–36, 39–41, 43, 45,
46, 49]. The QUADAS-2 risk of bias was low for nine
of these studies [34–36, 40, 41, 45–47, 49]. Five of these
studies were of good quality and five of fair quality as
assessed by the STARD checklist. One study reported the
minimum metadata required from the CAWG-MSI checklist
[39]. Of these 12 studies, two reported level 1 metabolite
identification [35, 39], seven reported level 2 [25, 28, 36,
41, 43, 45, 60], and three reported level 3 metabolite
identification [34, 40, 46].

3.4. Influence of Anatomical Location on Metabolic Themes.
LSCC (n = 9) had the lowest number of metabolite classes
compared to OSCC (n = 20) or HNSCC (n = 18) (Figure 3).
Common metabolites that were identified in all ASCC sites
were amino acids, fatty acids, carbohydrate, nitrogen com-
pounds, and organic acids. OSCC and HNSCC appear to
demonstrate similar metabolic profiles compared to LSCC
(see Figures 3 and 4). Metabolic pathways commonly deregu-
lated in both OSCC and HNSCC mainly concerned amino
acid mobilisation, uptake, and polymerisation; lipid synthe-
sis; and alternative energy. All twelve studies demonstrating
BCAA deregulation were either OSCC or HNSCC. These
compounds were increased in tissue and saliva but decreased
in cancer patients’ plasma. Breakdown products of BCAA,
alpha-ketoisocaproic acid (KIC), alpha-ketoisovaleric acid
(KIV), and alpha-ketomethylvaleric acid (KMV) were
reported in three metabolomic studies [35, 42, 48] related
to OSCC and HNSCC. However, the design and reporting
heterogeneity meant these site-specific results should be
approached with caution, and further detailed analyses were
not performed.

3.5. Influence of Biosample Type on Metabolic Themes. There
was an overall positive deflection in the proportion of metab-
olites present in the tissue, saliva, urine, and breath of ASCC
patients and a negative deflection in plasma (Figure 3). This

was particularly evident for amino acids. Metabolites in
ASCC saliva samples were more similar to tissue than
plasma. In particular, increased BCAAs were identified in tis-
sue and saliva of patients with ASCC. In contrast, plasma
BCAAs were decreased in ASCC plasma and not identified
in urine or breath. This trend was also noted in other amino
acids. BCKAs were decreased in the plasma of ASCC
patients, but the proportions of fatty acids increase and
decrease were similar in tissue samples. However, the design
and reporting heterogeneity meant these sample-specific
results should be approached with caution, and further
detailed analyses were not performed.

4. Discussion

This systematic review provides an overview of progress in
ASCC metabolic biomarker studies. The principal findings
of this review were (i) favourable diagnostic performance of
metabolic biomarkers for the detection of OSCC and
HNSCC but not LSCC in pooled analysis, (ii) shared meta-
bolic features of OSCC and HNSCC, and (iii) suggestion of
a consistent role of the KEGG amino acid metabolic pathway
in ASCC. Additionally, comparing sample types suggests
metabolites are often depleted in the circulation and enriched
in both tumour tissue and luminal surrogates, suggesting
a model for ASCC biomarker kinetics. From the design
perspective, clinical methodology and reporting quality was
of a reasonable standard, but analytical methodology and
reporting quality were often of a poor standard, and no stud-
ies performed exceptionally in both aspects.

ASCCs all have high mortality due to late disease detec-
tion. Currently, there are no screening strategies for any sub-
type of sufficient accuracy and quality to support political
endorsement. Pooled analysis of identified studies regarding
the detection of ASCC gave an area under the curve (AUC)
of 0.927 with sensitivity of 85.7% (95% CI 78.9–92%), respec-
tively. This diagnostic performance compares favourably to
existing screening programmes such as faecal occult blood
testing for colorectal cancer and cytological cervical screen-
ing test that currently are associated with lower sensitivity
and specificity [61, 62]. Although the studies were generally
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of an exploratory nature without extensive validation, these
results are encouraging and suggest metabolic biomarkers
of ASCC may provide novel screening tools to identify
high-risk populations, provided these efforts can progress
to high-quality validation studies with appropriate power.
The finding that the six studies reporting the highest AUC
values had good clinical design and used targeted metabolo-
mic methods suggests methodological rigour and hypothesis-
driven metabolomics generate the best results.

In both discriminatory performance and metabolic
themes, HNSCC and OSCC clustered away from LSCC,
suggesting the underlying biology of those cancers is better
suited to metabolic biomarker studies. Both HNSCC and

OSCC arise from normally resident squamous cells, whereas
LSCC arise from metaplastic squamous cells, perhaps
explaining LSCCs’ relative metabolic heterogeneity. More-
over, genomic studies suggest LSCC to be distinct from
HNSCC and OSCC [63–65]. Nonetheless, the relatively
lower number of quantified metabolites for LSCC suggests
this cancer warrants further study, perhaps using the similar
analytical approaches from the best OSCC/HNSCC studies.

Despite using weighting to account for multiplicity from
untargeted approaches, the heterogeneity in study design and
quality, and the lack of independent validation, made com-
prehensive biological interpretation of the observed meta-
bolic difference speculative. An exception to this was BCAA
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Figure 4: Metabolic pathways involved in all ASCC: (a) all metabolic pathways, (b) amino acid metabolism, (c) lipid metabolism, and (d)
carbohydrate metabolism.
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metabolism, which was a consistent theme in across the
ASCC subtypes. There were 36 significant differences in
BCAA concentrations or their downstream metabolites,
across 12 studies [25, 26, 28, 34–36, 41–43, 46, 56, 66]. This
was far more than any other metabolite group. Increased
BCAAs were observed in ASCC tissue samples from four
studies [26, 36, 45, 53], and decreased BCAA levels in
cancer-blood samples were observed in two studies [42, 56].
These differences were often stark. This suggests uptake of
BCAAs into ASCCs against the concentration gradient.
BCAAs constitute 35-40% of human protein and are thus
essential amino acids necessary for protein synthesis in rap-
idly dividing cells [67]. They also have additional proproli-
ferative effects. For example, leucine potently activates the
mammalian target of rapamycin complex 1 [60, 68–70] and
BCAA deamination is a major source of glutamine for alter-
native energy [68, 71]. Thus, BCAA metabolism is emerging
as critical mediators of transformation and treatment escape
in a number of malignancies including other squamous can-
cers [72, 73] and the present finding of consistent BCAA
reprogramming in ASCC warrants further targeted study.

Metabolomic biomarker analytics has evolved consid-
erably in the last 15 years, and that progress is reflected
in the design heterogeneity of the included studies. Criti-
cal appraisal of analytical design using CAWG-MSI gen-
erally revealed a low standard. In contrast, only six of
the studies included in this review demonstrated poor
STARD/QUADAS-2 scores (score of less than 25), indi-
cating a reasonable quality of clinical design and reporting
(Supplementary Table 1). A key issue with metabolomic
studies is the compromise between metabolomic coverage
and unambiguous compound identification. Several studies
used untargeted methodologies [16, 25, 26, 28, 29, 31, 33–
38, 40–43, 45, 47–49, 51, 53] or more than one platform [3,
8, 9, 12] to increase their metabolomic coverage, although
none used ultra-high coverage techniques such as Fourier-
transform ion cyclotron resonance mass spectrometry
(FT-ICR). No studies did not meet their objectives, or
overstated their conclusions; however, this suggests that
significant aspects of the ASCC metabolome have not been
explored. Six studies that performed targeted methodology
achieved level 1 identification of compounds of interest [27,
30, 32, 39, 46, 52], and two further studies used only
commercially available spectral libraries for confirmation of
their compound of interest [24, 56].

Additionally, our critical review has highlighted the
following recurrent shortcomings in the current ASCC meta-
bolomic literature: (i) lack of a clear sample size calculation;
(ii) poor description of patient recruitment and inade-
quate description of clinical metadata; (iii) poor description
of method validation; (iv) inconsistent quality assurance,
especially replicate analysis; (v) biomarker performance fre-
quently reported as multivariable models rather than clinical
metrics; and (vi) lack of model validation data, either using
internal cross-validation, or independent validation cohorts
or studies. Using the CAWG-MSI checklist during study
design would help to mitigate these issues [14].

A potential limitation was that more patients included in
this review had late-stage disease (n = 548) rather than early-

stage disease (n = 331), and that the case mix was usually just
reported rather than subject to subgroup analysis. Typically,
the clinical motivation for the work was early cancer detec-
tion, which seems at odds with test populations enriched
for late-stage disease, without subgroup analysis. However,
the majority of these studies were performed in tertiary cen-
tre settings, which meant that patients would typically have
been on a curative pathway. Thus, the observed metabolic
differences can detect treatable disease, which provides a
platform for further studies powered to detect truly early dis-
ease. It should also be noted that more than half of the articles
in this review were performed in China and Japan and may
not be applicable to Western populations.

5. Conclusion

This review summarised progress in using metabolites to
identify patients with ASCC. There was significant heteroge-
neity in methodology and quality; however, especially for
OSCC and HNSCC, metabolites showed promise for mini-
mally invasive diagnosis. These two ASCC subtypes had sim-
ilar metabolic phenotypes, with deregulation of amino acid
metabolism particularly pronounced. Comparative analysis
of different sample types suggested a kinetics model for
amino acids across the endolumen. To aid the development
of future studies and ultimately clinical translation, the sum-
marised recurrent methodological weaknesses must be
addressed, especially with respect to analytical design.
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