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Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the

diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless,

changes in the system-level dynamics of neuronal networks with damaged synapses

can be detected using techniques that do not require high spatial resolution. This

paper investigates how the structure/topology of neuronal networks influences their

dynamics when they suffer from synaptic loss. We study different neuronal network

structures/topologies by specifying their degree distributions. The modes of the degree

distribution can be used to construct networks that consist of rich clubs and resemble

small world networks, as well. We define two dynamical metrics to compare the activity

of networks with different structures: persistent activity (namely, the self-sustained activity

of the network upon removal of the initial stimulus) and quality of activity (namely,

percentage of neurons that participate in the persistent activity of the network). Our

results show that synaptic loss affects the persistent activity of networks with bimodal

degree distributions less than it affects random networks. The robustness of neuronal

networks enhances when the distance between the modes of the degree distribution

increases, suggesting that the rich clubs of networks with distinct modes keep the whole

network active. In addition, a tradeoff is observed between the quality of activity and

the persistent activity. For a range of distributions, both of these dynamical metrics are

considerably high for networks with bimodal degree distribution compared to random

networks. We also propose three different scenarios of synaptic impairment, which may

correspond to different pathological or biological conditions. Regardless of the network

structure/topology, results demonstrate that synaptic loss has more severe effects on the

activity of the network when impairments are correlated with the activity of the neurons.

Keywords: persistent activity, synaptic impairment, robustness, rich club, small world network

INTRODUCTION

The network structure/topology of the brain plays an indisputable role in a wide variety of tasks
the brain performs (Sporns, 2010). Knowledge of the function of brain networks enables the
development of tools and methods to detect and treat pathological conditions related to network
malfunction (Morgan and Soltesz, 2008; Crossley et al., 2014). That is in part why building the
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human connectome has attracted vast efforts in the past few years
(Van Essen et al., 2013; Hodge et al., 2016).

Although the complete human connectome is not available
yet, even mapping individual circuits of humans or other animals
central nervous system has provided researchers with enormous
amount of data to study the network structure/topology of the
brain. The non-random structure of the brain networks is a
common conclusion of all these studies (Sporns, 2010). Scale-
free or small-world network structures of the brain have been
proposed (Eguíluz et al., 2005; Achard, 2006; He et al., 2007; van
den Heuvel et al., 2008). More recently, the neuronal network of
C. elegans, the first organism to have its connectome fullymapped
(White et al., 1986; Varshney et al., 2011), has revealed the
presence of hubs and rich clubs in its nervous system (Towlson
et al., 2013). Although in less detail, mesoscale and macroscale
studies in humans (van den Heuvel and Sporns, 2011), mice
(Oh et al., 2014) and cats (de Reus and van den Heuvel, 2013)
have shown similar findings. Additionally, such heterogeneity in
the network structure has been observed also in cultured cells,
and emergence of small-world networks (Downes et al., 2012) or
rich clubs (Schroeter et al., 2015) has been reported for in vitro
experiments.

The number and the strength of connections that neurons
make with each other, create a non-random spatial topology
of neuronal networks (Fornito et al., 2013). Connections
are not completely static even in normal conditions. For
example, synaptic plasticity and neuromodulation can affect
the dynamics of neuronal networks and change the brain’s
functional connectivity (Abbott and Nelson, 2000; Marder and
Thirumalai, 2002). Malfunctions in synaptic connections and
synaptic dynamics can jeopardize the normal functionality of
brain. For instance, studies have indicated loss of synapses as
a hallmark of Alzheimer’s disease (Selkoe, 2002; Shankar and
Walsh, 2009; Sheng et al., 2012). Random loss of synapses has
already been used to simulate different stages of Alzheimer’s
disease (Abuhassan et al., 2014). However, there are biological
or pathological conditions that can lead to non-random loss of
synapses. For instance, recent studies have shown that oxidative
stress related to neuronal activity may result in dysfunction of
synapses in Alzheimer’s disease (Kamat et al., 2016).

EEG (Gaál et al., 2010; Smit et al., 2010) and fMRI (Wang
et al., 2010; Zhu et al., 2012; Wu et al., 2013) data have
revealed that the network topology of the brain changes even
during normal aging. Therefore, the study of neurodegenerative
diseases and their indications on the network level can be the
key to better understanding of these disorders by monitoring
the structure and dynamics of neuronal networks (Palop et al.,
2006; Kosik, 2013; Kocher et al., 2015). In the present study,
we investigate the impact of synaptic deficiency, namely reduced
effectiveness of the synaptic function, on the robustness of
neuronal networks with different topologies. The biological
process that leads to this deficiency can be attributed to many
factors, ranging from functional decline during normal aging, to
age-associated neurodegenerative diseases, such as Alzheimer’s
disease. We focus on networks with only excitatory neurons
to emphasize on the importance of topology on the robustness
of networks, since inhibitory neurons are shown to increase

networks’ robustness (Petersen et al., 2014). Particularly, we
focus on persistent activity of neuronal networks defined as
the ability of the network to sustain its activity upon removal
of the initial stimulation. Persistent activity has been linked to
working memory, which is the ability to remember information
for periods of time in the order of seconds (Baddeley, 1992;
Sakai et al., 2002; Curtis and D’Esposito, 2003). One of the
reasons why we are interested in persistent activity is because
working memory is known to be adversely affected in patients
with Alzheimer’s disease (Baddeley et al., 1991, 2001; Stopford
et al., 2012). Previously, network connectivity (Roxin et al., 2004;
Shanahan, 2008) and degree distribution of networks (Roxin,
2011) has been shown to influence the self-sustained activity of
neuronal networks under normal conditions. However, there are
no studies where the sensitivity of persistent activity to synaptic
failure is investigated. We show here that networks with rich
clubs can be constructed systematically by using bimodal degree
distributions. Then, we examine how networks with different
topologies respond to different levels and types of impairment.
Robustness and capability of the neuronal network to maintain
activity are used to differentiate dynamics of networks with
different topologies.

METHODS

Neuron Model
We adopt a neuron model based on the Hodgkin-Huxley
formalism. The model features a fast Na+ current, a delayed
rectifier K+ current and a leakage current (Amitai, 1994; Stiefel
et al., 2009; Rich et al., 2016). The current balance equation for
cell i is:

C
dVi

dt
= −gNam

3
∞h (Vi − ENa) − gKdrn

4 (Vi − EK)

−gL (Vi − EL) + Iext − I
syn
i , (1)

where C = 1.0 µF/cm2, gNa = 24.0mS/cm2, gKdr =

3.0mS/cm2, gL = 0.02mS/cm2, ENa = 55.0 mV ,
EK = −90.0mV, EL = −60.0mV (Amitai, 1994; Stiefel et al.,
2009; Fink et al., 2011). Iext is the external current (measured in
µA/cm2) that controls the firing frequency of the neuron. This
current is chosen so that the firing frequency of the ith cell is zero
when I

syn
i (the synaptic current received by neuron i) is zero.

The Na+ inactivation gating variable h, and the K+ delayed
rectifier activation gating variable n are governed by first order
dynamic equations expressed as:

dh

dt
=

h∞ − h

τh
and

dn

dt
=

n∞ − n

τn
, (2)

where the steady state values and the time constants are given by:

h∞ =
1

1+ exp
(

V+53.0
7.0

) , (3)

τh = 0.37+
2.78

1+ exp
(

V+40.5
6.0

) , (4)
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n∞ =
1

1+ exp
(

−V−30
10.0

) , (5)

τn = 0.37+
1.85

1+ exp
(

V+27.0
15.0

) . (6)

The activation of Na+ current is assumed instantaneous, and is
modeled by the following function:

m∞ =
1

1+ exp
(

−V−30
9.5

) . (7)

Synaptic Model
The synaptic current from the presynaptic neuron j received by
the postsynaptic neuron i is modeled as:

I
syn
ij = gsynWijsij (Vi − Es) , (8)

where gsyn = 0.005mS/cm2 is the maximum synaptic
conductance, and Es is the reversal potential for the synaptic
current, which is usually considered equal to zero for excitatory
synapses. Wij is the connectivity weight between the presynaptic
neuron j and the postsynaptic neuron i. A synaptic connection
without any synaptic impairment has a weight ofWij = 1. When
Wij = 0, the two neurons are not connected to each other. We
define synaptic deficiencies as any values ofWij between 0 and 1.
sij is the fraction of open receptors, which follows a simple first
order kinetic equation given by:

dsij

dt
= α

[

Tj

] (

1− sij
)

− βsij, (9)

Here α = 1.1mM−1ms−1 and β = 0.19 ms−1 (Destexhe et al.,
1998) are constants and correspond to forward and backward
rates.

[

Tj

]

is the concentration of neurotransmitters released
by the presynaptic neuron j that can be approximated by the
following equation (Destexhe et al., 1998):

[

Tj

]

=
Tmax

1+ exp
(

−
Vj−Vp

Kp

) , (10)

where Tmax = 1mM is the maximum concentration of released
neurotransmitters by the presynaptic neuron. Kp = 5mV and
Vp = 2mV are constants that determine the steepness and
half-activation value of the neurotransmitter release (Hass et al.,
2016).

The total synaptic current received by neuron i is the
summation of all synaptic currents from its presynaptic neurons
in the network.

Network Connectivity
We use the degree distribution of networks to construct networks
with different topological metrics. While small world networks
can be constructed systematically (Watts and Strogatz, 1998)
without using the degree distribution of the network, authors
are not aware of such methods to build networks that consist of
rich clubs. Hence, we propose a method in which networks with

rich clubs can be constructed, provided that they are based on
bimodal degree distributions.

The degree of a neuron is defined as the summation of its
indegrees (number of its inputs) and outdegrees (number of
its outputs). The indegree and outdegree of a neuron can be
different since the connections are not necessarily bidirectional.
To generate networks with different degree distributions, we
chose to concentrate on bimodal distributions, because they are
the simplest distributions that are not single modal. Without
any constraints, the degree distribution of a purely random
network, also known as an Erdös–Rényi model, follows a Poisson
distribution (Erdös and Rényi, 1959). The networks in this study
have 200 neurons, with 5% probability of connectivity. The
probability of connectivity is defined as the chance of having a
unidirectional connection between two neurons in the network.
For the above parameters, a totally random network has a single
mode distribution of mean 20. To make a close comparison
to single modal distributions, we create bimodal distributions
that have the same mean. Taking this as a reference case, all
other networks are created so as to have the same number of
synapses but with different mode distributions. To this end, the
following relation for themodes of networks with bimodal degree
distribution must hold:

ω1M1 + ω2M2 = 20, (11)

whereω1 andω2 are weights of the modes andM1 andM2 are the
mean degree values of the modes. Hence, if weights of the modes
are equal, then their average must be equal to 20 (for example
M1 = 10 and M2 = 30 are a valid pair when the weights are
equal).

To generate networks with different degree distributions,
first, two Poisson distributions with the desired mean values
are generated. Then, each of the probability distributions is
normalized and weighted as desired so that the integral of the
combined bimodal probability distribution function (PDF) is
equal to 1. Next, a bin size is chosen, and the combined PDF is
integrated over each bin. The result of the integration in each bin
shows the number of neurons that must have degrees between
limits of that bin. Next, the proper number of neurons is assigned
randomly with degrees according to the limits of each bin. Thus,
the PDF is converted to a degree distribution for the anticipated
network. The next step is to construct a network according to
the established degree distribution. For this purpose, a scrambled
list is created in which each neuron is repeated at a number of
times equal to its degree (Cohen and Havlin, 2010). Next, two
non-identical members of the list are selected randomly, and
a connection is created from the first to the second element.
Then, these two elements are removed from the list, and the
process is continued until the list is empty. With this approach,
a directed graph without any self-loops is constructed with the
desired degree distribution. Figure 1 shows the implementation
of this method to construct a network with mean values of 5 and
35, with equal weights.

Figure 1 shows the steps that are taken to construct networks
with different degree distributions. Figure 1A shows the first two
steps that are prescribing a PDF and creating a random degree
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FIGURE 1 | Implementation of network construction with desired degree (summation of indegree and outdegree) distribution. (A) A degree distribution that matches

the desired probability distribution function (PDF) is randomly generated. (B) A network that matches the desired degree distribution described in (A), is randomly

generated. The algorithm generates networks that match the desired degree distribution in a non-exact manner, since the process is random.

distribution according to that PDF. Figure 1B shows the degree
distribution of the actual network that is constructed based on the
degree distribution in Figure 1A. The degree distributions shown
in Figures 1A,B are different, because the process of generating a
network for a given degree distribution is random.

In addition to random networks with a single mode with
mean degree value of 20, three bimodal degree distributions
with pairs of {15, 25}, {10, 30}, and {5, 35} are used in this
study. Even though the two mean values used to build each
distribution are imposed, the way that the lists are assembled
and then networks are created is random. Therefore, the whole
process of network construction is random, which leads to
deviations in the number of synapses among different networks.
Nevertheless, these deviations are small and negligible as the
number of synapses is mainly a function of the network size and
the probability of connectivity, which both remain unchanged
in this study. However, to minimize the effects of stochasticity
arising from the process of network construction on the system’s
dynamics, 50 realizations of each degree distribution are used to
obtain the results.

Impairment Modeling
To quantify synaptic impairment of the network, we define
two metrics: the level of impairment and the percentage of
impairment. Impairments are implemented in the elements of
the adjacency matrix W, which represent the synapses in the
network. When the element Wij is zero, then the two neurons i
and j are not connected. When the element Wij is nonzero, then
the postsynaptic neuron i receives an input from the presynaptic
neuron j. If the nonzero element is equal to 1, then the synapse
between the two neurons is considered to be healthy, i.e., it has
full strength. If the nonzero element is <1, then the synaptic
connection is considered impaired, and the difference between
the nonzero element and 1 is defined as the level of impairment.
The percentage of impairment indicates what percentage of
synapses in the network is weakened by the specific level of

impairment. For example, a level of impairment of 0.6 and a
percentage of impairment of 20% indicate that 20% of nonzero
elements of the adjacency matrix of the network haveWij = 0.4.
For the same level and percentage of impairment, three possible
scenarios of deficiency are used to study the effects of synaptic
deficiency in the network.

In the first impairment scenario, synapses are randomly
selected and weakened or removed, with equal probability.
Conditions in which all neurons in a network can be affected
equally may lead to random weakening of synapses. For example,
it is possible that aging affects neurons in some regions of the
brain with equal likelihood, and weakens the synapses randomly.
Such method of synaptic weakening has been also used to
model different stages of Alzheimer’s disease (Abuhassan et al.,
2014). In addition, random impairments are analogs to normal
heterogeneity in the strength of synapses in healthy neuronal
networks. Furthermore, random impairments can be considered
as the control scenario to determine if other impairment
scenarios show different results.

In the second impairment scenario, neurons that have a
higher number of synapses are more likely to be weakened or
removed. The hypothesis for this type of defect is based on
the significance of intracellular transport. We speculate that
such impairment can be linked to pathologies where axonal
transport is not functioning properly (De Vos et al., 2008). For
instance, tau protein has been proposed to cause synapse loss
induced by impaired axonal transport (Kopeikina et al., 2013).
Axonal transport is required to provide precursor proteins that
are essential for production and recycling of synaptic vesicles
(Rizzoli, 2014). Therefore, the load and efficiency of axonal
transport is related to the number of functional synapses a
neuron can maintain. For a neuron with few synapses, impaired
axonal transport may still allow for synapses to be functional.
However, if the number of synapses of the same neuron increases,
the already impaired axonal transport becomes overloaded as
well and thus it becomes more difficult for the neuron to
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perform. Hence, we propose that the synapses of neurons with
large number of out-going synapses are more likely to be
weakened in case of inefficient axonal transport. To implement
this impairment scenario, the outdegree of all neurons in the
network is calculated and sorted. Next, neurons with higher
outdegree are selected and impaired first.

In the third impairment scenario, synapses of neurons that
are highly active are more likely to be weakened or removed.
Thus, this scenario considers the activity of neurons, not just
the network topology. This contrasts the second scenario where
neurons with more synapses are more likely to suffer from
inefficient axonal transport. If such a neuron is not firing
frequently, then even an impaired axonal transport might be
capable of keeping synapses functional. Nevertheless, if such a
neuron is highly active and fires frequently, then defective axonal
transport will result in more ineffective synapses compared
to a less active neuron which fires less frequently. In fact,
synaptic fatigue has already been seen in experimental results

even in healthy neurons for high-frequency stimulation (Pozzo-
Miller et al., 1999). To this end, the third impairment scenario
investigates how impairment of synapses of highly active neurons
affects the activity of the whole network. To explore such
synaptic weakening, the number of firings for each neuron in
the unperturbed network is measured over a fixed period of
time. Next, neurons are sorted based on their level of activity
and those that are more active are selected first to have their
synaptic weights reduced. Figure 2 shows an example of how
each scenario affects the degree distribution of a network. The
healthy/unperturbed network is constructed using mean values
of 5 and 35 with equal weights. The level and percentage of
impairments are 1 and 30%, respectively, for all impairment
scenarios.

Comparing the degree distribution of the original network
(Figure 2A) with the distribution in the first impairment scenario
(Figure 2B), we note that, as expected, the random selection
affects neither the structure of the network, nor the shape of

FIGURE 2 | Implementation of the three cases of network impairment. Each graph shows how the original bimodal degree (summation of indegree and outdegree)

distribution is affected in different impairment scenarios. Each method of impairment affects the original network degree distribution differently, leading to different

network dynamics. Level of impairment and percentage of impairment are 1 and 30%, respectively, for all impairment scenarios. (A) Degree distribution in the original

network, without any impairment. Network is constructed with mean values 5 and 35, with equal weights. (B) Random impairment of synapses. The shape of

distribution and the general structure of the network are not affected. (C) Synaptic impairment based on the number of synapses per neuron. Neurons with more

synapses are affected more. Shape of distribution and overall network structure are also affected. (D) Synaptic impairment based on neuron’s level of activity. More

active neurons suffer more. Distribution and network structure are changed.
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the degree distribution. However, the mean degree value of each
mode and consequently, the mean degree value of the whole
network decrease because of the applied impairments. In the
second impairment scenario (Figure 2C), the mode with higher
mean degree is affected more, since neurons with higher degrees
are targeted first. Moreover, removing synapses from neurons
with higher outdegree increases the number of neurons with
lower degrees. Therefore, the height and width of the first mode
increases in this scenario. In the third impairment scenario
(Figure 2D), neurons with higher degrees are still more likely
to be affected since those with higher degrees are generally
more active. However, comparing the degree distribution of
the second and the third scenarios, we notice that they are
not equivalent. For instance, in the third impairment scenario,
neurons with a degree of 45 still exist in the impaired network
while such neurons are removed in the second impairment
scenario. Importantly, the presence of such neurons in the third
impairment scenario shows that neurons with a high degree are
not necessarily more active. This is expected, because the activity
of a neuron in the network depends on the dynamics of the whole
network.

Topological Metrics
If a neuronal network is considered as a graph, each neuron is a
node and the synaptic connection between each two neurons is
an edge. Then, several metrics can be used to describe features
of the network based on graph theory (Rubinov and Sporns,
2010). The degree of a node discussed above is the simplest of
these metrics. Another metric is the characteristic path length
defined as the average of path lengths (minimum number of
edges between two nodes) over the whole network. Another
metric is the clustering coefficient defined as the ratio of closed
paths of length 2 over the total paths of length 2 in the whole
network (Newman, 2010). A network with a characteristic path
length comparable to a random network but with a higher
clustering coefficient is known to be a small world network
(Watts and Strogatz, 1998). Another metric is the rich club
coefficient defined over degrees of the network (Zhou and
Mondragon, 2004; Colizza et al., 2006; McAuley et al., 2007). For
a chosen degree k, all of the nodes with smaller degrees than k
and their corresponding edges are removed from the network.
Then, the rich club coefficient is defined as the ratio of the
edges in the remaining set over the number of edges in a fully
connected network of the same size. The rich club coefficient is
not a metric that can be defined for the whole network, since
it depends on the chosen degree k, which varies between the
lowest and highest degrees of nodes in networks. For each k,
the size of the remaining network (club size) can be used to
show how the rich club coefficient varies within a network. The
network size and probability of connectivity can affect all these
metrics. Thus, the network metrics of a purely random network
have been used to normalize these metrics for different network
structures/topologies (McAuley et al., 2007).

Dynamical Metrics
Unlike topological metrics, dynamical metrics depend on the
activity of the neurons and their intrinsic properties, such as

their excitability. Network synchronization is one of the most
widely used dynamical metrics that has been used for the
investigation of complex networks (Barrat et al., 2008). However,
network synchronization is not an informative metric in our case,
because the neuron model used in this work is a type 1 neuron
and networks that consist of such neurons are shown to have
asynchronous behavior (Fink et al., 2011).

The first dynamical metric we use, is the presence of persistent
activity. Persistent activity is a collective behavior of a network
that indicates whether the network can sustain its activity for long
periods of time, once the initial stimulus is removed. To quantify
persistent activity, we declare that a network has persistent
activity if even a single neuron has fired at least once during a
time window (i.e., the last 200ms) at the end of a longer period
(e.g., a period of 4, 000ms).

All levels of impairment and percentages of impairment for
each network need to be examined to determine the sensitivity
of the persistent activity to impairments. However, this approach
is computationally inefficient. A more effective approach is to
estimate the boundary of persistent activity. This boundary is
defined as the curve which separates networks without persistent
activity (above the curve) from networks with persistent activity
(below the curve). To estimate the boundary of persistent activity,
for a fixed percentage of impairment, we start from the highest
level of impairment and observe the dynamics of the network. If
the network activity is not persistent, then the level of impairment
is decreased until a level of impairment with persistent activity
is found (or the level of impairment reaches zero). Thus, for
a fixed percentage of impairment, the boundary of persistent
activity shows the maximum level of impairment that allows the
network to have persistent activity. After the maximum level of
impairment for a fixed percentage of impairment is found, the
percentage of impairment is increased, and the networks are re-
examined for persistent activity to find the maximum level of
impairment for the new fixed percentage of impairment. This
process continues until the percentage of impairment is 100%.
The percentage of activity and the level of impairment are varied
in increments of 10% and 0.1, respectively, to find the boundary
of persistent activity.

The quality of the network activity is the second dynamical
metric we introduce. We define it as the fraction of all neurons
that fire at least once during a time window at the end of a longer
period. Thus, this metric is useful for networks at the limit of
persistent activity. Higher quality of activity means that more
neurons participate in the activity of the network, during the time
window used.

Simulations
All the neurons in the network are initially at rest. At time
t = 0, they receive an external current with a random uniform
distribution between 0 and 1 µA/cm2. At t = 100ms, the
external current is removed and the dynamics of the network
is observed until t = 4000ms. All results presented are average
values obtained from 50 realizations of the network with the same
degree distribution. Error bars represent standard deviation of
themeasured values for these realizations. All results are obtained
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using custom MATLAB codes and the numerical integration of
the network is performed using the ODE45 function.

RESULTS

First, we investigated how the topological metrics vary among the
different network structures we have studied in this work. The
topological metrics shown in Figure 3 explain why the dynamical
metrics of different network structures vary.

Figure 3A shows that the normalized characteristic path
lengths of different networks are near 1, which means that
all these networks have characteristic path lengths similar to
a purely random network. However, the normalized clustering
coefficients of these networks are larger than 1, and the value of
this metric increases with the difference between the mean values
of the bimodal distribution. Figure 3B shows how the normalized
rich club coefficients for different networks change with the club
size. The normalized rich club coefficient approaches 1 when the
club size reaches the size of the original network, as expected for
this metric. All networks with bimodal degree distribution have
normalized rich club coefficients >1 for many club sizes, which
means that the nodes with larger degrees are connected to each
other more in these networks compared to random networks.
Moreover, for club sizes smaller than 100, the normalized rich
club coefficients for networks with bimodal degree distributions
is large and remains constant with small fluctuations. The value
of this plateau region becomes higher as the distance between the
modes of the degree distribution increases.

Figure 4 presents the raster plots for a sample case of network
activity. Figure 4A shows that the original network without any
impairment continues its activity after the initial stimulus is
removed, and therefore even though it consists of only excitatory
neurons, it reaches a stable state. In addition, Figure 4B shows

that the same network structure loses persistent activity when its
synapses are randomly impaired.

Next, we investigated how the network structure influences
the dynamical metrics of the network by using four different
degree distributions. The first degree distribution has only one
mode with mean degree value of 20, which resembles a purely
random network. The remaining three distributions have two
modes with equal weights and have mean degree values in pairs
of {15, 25}, {10, 30}, and {5, 35}. Figure 5 shows the boundary of
persistent activity and the quality of activity when these networks
are subjected to random impairments.

For each degree distribution, networks below the boundary
have persistent activity (similar to Figure 4A), and networks
above the boundary have lost their persistent activity (similar
to Figure 4B). Figure 5A clearly shows that the purely random
network contains the smallest region in which the persistent
activity is maintained when impairments are imposed. These
results suggest that random networks are most vulnerable to
random impairments, and they cannot withstand any level of
impairment when more than 40% of the network is damaged.
In contrast, networks with bimodal degree distributions endure
impairments considerably better than random networks, as their
boundary of persistent activity is well above the boundary of
persistent activity for random networks.

When the difference between the two mean values of the
degree distribution increases, the neurons start to form two
clusters with one cluster having higher rich club coefficient
than the other (Figure 3B). The quality of activity can be used
to determine whether neurons of only one of these clusters
participate in the persistent activity of the networks. Since the
weights of the two modes are equal, the number of neurons in
each cluster is the same. Thus, if the quality of activity is above
0.5, then we can conclude that more than half the neurons are

FIGURE 3 | Comparison of clustering coefficients, characteristic path lengths, and rich club coefficients (the three topological metrics introduced in Section

Topological Metrics) for three different network structures/topologies, each one with two modes of equal weight and mean degree values in pairs of {15, 25}, {10, 30},

and {5, 35}. The networks with distinct modes can resemble the structure of small world networks (high clustering coefficient) (A), and can have rich clubs at the same

time (rich club coefficient) (B). The average of the two numbers is the same (20), and a reference network of {20, 20} represents a single modal distribution with a

mean of 20. The topological metrics for random networks (single mean degree value of 20) are used to normalize the same topological metrics for networks with

bimodal degree distribution to avoid artifacts in results related to the size of the networks and the probability of connectivity. For example, if we denote clustering

coefficient by C, normalized clustering coefficient of networks with {15, 25} mean degree values is Cnormalized = C{15, 25} /C{20}.
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FIGURE 4 | Raster plots for activity of a network with mean degree values of {10, 30}. (A) The original network, without any impairment, shows persistent activity.

(B) The synapses of the original network are impaired randomly, and the network no longer shows persistent activity.

FIGURE 5 | Boundary of persistent activity and quality of activity for four different network structures/topologies, when targets of impairments are chosen randomly.

(A) The level of impairment (namely, the strength of an impaired synapse compared to a healthy synapse) implemented in the network, in relation to the applied

percentage of impairment (namely, the percentage of synapses in the network that are weakened by the implemented level of impairment). The results show that

random networks exhibit more vulnerability to synaptic loss compared to nonrandom networks. (B) The quality of activity (namely, the fraction of active neurons in the

network), in relation to the percentage of applied impairment. Details for the definitions and the metrics can be found in Sections Impairment Modeling and Dynamical

Metrics. Standard deviations from 50 separate realizations are shown by the error bars.

active (in the time window where the persistent activity was
determined). Figure 5B shows the quality of activity for each of
the networks at their own boundary of persistent activity. Note
that not all networks show persistent activity at all impairment
levels up to 100%. Hence, the plots stop at lower values of
impairment because the quality of activity is not defined for
higher levels of impairment. For example, the quality of activity
cannot be defined for impairments over 40% for networks with
one mode of degree distribution (and mean degree value of 20)
as shown in Figure 5B. Similarly, the quality of activity cannot be
defined for {15, 25} networks for impairments over 90%. Note,
however, that the quality of activity is over 0.5 for all cases,
which shows that all networks have more than one active cluster.

However, the networks with {5, 35} modes, which have the largest
region of persistent activity, have the poorest quality of activity
compared to the rest of the networks. Therefore, the graphs in
Figure 5 suggest that higher resistance to impairments has the
downside of reducing the number of neurons that participate
in the activity of the whole network. For instance, {15, 25}
networks have comparable quality of activity to {10, 30} and {5,
35} networks even though their self-sustained activity region is
smaller.

Figure 6A shows that the integrated persistent activity
corresponding to random impairments of synapses (scenario 1)
is always higher than the integrated persistent activity for the
other impairment scenarios for all network structures/topologies.
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FIGURE 6 | Comparison of persistent activity and quality of activity (the two dynamical metrics introduced in Section Dynamical Metrics), for different methods of

impairment and network structures. In the first scenario, synapses are randomly impaired. In the second scenario, neurons with more synapses are preferably impaired.

In the third scenario, synapses of most highly active neurons are preferably impaired. Details for the scenarios of impairment are provided in Section Impairment

Modeling. (A) Persistent activity area suffers more from nonrandom impairment for all network structures. (B) Quality of activity area does not depend strongly on

method of impairment for networks with distinct modes in their degree distribution. Standard deviations from 50 separate realizations are shown by the error bars.

Moreover, the integrated persistent activity corresponding to
impairments of synapses of highly active neurons (scenario 3)
is always lower than the integrated persistent activity for the
other scenarios, which means that the persistent activity of
neuronal networks suffers the most in this scenario. However, the
comparison between the scenarios of impairment in Figure 6A

does not hold for the quality of activity, as shown in Figure 6B,
except for {15, 25} networks. Particularly, the quality of activity
for {10, 30} and {5, 35} networks changes <4 between different
impairment scenarios. All results in Figure 6 were analyzed in
pairs by the unpaired two-tailed Student’s t-test to determine
if they are statistically significant (the performed t-test has 98
degrees of freedom for all the cases). For the results in Figure 6A,
all the comparisons showed p-values smaller than 0.001, except
for the comparison between scenarios 1 and 2 for random
networks, which showed a p-value of 0.90. For the results in
Figure 6B, all the comparisons showed p-values smaller than
0.001, except for the comparison between scenarios 1 and 2 for
random networks (p = 0.63), {15, 25} networks (p = 0.002), {10,
30} networks (p= 0.057) and {5, 35} networks (p= 0.041).

All results presented above correspond to bimodal degree
distributions with modes that have equal weights. However,
different network structures can be constructed by keeping the
mean value of one mode constant and varying the weights of
each mode (sum of the weights must equal to 1). As the weight
of the first mode becomes larger, the mean value of the second
mode starts to increase to keep the total mean value constant. The
results in Figure 6 show that {10, 30} networks exhibit both a high
level of persistent activity and a high quality of activity. Therefore,
it is insightful to vary the weights and examine networks where
one of the mean values is kept at 10 while the other mean value
is fixed by the weights. Figure 7 shows how the weights affect the
dynamical metrics of different networks. When the weights are
equal to 0.5, the results are the same as {10, 30} networks.

Figure 7A shows that the area of persistent activity region
increases monotonically when the weight of the first mode
increases. Similar to the results shown in Figure 6A, impairment
scenario 1 inflicts less damage to the persistent activity compared
to the other two scenarios. In addition, scenario 3 has the most
invasive effect. For low weights of the first mode, the integrated
persistent activity for all impairment scenarios is similar—the
lines corresponding to scenarios 1 and 2 are close to each
other. However, they start to separate as the weight of the first
mode increases. In contrast, the integrated persistent activity for
scenarios 2 and 3 are separated for low weight of the first mode,
but the distance between them decreases slightly as the weight
increases.

Figure 7B shows that the quality of activity changes
nonlinearly with the weight of the first mode. Lines
corresponding to different impairment scenarios cross each
other several times. Therefore, unlike the persistent activity
shown in Figure 7A, a general statement cannot be made about
how different impairment scenarios affect the quality of activity.
For low weights of the first mode, the quality of activity is low
because the network has low integrated persistent activity. The
quality of activity improves as the integrated persistent activity
increases. However, further increasing the weight of the first
mode lowers the quality of activity even though the integrated
persistent activity is still improving.

DISCUSSION

Our results show the vulnerability of random networks to
synaptic loss, compared to networks with bimodal degree
distribution. The robustness of networks with bimodal degree
distribution can be attributed to their topological metrics, and
especially the presence of rich clubs. Our results also show that
targeted synaptic loss, which may resemble different pathological
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FIGURE 7 | Comparison of persistent activity and quality of activity (the two dynamical metrics introduced in Section Dynamical Metrics), when the weights of degree

distribution mode vary. In the first scenario, synapses are randomly impaired. In the second scenario, neurons with more synapses are preferably impaired. In the third

scenario, synapses of most highly active neurons are preferably impaired. Details for the scenarios of impairment are provided in Section Impairment Modeling. (A)

persistent activity area increases monotonically with weight of first mode of network degree distribution. (B) Quality of activity area initially increases with weight of first

mode of network degree distribution, but it decreases with further increase of the weight. Standard deviations from 50 separate realizations are shown by the error

bars.

or biological conditions, affects the dynamics of networks more,
compared to random impairments. Therefore, monitoring the
activity of networks has the potential to reveal underlying
pathological or biological conditions earlier than symptom-based
detection methods.

We have used a model based on the Hodgkin-Huxley
formalism that has been previously used successfully to simulate
dynamics of neuronal networks (Fink et al., 2011). One advantage
of this model is its capability to be switched to a type 2 neuron
with the addition of a slow potassium current, which is ultimately
responsible for the shift in neural excitability mediated by ACh
(Fink et al., 2011). Ca2+ dynamics have been shown to be
related with persistent activity of neurons (Fransén et al., 2006;
Neymotin et al., 2016). However, even though Ca2+ dynamics
are not captured in this model, previous research has shown
that persistent activity can be observed on the network level
even when simple integrate-and-fire neurons have been used
(Roxin et al., 2004). Like many other network simulations, details
of simulations such as the values of dynamical metrics and
boundary of persistent activity will change, because the elements
of the network (neurons) will change. However, our main goal
is to examine whether the network topology and pattern (or
scenario) of impairment has significant counter-intuitive (or
non-intuitive) effects on the network function. Hence, it is the
relative robustness that we are mostly interested in; relative
between different impairment scenarios or network topologies.
Therefore, we believe that using other models such as the ones
that include Ca2+ dynamics will not change the conclusions of
this work about the influence of network structure on the activity
of the network.

As a first step, we used the degree distribution of networks
to construct networks with different topological metrics. While
completely random connectivity topologies are usually the first

choice made when studying the dynamics of neuronal networks,
in vitro (Downes et al., 2012; Schroeter et al., 2015), in vivo (Ball
et al., 2014) and even in silico (Izhikevich and Edelman, 2008)
studies have revealed that neurons form structures/topologies
which are correlated to their functionality. One simple way
to explain the structure/topology of a network is through its
degree distribution (Newman, 2010). We built different network
structures/topologies by combining Poisson distributions (the
degree distribution of a random network) with two different
mean values. This method of network generation creates
networks with bimodal degree distributions, which consist of rich
clubs with high clustering coefficients, while their characteristic
path lengths are almost equal to that of random networks.
Networks with high clustering coefficients and path lengths
comparable to random networks are known to have features
of small world networks (Watts and Strogatz, 1998). The
characteristic path lengths of all the networks we studied are
close to the characteristic path lengths of random networks.
Therefore, networks with higher clustering coefficients are more
similar to small world networks. Our results show that the
clustering coefficient increases as the distance between modes
of degree distribution increases (Figure 3). At the same time,
the increased distance between modes of degree distribution
leads to an increase in the persistent activity area. Hence, our
results show that networks that have properties of small world
networks are more robust. We define robustness as the ability
of neuronal networks to maintain their persistent activity when
exposed to impairments. Small world networks can tolerate
impairments better than random networks since the connections
between neurons in small world networks have more closed
loops to sustain the activity of the whole network. Other studies
(Roxin et al., 2004; Shanahan, 2008), have also reported that
small world networks are more likely to have persistent activity.
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However, those reports are not parallel to our work since they
do not consider impairment in synaptic connections. Moreover,
their networks are built following the conventional method of
constructing small world networks, so they do not consist of
distinct rich clubs. However, features of small world networks are
likely not enough to explain the higher robustness of networks
with bimodal degree distribution, because this topological metric
does not describe the variation in the quality of activity for
different networks.

The rich club coefficients can be used to describe both the
persistent activity and the quality of activity for networks with
bimodal degree distribution. When networks start to form rich
clubs, hubs of highly connected neurons are created, which
are also interconnected to each other. During impairments,
these hubs can preserve the activity of the whole network.
Having a core of highly connected neurons enables such network
structures/topologies to maintain self-sustained activity when
they experience loss of synapses. Moreover, for such networks,
removal of connections between members of rich clubs and
neurons outside the rich clubs does not influence the persistent
activity significantly because neurons outside the rich clubs are
not responsible for maintaining the persistent activity. Neurons
in the rich club are also connected to the neurons outside the rich
clubs. Hence, they distribute the activity to the whole network.
This is the reason why high rich club coefficients coincide with
high robustness in our results (Figures 3B, 6A).

Our results suggest that there is a compromise between
quality of activity and persistent activity of neuronal networks.
Unlike the integrated persistent activity, the integrated quality of
activity shows a nonlinear behavior when the distance between
the modes of the degree distribution increases (Figure 6B).
Such behavior is more obvious when the weights of modes
are changed (Figure 7B). Initially, the quality of activity is low
when the distance between the modes of degree distribution
is small, because the integrated persistent activity is low. Such
networks resemble random networks rather than networks with
bimodal degree distributions. When the distance between the
modes of degree distribution increases, the integrated quality
of activity and the integrated persistent activity both increase.
In these networks, rich clubs sustain the activity of the whole
network and since they are also connected to neurons outside
rich clubs, they are able to keep neurons outside rich clubs active
as well. However, as the distance between the modes of degree
distribution increases, the robustness of networks continues to
increase, whereas the quality of activity starts to decrease. At the
same time, neurons outside rich clubs make few connections,
either with each other or with members of rich clubs. In fact, the
sharp transition in the normalized rich club coefficients of {5, 35}
networks (Figure 3B) indicates that the core has weak connection
with neurons outside the core. Therefore, neurons outside of rich
clubs lose their activity even when a few of their synapses are
removed. In this situation, rich clubs fail to act as a driving force
for the rest of the network. Hence, the quality of activity for such
networks is low even though highly connected hubs that form
rich clubs can maintain the activity of the whole network.

The interplay between persistent activity and quality of activity
can be considered as an optimization problem. To achieve higher

robustness, our results suggest that the number of connections
between neurons in rich clubs must increase. However, if the
size of the neuronal network and its synapses are constrained
to remain the same, then more connections between neurons
in rich clubs mean fewer connections between neurons outside
rich clubs. Therefore, even though such networks can endure
impairments very well and can maintain persistent activity,
only few neurons participate in the activity of the whole
network and the quality of activity remains low. From this
perspective, the network structure/topology can be viewed as
a multi-objective optimization problem where the fitness of
a network can be determined by both persistent and quality
of activity, and the number of neurons and synapses are the
constraints. Even though the network optimization can be
regarded as an abstract mathematical problem, emergence of
certain structures/topologies in networks can also be considered
as evolution of these networks in reality (Holland, 1992).
However, a random network can evolve into different network
structures/topologies to serve different tasks (Hiratani and Fukai,
2016). For example, Sporns et al. (2000) have shown that based on
differently imposed criteria, their graph selection algorithm leads
to networks with different structures and capabilities. Although
we have not solved such an optimization problem in the present
work, our results show that networks with bimodal distributions
have good fitness. Therefore, if a neuronal network requires
high robustness to perform its tasks, a network with bimodal
degree distribution can be the plausible solution. More precisely,
networks with bimodal degree distributions with a moderate
distance between distinct modes have high robustness and high
quality of activity at the same time. Moreover, our results suggest
that random networks are the least preferable neuronal network
structure/topology for the metrics we have used, since such
networks have neither high persistent activity nor high quality
of activity.

In the present study, we have explored also how selective
impairment of neurons can affect the dynamics of neuronal
networks by investigating targeted weakening of synapses. We
have explored how three different scenarios of synapses loss can
affect the dynamical features of neuronal networks.

In the first impairment scenario, synapses are impaired
randomly, leading to the least impact on the persistent activity
for all the network structures/topologies (Figures 6A, 7A). The
importance of all neurons and their synapses in the activity of
the whole network is not the same, especially for the neuronal
networks that do not have random connectivity. However, the
reason why random impairments are the least damaging method
is not the fact that synapses of more important neurons are not
selected. Essentially, the likelihood of damaging such neurons is
the same as any other neuron since the method of impairment
is random. In fact, highly damaging effects of impairing critical
neurons are compensated by impairing synapses of neurons that
are less important to the activity of the whole network. Therefore,
random impairments lead to overall less damaging effects
compared to other impairment scenarios we have described in
our study.

In the second impairment scenario, synapses of neurons
with larger number of synapses are more likely to be impaired,
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leading to more damaging effects to the persistent activity of
neuronal networks than random impairments of neurons, for
all network structures/topologies. The number of synapses a
neuron has is a topological feature of a neuronal network.
Therefore, if the wiring between neurons in a network is known,
this wiring can be used to suggest where the impairments will
occur in case of damaged axonal transport. van den Heuvel and
Sporns (2011) have performed a similar analysis by observing the
efficacy of neuronal networks. They have shown that targeted
impairments that remove the links between members of rich
clubs in the network induce a more dramatic change on the
efficacy of neuronal networks than random impairments. The
mechanism used for the targeted impairments in that study is not
mentioned, but such impairments resemble our second scenario.
Complimentary to our speculation about the links between the
hub location and axonal transport deficiencies, experimental
results have also shown that the hub locations correlate with
Aβ deposition in Alzheimer’s disease (Buckner et al., 2009).
Hence, hub locations can be monitored to detect abnormalities
in neuronal networks earlier and with more efficiency.

In the third impairment scenario, synapses of highly active
neurons are more likely to be impaired, leading to the most
destructive effect on the persistent activity of all neuronal
networks, when compared to the other impairment scenarios.
The structure/topology of neuronal networks plays an important
role, but the dynamics is important also. The dynamic map of
activity in neuronal networks can provide critical information
about regions of interest. Other research has similarly suggested
that regions of high activity and metabolism can be associated
with cellular mechanism involved in Alzheimer’s disease
(Buckner et al., 2009). Moreover, it has been proposed that,
highly active neurons in the brain can be especially vulnerable
to intrinsic oxidative stress, thus being susceptible to functional
decline during normal aging or neurodegenerative diseases
(Wang and Michaelis, 2010). Therefore, monitoring the activity

of neuronal networks can reveal the critical regions and neurons
that influence the most the activity of the whole network.
Consequently, we speculate that losses or changes in the activity
of such regions can be used as an early sign of deficiencies in
neuronal networks.

Altogether, we speculate that the transition in the network
structure can be used as an indicator of neurodegenerative
disease, since the robustness of neuronal networks decreases
when they lose their structured topology. Such transition
of the brain network toward randomness has already been
shown even in normal aging (Knyazev et al., 2015). Therefore,
monitoring alterations in the brain network structure has
the potential to be used as an early diagnostic method in
neurodegenerative diseases. Moreover, our results show that
even though the topological metrics and maps of neuronal
networks can provide valuable information, they should be
accompanied by the dynamical metrics and maps of neuronal
networks that are even more informative. Our results illustrate
that such an argument is even stronger when neuronal networks
are not randomly connected, and are instead topologically
defined.
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