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Spermatogenesis directly determines the reproductive capacity of male animals. With the
development of society, the increasing pressure on people’s lives and changes in the living
environment, male fertility is declining. The leaf of Eucommia ulmoides Oliv. (Eucommiae
Folium, EF) was recorded in the 2020 Chinese Pharmacopoeia and was used in traditional
Chinese medicine as a tonic. In recent years, EF has been reported to improve
spermatogenesis, but the mechanisms of EF remain was poorly characterized. In this
study, the effect of EF ethanol extract (EFEE) on spermatogenesis was tested in mice.
Chemical components related to spermatogenesis in EF were predicted by network
pharmacology. The biological activity of the predicted chemical components was
measured by the proliferation of C18-4 spermatogonial stem cells (SSCs) and the
testosterone secretion of TM3 leydig cells. The biological activity of chlorogenic acid
(CGA), the active compound in EF, was tested in vivo. The cell cycle was analysed by flow
cytometry. Testosterone secretion was detected by ELISA. RNA interference (RNAi) was
used to detect the effect of key genes on cell biological activity. Western blotting,
qRT–PCR and immunofluorescence staining were used to analyse the molecular
mechanism of related biological activities. The results showed that EFEE and CGA
could improve spermatogenesis in mice. Furthermore, the main mechanism was that
CGA promoted SSC proliferation, self-renewal and Leydig cell testosterone secretion by
promoting the expression of SHP2 and activating the downstream signaling pathways
involved in these biological processes. This study provided strong evidence for elucidating
the mechanism by which EF promotes the spermatogenesis in mice and a new theoretical
basis for dealing with the decrease in male reproductive capacity.
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INTRODUCTION

Spermatogenesis is a process from SSC to mature sperm through
mitosis and meiosis in the seminiferous tubules (Haseeb et al.,
2019; Yang and Yang, 2020). The process involves autocrine,
paracrine, and other hormonal stimuli and nutrients that are
supportive of the germ cells development (Ehmcke and Schlatt,
2006; Dube and Cyr, 2012). The maintenance of spermatogenesis
relies on the production of testosterone and follicle stimulating
hormone (FSH) (Ramaswamy and Weinbauer, 2014).
Testosterone is the cornerstone of spermatogenesis, secondary
sexual characteristics and functions (Huhtaniemi, 2018). FSH
enhances testosterone action by maintaining the supporting
function of Sertoli cells on spermatogenesis (Mclachlan et al.,
2002). Testosterone is considered the master switch of
spermatogenesis, FSH is known to contribute to the quality
and quantity of the sperm (Oduwole and Huhtaniemi, 2014).

In leydig cell, luteinizing hormone (LH) binds luteinizing
hormone recepter (LHR) and stimulates cAMP pathway. The
cAMP pathway, through protein kinase A (PKA), is essential for
regulating the expression of steroidogenic acute regulatory
protein (StAR) which acts at the mitochondria to trigger
cholesterol movement across the membranes (Papadopoulos
and Miller, 2012; Clark, 2016). After cholesterol is transferred
from the outer to the inner mitochondrial membrane, it is
converted to testosterone by steroidogenic enzymes: CYP11A1,
3β-HSD, CYP17A1 and 17β-HSD (Payne and Hales, 2004). In
addition to the well-established regulation of testosterone
synthesis by PKA, several regulators were identified. These
include the signaling molecules PDGF and DHH; the kinases
MAPK, PKG, CAMKI, and AMPK; and the transcription factors
NUR77, MEF2, and GATA4 (Tremblay, 2015).

The SSC self-renewal, which encompasses cell division and cell
survival, maintains the stem cell pool. Glial cell line-derived
neurotrophic factor (GDNF) is a key factor for maintenance of
SSC self-renewal. GDNF acts through different signaling
pathways to induce target genes that promote SSC self-
renewal, such as PI3K/AKT, SFK, and MAPK signaling
pathways (Lee et al., 2007; Oatley et al., 2007; Takashima
et al., 2015). The well studied GDNF-inducible self-renewal
genes include Etv5, Bcl6b, Lhx1, Pou3f1 and Id4. Moreover,
there are many GDNF-independent and SSC-derived factors
such as PLZF, FOXO1, GILZ and TAF4B that also contribute
to regulate the self-renewal of SSC (Song and Wilkinson, 2014).

SHP2 is a non-receptor protein tyrosine phosphatase that is
encoded by protein tyrosine phosphatase non-receptor type 11
gene (Ptpn11). A core component of receptor tyrosine kinases
(RTKs), cytokines, and G protein-coupled receptor signal
transduction, SHP2 shows ubiquitous expression and plays
critical roles in cellular growth, survival, proliferation, and
migration. In testis, SHP2 played a critical rule for the
proliferation and self-renewal of SSC in the process of
spermatogenesis (Hu et al., 2015). Meanwhile, SHP2 could
support the steroidogenesis in leydig cells leading to
testosterone production and maintain the blood testis barrier,
which provided a stable environment for spermatogenesis (Puri
and Walker, 2016).

Spermatogenesis directly determines the reproductive capacity
of male animals. With the development of society, the increasing
pressure on people’s lives and changes in the living environment,
male fertility is declining (Agarwal et al., 2021). Traditional
Chinese medicine (TCM) is commonly used to improve
spermatogenesis in China, such as Morindae officinalis Radix
(Chen and Wang, 2015), Eucommiae Folium (Fu et al., 2019)
Cynomorii Herba (Yang et al., 2010) and Epimedii Folium (Park
et al., 2017).

In the monotypic genus Eucommia, Eucommia ulmoides
Oliv. is known as Dù-zhòng (Chinese:杜仲), Tuchong (in
Japanese), and Chinese rubber tree (Cronquist, 1981).
According to the Chinese Pharmacopoeia and the Shennong’s
Herbal Classic of Materia Medica, the leaf and bark of this plant
have the similar efficacy, as a famous botanical tonics, have been
widely used for long time. They can be used alone or mixed with
other herbs in the prescription of TCM to treat impotence,
spermatorrhoea, prospermia, kidney deficiency pain etc. (He
et al., 2014). Ethnopharmacological studies have shown that
EFEE could improve the reproductive capacity and the
testosterone levels in male rats (Fu et al., 2019). Du
zhongkangcha (consist of Eucommiae Folium, Psoraleae
Fructus and Lycii Fructus) significantly increased the sexual
capacity in male rats (Zhang et al., 1999). Yougui Pill (consist of
Radix Rehmanniae Praeparata, Cuscutae Semen, Lycii Fructus,
Eucommiae Cortex etc.) could effectively improve the
spermatogenic dysfunction in male patients (Qiu, 2020; Zhai
et al., 2020). Through network pharmacological analysis,
Yougui Pill was involved in the treatment of sexual
dysfunction through regulating MAPK signaling pathway
(Wang Y. et al., 2019).

EF mainly contains lignans, iridoids, phenylpropanoids and
flavonoids. The chemical components include aucubin,
eucommiol, pinoresinol, quercetin, rutin, CGA and
kaempferol (Zhang et al., 2013). However, the mechanism
of its specific compounds, which are involved in
spermatogenesis, is not clear. Studies have shown that
quercetin could promote the expression of the Star gene,
associated with testosterone secretion in the testicular leydig
tumour cell line MA-10 (Cormier et al., 2017). Rutin could
improve stem cell proliferation by enhancing the
phosphorylation of the PI3K/AKT/mTOR signaling pathway
(Zhao et al., 2020). Kaempferol promoted stem cell
proliferation through the Wnt signaling pathway (Nie et al.,
2020). CGA could increase the number of sperm in rat testis
(Park and Han, 2013). Moreover, CGA could effectively
enhance the expression of the Shp2 gene in stem cells and
then promoted the expression of downstream cell
proliferation-related genes (Zhou et al., 2016).

The pharmacological action of TCM is mainly related to its
chemical components. However, very few studies have
investigated the major components of EF associated with
spermatogenesis. The uncertainty of chemical components
related to spermatogenesis in EF limits its effectiveness in
clinical applications. Therefore, the clarification of the main
spermatogenic components of EF is of great significance for
the further development.
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In this study, the main active components related to
spermatogenesis in EF and their signaling pathways were
predicted by network pharmacology. The C18-4 cell
proliferation assay and TM3 cell testosterone secretion assay
were used to screen the active compounds in EF, and the
active substances that could promote SSC proliferation and
leydig cell testosterone secretion were selected. The regulation
of spermatogenesis in mice was investigated by detecting the
expression of key proteins in the signaling pathways related to
SSC proliferation and self-renewal, Leydig cell testosterone
secretion and cell proliferation. Our study will provide a
theoretical basis for revealing the biochemical mechanism of
spermatogenesis regulation by compounds in EF.

MATERIAL AND METHODS

Cell and Culture Materials
C18-4 cells were established by stably transfecting type A
spermatogonia from 6-day-old mice with the large T antigen
gene under the control of a ponasterone A-driven promoter
(Hofmann et al., 2005; He et al., 2009), and they were
cultured in DMEM/F12 supplemented with 10% FBS and
maintained in a 5% CO2 atmosphere.

TM3 cells were purchased from the American Type Tissue
Culture Collection (ATCC, Manassas, VA, United States) and
maintained in a 5% CO2 atmosphere in DMEM/F12 (HyClone,
United States) supplemented with 2.5% FBS (HyClone,
United States), 5% HS (Solarbio Beijing, China) and 1% P/S
solution (Solarbio Beijing, China).

Cell Viability Assay
C18-4 cells were cultured in 96-well plates and treated with
different concentrations of CGA (Cat. No. YZ-110753, HPLC
≥96.1%), quercetin (Cat. No. SQ8030, HPLC ≥98%), kaempferol
(Cat. No. SK8030, HPLC ≥98%) and rutin (Cat. No. SR8250,
HPLC ≥98%) (0–100 μM) (Solarbio Beijing, China). Thirty-six
hours after treatment, 10 μl of WST-1 (Beyotime Biotechnology,
Shanghai, China) solution per well was added and the plate was
incubated for 1 h at 37°C. The absorbance of each well was
measured at 450 nm by a microplate spectrophotometer. The
cell viability was calculated using the following formula: Cell
viability= (ODtreated group−ODblank group)/(ODcontrol group−ODblank

group).

Extraction and Isolation
EF (voucher specimen number: TCVM-15082501) was collected
from Lueyang, Shaanxi Province (33°07′55″N, 105°42′31″E) and
stored in the specimen room of Traditional Chinese Veterinary
Medicine (TCVM) of the College of Veterinary Medicine. EF
powder (160.0851 g) was refluxed for 30 min, at 97°C, with
1600 ml 50% ethanol solution (v/v). After repeated extraction
for four times and filtration, the filtrate was concentrated at 90°C
and dried to a constant weight by vacuum freeze dryer. The
extract was 66.0413 g and the yield of the extract was 41.25% (w/
w) (Hou et al., 2016). The content of CGA in EFEE was analysis
by HPLC (Supplementary Material).

Animal Experiments and Ethics Statement
All experiments were performed on 5-week-old healthy male KM
mice. These mice were purchased from Chengdu DOSSY
Experimental Animals Co., Ltd. The mice were housed in wire
cages at 25°C under a 12 h light-dark cycle with 70% humidity.

EFEE spermatogenic activity assay. Fifty mice were divided
into five groups: a negative control group, three experimental
groups and a positive control group. The negative control group
was intragastrically administered with water, the experimental
groups were intragastrically administered with 0.4, 0.8 and
1.2 g/kg EFEE, and the positive control group was
intraperitoneally injected with 5 mg/kg testosterone
propionate. Each group of mice was given intragastric
administration or injection once a day for 10 days.

CGA spermatogenic activity assay. The experimental method
was the same as above. The experimental groups were
intragastrically administered with 20, 40 and 80 mg/kg CGA.

After 10 days of administration, the mice were anaesthetized,
the serum isolated from blood that was collected through heart
punctures, and the testes and epididymides were collected.
Testosterone and FSH were detected by ELISA kits (Shanghai
Enzyme-Linked Biology Company Shanghai, China) according to
the instructions. The testes were carefully removed and fixed with
10% formalin solution. After dehydration procedures, the
sections were embedded in paraffin. The tissues were after that
cut (with a microtome) to produce 4–5 μm sections, transferred
to slides and subsequently stained using the traditional
hematoxylin and eosin (H&E) stain. The testicular organ
coefficient was calculated using the following formula:
Testicular organ coefficient = Testicular weight/Body weight.
The sperm were collected from the cauda epididymides. The
cauda epididymides were minced with scissors and placed in 5 ml
of 0.9% saline at 37°C for 30 min. After filtration, 10 μl aliquots of
these mixtures were placed on a hemocytometer, and sperm
numbers were determined by counting under an optical
microscope (Park and Han, 2013; El-Khadragy et al., 2021).

FACS Analysis of Cell Cycle
For all experiments, logarithmic growth phase C18-4 cells were
plated in six-well cell culture plates and treated with 0, 10, 50 and
100 μMCGA for 36 h. Logarithmic growth phase TM3 cells were
plated in six-well cell culture plates and treated with 0, 0.5, 1 and
10 μMof CGA for 36 h. Then, the cells were resuspended as single
cells, washed in precooled PBS and incubated using a Cell Cycle
Kit (LianKeBiology, Hangzhou, China) with 1 ml DNA staining
solution and 10 μl permeabilization solution for 30 min. Cell cycle
analysis was performed with a flow cytometer (Cao et al., 2012).

Quantitative Real-Time PCR (qRT–PCR)
Total RNA was reverse-transcribed to cDNA using the HiScript III
RT SuperMix reverse transcriptase reagent kit according to the
reagent manual (DiNing, Beijing, China). qRT–PCR was performed
on a CFX96 real-time PCR detection system (Bio–Rad, CA 94547)
according to the manual for the ChamQTM Universal SYBR qPCR
Master Mix kit (DiNing, Beijing, China). For more details on the
qRT–PCR protocol, please refer to Wu et al. (2013). The relative
expression levels of target genes and differentially expressed
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miRNAs were normalized to Gapdh expression for each sample
respectively. The relative expression levels were calculated using
2−ΔΔCt (Wu et al., 2014). The verified primers ofmRNAs are listed in
Supplementary Table S1.

Cell Transfection
TM3 and C18-4 cells were transfected with shRNA (Shp2-mus-405:
5ʹ-GCTGAACTGGTTCAGTATTACTTCA AGAGAGTAATAC
TGAACCAGTTCAGCTT-3ʹ) and NC (5ʹ-TTCTCCGAACGT
GTCACGTTTCAAGAGAAC GTGACACGTTCGGAGAATT-3ʹ)
(Genepharma Co., Shanghai, China) in a 24-well plate. After 24 h,
two kinds of transfected cell were respectively treated with G418
(400 μg/ml) and hygromycin (100 μg/ml). The stably transfected cell
clusters were screened by drugs and cultured. These cells were
detected by qRT–PCR and Western blot.

Immunofluorescence Staining
The protocol of immunofluorescence staining was performed
according to Yu et al. (2014). Briefly, C18-4 cells and Shp2
knockdown cells, which were cultured in a 48-well plate after
treatment with CGA, were fixed with 4% formaldehyde for
15min and washed with PBS three times for 3 min each. The
cells were permeabilized with by 0.1% Triton X-100 (Solarbio,
Beijing, China) for 15 min and blocked for 30min with 1% BSA
at 37°C. Then, the cells were incubated with primary antibodies
specific against PLZF (1:200, Santa Cruz Biotechnology, California),
SHP2 (1:100, Abways, Shanghai, China) and C-KIT (1:300,
Biolegend, San Diego) for 12 h at 4°C. Alexa-488 (1:500,
Beyotime Biotechnology, Shanghai, China) secondary antibodies
were used to incubate cells for 1 h at 37°C. The negative control was
stained with conjugated secondary antibodies alone: goat anti-rabbit
IgG and goat anti-mouse IgG. The nuclei of cells were stained with
DAPI (Beyotime Biotechnology, Shanghai, China) (Niu et al., 2016).

Western Blot Analysis
The cells were treated with different doses of CGA for 36 h. The
proteins were extracted using a protein extraction reagent kit
(Solarbio, Beijing, China). Protein quantification was performed
using a BCA quantification kit (Solarbio Beijing, China). 10%
separation gel was prepared. Each well was loaded with 30 μg of
the protein. The denatured proteins were separated by SDS–PAGE
(80 V, 30 min; 120 V, 60 min) and transferred onto PVDF
membranes (80 V, 135min). The membranes were blocked for
2 h at 37°C in TBST containing 5% skim milk and then
incubated for 12 h at 4°C in TBST containing specific primary
antibodies (SHP2, ERK1/2, pERK1/2, StAR, or β-actin, 1:1000)
(Abways, Shanghai, China). After four washes with TBST, the
membranes were incubated with HRP-conjugated secondary
antibody (Solarbio Beijing, China) for 1.5 h at 37°C. After
washing the membranes with TBST three times, the signals were
visualized using ECL (DiNing, Beijing, China), and the membranes
were exposed on X-ray films. The quantification of protein bands
were analyzed by ImageJ version 1.51.

Network Pharmacology Analysis
The main components and their related genes in EF were
collected by summarizing the research work on chemical

components of EF (He et al., 2014; Wang C.Y. et al., 2019)
and searching TCMSP (Ru et al., 2014) (http://tcmspnw.com),
Pharm Mapper (Wang et al., 2017) (http://www.lilab-ecust.cn/
pharmmapper/) and other traditional Chinese medicine
components databases. The selected genes were analysed by
literature research (Paz et al., 2016; Puri and Walker, 2016;
Zhou et al., 2016), Kegg (Kanehisa et al., 2017) (https://www.
kegg.jp/kegg/) and KOBAS (http://kobas.cbi.pku.edu.cn/)
enrichment to investigate the possible biological functions of
the potential targets and the biological pathways involved in
spermatogenesis. Cytoscape version 3.5.1 was used to draw the
network diagram of “component-target-pathway-function”
(Shannon et al., 2003; Killcoyne et al., 2009) (Supplementary
Material).

Statistical Analysis
Data analysis was performed using IBM SPSS statistical software
(version 23.0). One-way analysis of variance with a post hoc test
was used for multiple comparisons. The histograms were drawn
using GraphPad Prism 7. The results were considered significant
or extremely significant at a level of p < 0.05 or p < 0.01.

RESULTS

The Effects of EF Extracts on
Spermatogenesis in Mice
As shown in Figures 1A,B, compared with the control group, the
serum testosterone and FSH levels of 0.8 and 1.2 g/kg EFEE groups
were significantly increased (p < 0.01, p < 0.05). Similarly, the
testicular tissue coefficient of mice in the medium-dose groups was
significantly higher (p < 0.05) than that in the control group
(Figure 1C). The sperm count of the 0.8 and 1.2 g/kg EFEE
groups were higher (p < 0.05) than that in the control group
(Figures 1D,E). Therefore, EFEE could promote the secretion of
spermatogenic hormones and sperm production in mice.

Network Pharmacological Analysis of EF
Active Components and Their Mechanism
Through network pharmacological analysis, chemical compounds in
EF related to spermatogenesis mainly involved MAPK, RAS, PI3K-
Akt and regulating the pluripotency of the stem cell signaling
pathway. These signaling pathways were involved in the
biological processes of SSC proliferation, self-renewal and Leydig
cell testosterone secretion. The corresponding compounds were
screened to obtain quercetin, kaempferol, CGA and rutin. The
targets of these compounds were mainly concentrated in four
signaling pathways (Figure 2A). These results suggested that
quercetin, kaempferol, CGA and rutin were the main active
components in EF that may be involved in spermatogenesis.

Effects of Screened Compounds on
Spermatogenesis
As shown in Figure 2B, the four compounds screened above were
tested for their biological activities in promoting SSC proliferation
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and testosterone secretion. Compared with the control group
(0 μM), C18-4 cell proliferation in the CGA groups (10 and
50 μM) below their safe concentrations was significantly
increased (p < 0.05, p < 0.01). In addition, quercetin treatment
(10 μM) also significantly promoted cell proliferation (p < 0.05).

As shown in Figure 2C, the CGA (0.5 and 1 μM) and
quercetin (10 μM) treatment groups also significantly
enhanced (p < 0.01, p < 0.05) testosterone secretion in TM3
cells, and the CGA groups exhibited stronger activity at low
concentrations. The content of CGA in EFEE was 2.58% (w/w) by
HPLC (Supplementary Figure S1). These results indicated that
CGA was the main compound of EFEE and involved in

spermatogenesis. Therefore, CGA was selected for further
experiments.

The Effects of CGA on Spermatogenesis in
Mice
In order to determine the effect of CGA on spermatogenesis in
vivo, the mice were intragastrically administered with 20, 40 and
80 mg/kg CGA. As shown in Figures 3A,B, compared with the
control group, the serum testosterone and FSH levels in groups
treated with 20 and 40 mg/kg of CGAwere significantly increased
(p < 0.05). Similarly, the testicular tissue coefficient of mice in the

FIGURE 1 | The effects of EF extracts on spermatogenesis in mice (Control: water; Testosterone Proplonate: 5 mg/kg; Extracts: 0.4, 0.8, 1.2 g/kg). (A) The
concentration of serum testosterone was analysed by ELISA. (B) The concentration of serum FSH was analysed by ELISA. (C) Testicular organ coefficient analysis of
testes. (D) The sperm count analysis of epididymis. (E)Haematoxylin and eosin (HE) staining analysis of testes treated with different doses of EFEE. Values are expressed
as the mean ± SD (n = 10).*p < 0.05, **p < 0.01 vs control.
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FIGURE 2 | Network pharmacology prediction and validation of spermatogenesis related compounds in EF. (A) Network pharmacology analysis of EF active
compounds and their mechanism. (B)C18-4 cell viability. (C) Testosterone secretion in TM3 cells. (D,E) KEGG pathway analysis of putative target genes of CGA. Values
are expressed as the mean ± SD (n = 3). *p < 0.05, **p < 0.01 vs 0 μM.
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medium-dose groups was significantly higher (p < 0.05) than that
in the control group (Figure 3C). The sperm count of 20 and
40 mg/kg CGA groups were higher (p < 0.01, p < 0.05) than that
in the control group (Figures 3D,E). The results suggested that
CGA could promote the secretion of spermatogenic hormones
and sperm production in mice.

The Signaling Pathways of CGA Regulate
Spermatogenesis by Network
Pharmacology Analysis
KEGG enrichment analysis showed that CGA might affected the
SSC proliferation, self-renewal, and leydig cell testosterone

secretion by regulating MAPK, RAS, PI3K-Akt and
Pluripotency of stem cells signaling pathways (Figure 2D). As
shown in Figure 2E, SHP2 was involved in these signaling
pathways above. These results indicated that Shp2 is a key
gene in CGA regulation of spermatogenesis. Therefore, the
subsequent studies mainly focused on the regulation of CGA
on the expression of SHP2 and its downstream genes.

The Effect of CGA on SSC Proliferation
SHP2 is a widely expressed protein tyrosine phosphatase that is
necessary for signal transduction from multiple cell surface
receptors (Puri and Walker, 2016). Compared with the control
group (0 μM), CGA (10 and 50 μM) significantly increased (p <

FIGURE 3 | The effects of CGA on spermatogenesis in mice (Control: water; Testosterone Proplonate: 5 mg/kg; CGA: 20, 40, 80 mg/kg). (A) The concentration of
serum testosterone was analysed by ELISA. (B) The concentration of serum FSH was analysed by ELISA. (C) Testicular organ coefficient analysis of testes. (D) The
sperm count analysis of epididymis. (E)Haematoxylin and eosin (HE) staining analysis of testes treated with different doses of EFEE. Values are expressed as the mean ±
SD (n = 10).*p < 0.05, **p < 0.01 vs control.
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0.05) the S phase and reduced the G1 phase of the C18-4 cell cycle
(Figures 4A,B). This indicated that CGA could enhance the C18-4
cells proliferation. The inhibition of SHP2 expression significantly
decreased the proportion of cells in S phase and increased the
proportion of cells in G1 phase (p < 0.01). Moreover, CGA had no
significant effect on the cell cycle of Shp2 knockdown C18-4 cells.
These results suggested that the Shp2 gene plays a key role in the
promotion of C18-4 cells proliferation by CGA.

CGA Activated the SHP2-MAPK Signaling
Pathway
The SHP2-MAPK signaling pathway is required for maintaining
SSC proliferation and self renewal, and spermatogenesis (Puri

et al., 2014). As shown in Figures 5A,B, CGA (1, 10, 20 and
50 μM) treatment induced the SHP2 expression (p < 0.05, p <
0.01) and ERK1/2 phosphorylation (p < 0.05, p < 0.01) in C18-4
cells. After inhibiting Shp2 gene expression, ERK1/2
phosphorylation was significantly reduced compared with that
in the control group (0 μM). Meanwhile, CGA could not
significantly promote ERK1/2 phosphorylation in Shp2
knockdown cells. These results indicated that CGA could
induce SHP2-MAPK signaling pathway activation in SSCs.

The Effect of CGA on SSC Self-Renewal
SSCs play an essential role in maintaining highly productive
spermatogenesis by self-renewal and the continuous generation
of daughter spermatogonia that differentiate into spermatozoa,

FIGURE 4 | The effect of CGA on SSCs proliferation. C18-4 cells and Shp2 knockdown C18-4 cells (RNAi) were cultured with CGA (10, 50, and 100 μM) for 36 h,
and the cell cycle was determined using FACS. (A) FACS analysis of the cell cycle. (B) The results of statistical analyses. Values are expressed as the mean ± SD (n = 3)
*p < 0.05, **p < 0.01 vs CGA 0 μM.
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transmitting genetic information to the next generation (Subash
and Kumar, 2021). GFRA1 and PLZF are required for the
regulation of SSC self-renewal (Buaas et al., 2004; Costoya
et al., 2004), and C-KIT is a critical factor in SSC
differentiation (Zhang et al., 2014). As shown in Figures
6A,B, the C18-4 cells treated with CGA (10 and 50 μM)
induced the expression of SHP2 and PLZF, but decreased
C-KIT expression (p < 0.05, p < 0.01). The inhibition of SHP2
expression reduced PLZF expression and promoted C-KIT
expression (p < 0.05, p < 0.01). These results suggested that
CGA could promote the self-renewal of C18-4 cells and maintain
their homeostasis.

Effect of CGA on Testosterone Secretion in
Leydig Cells
Compared with the control group, CGA (0.5 and 1 μM)
effectively promoted testosterone secretion in TM3 cells (p <
0.01). Testosterone secretion in TM3 cells was significantly
reduced after the Shp2 gene was inhibited (p < 0.05)
(Figure 7C). Furthermore, CGA (0.5 and 1 μM) also
significantly increased the proportion of TM3 cells in the S
phase of the cell cycle (p < 0.01, p < 0.05). The knockdown of

Shp2 gene expression significantly reduced the proportion of cells
in S phase compared with that in the control group (p < 0.01, p <
0.05) (Figures 7A,B). These results suggested that CGA could
promote testosterone secretion and proliferation in TM3 cells.

CGA Increased the Expression of StAR
SHP2 regulates the expression of the downstream Star gene,
which is a rate-limiting enzyme involved in testosterone secretion
in leydig cells (Cooke et al., 2011). As shown in Figures 8A,B,
CGA (0.5 and 1 μM) induced SHP2 expression (p < 0.01) and
promoted StAR expression in TM3 cells (p < 0.01). The inhibition
of Shp2 gene expression significantly reduced the expression of
StAR compared with that in the control group (p < 0.01, p < 0.05),
and CGA did not promote Star gene expression in Shp2
knockdown TM3 cells. These results suggested that CGA
could promote the testosterone secretion by improving the
expression of SHP2 and StAR.

DISCUSSION

The current study demonstrated that EFEE could promote the
spermatogenesis and serum testosterone levels in mice. These

FIGURE 5 | CGA activated SHP2-MAPK signaling pathway. C18-4 cells and Shp2 knockdown C18-4 cell (RNAi) were cultured with CGA (1, 10, 20, 50 and
100 μM) for 36 h, and gene expression was determined usingWestern blotting. (A)Western blot analysis of the effect of CGA on the SHP2-MAPK signaling pathway. (B)
The results of statistical analyses. Values are expressed as the mean ± SD (n = 3) *p < 0.05, **p < 0.01 vs CGA 0 μM.
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changes induced by EFEE may be explained by CGA promoting
the proliferation of SSCs and testosterone secretion in leydig cells.
Moreover, CGA could promote the spermatogenesis and serum
testosterone levels in vivo. The promotion of SSC proliferation
was induced by the activation of the SHP2-MAPK signaling
pathway after treatment with CGA. Meanwhile, CGA
significantly enhanced the expression of SHP2 and StAR, and
induced testosterone secretion in leydig cells.

Spermatogenesis is a very complicated process that requires
the involvement of a variety of cells, hormones, paracrine factors,
genes and epigenetic regulators (Neto et al., 2016). As the origin

of spermatogenesis, SSCs were located at the base of seminiferous
tubules in the testes of male animals. Most SSCs die during the
process of spermatogenesis, but one SSC can still produce
hundreds of sperm (Kanatsu-Shinohara et al., 2019), so
hundreds of millions of sperm can be found in the testis (Law
et al., 2019). The development of SSCs into mature sperm is
regulated by a variety of proteins and hormones. Testosterone,
which is secreted by leydig cells in the testis, is required for at least
four critical processes during spermatogenesis: meiosis, sertoli-
spermatid adhesion, maintenance of the BTB and sperm release
(Smith and Walker, 2014). These studies indicate that the

FIGURE 6 | The effect of CGA on SSC self-renewal. C18-4 cells and Shp2 knockdown C18-4 cells (RNAi) were cultured with CGA (10, 50, and 100 μM) for 36 h,
and gene expression was measured by immunofluorescence immunofluorescence staining and qRT–PCR. (A) Immunofluorescence staining analysis of the effect CGA
on SHP2, PLZF and C-KIT expression. (B) qRT–PCR analysis of the effect of CGA onShp2, Plzf, c-Kit andGfra1 expression. Values are expressed as themean ± SD (n =
3) *p < 0.05, **p < 0.01 vs CGA 0 μM.
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proliferation of SSCs and testosterone secretion in leydig cells are
critical processes in spermatogenesis. Therefore, the SSC
proliferation and testosterone secretion were selected as the
conditions for studying the active spermatogenic compounds
of EF.

In recent years, network pharmacology has been widely used
in the mechanism of TCM research as a method to predict
compounds of TCM and their targets (Luo et al., 2020). In
order to investigate the mechanism of which EF promotes
spermatogenesis, network pharmacology was used to predict
the active compounds in EF. CGA, quercetin, rutin, and
kaempferol in EF were predicted to be related to SSC
proliferation and testosterone secretion, and the main
component CGA was screened to have strong activity.
Meanwhile, combined with previous literature reports (Paz
et al., 2016; Puri and Walker, 2016; Zhou et al., 2016) and the
network pharmacology analysis showed that Shp2might be a key

gene related in the CGA regulation of spermatogenesis.
Furthermore, HPLC result showed that the content of CGA in
EFEE was more than 2.58% (w/w) (Supplementary Figure S1).
These results indicate that CGA was the main active component
of EFEE in promoting spermatogenesis. Previous studies showed
that CGA could increase the number of sperm in rat testis,
moreover, CGA abated tamoxifen-mediated reproductive
toxicities and improved the testosterone secretion and sperm
motility in male rats (Park and Han, 2013; Owumi et al., 2021).
These studies indicate that CGA could promote the
spermatogenesis, and our study was consistent with results
above. CGA can not only promote the proliferation of various
cells but also inhibit the apoptosis of cells (Zhang and Hu, 2016;
Liu and Li, 2021). These biological functions of CGA play an
important role in spermatogenesis.

In germ cells of the testis, Src homology phosphotyrosyl
phosphatase 2 (SHP2) is expressed in most immature A-single

FIGURE 7 | Effect of CGA on testosterone secretion in leydig cells. TM3 cells and Shp2 knockdown TM3 cells (RNAi) were cultured with CGA (0.5, 1, and 10 μM) for
36 h; the cell cycle was measured by FACS, and testosterone secretion was measured by ELISA. (A) FACS analysis of the cell cycle. (B) The results of statistical
analyses. (C) ELISA analysis of the effect of CGA on testosterone secretion. Values are expressed as the mean ± SD (n = 3). *p < 0.05, **p < 0.01 vs CGA 0 μM.

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 85193011

Mu et al. Eucommiae Folium Regulate Spermatogenesis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


spermatogonia (As, SSC) and A-aligned (Aal) spermatogonia
cells (Puri and Walker, 2016). Studies have shown that
spermatogenic cells at all levels of the tubules were absent
after Shp2 knockout. This result suggested that SHP2 is
essential for SSCs to maintain fertility (Hu et al., 2015; Puri
et al., 2014). Moreover, SHP2 could also promote the activation
of the MAPK signaling pathway during SSC proliferation (Li
et al., 2020). CGA, the main active compound in EF, could
promote the expression of the Shp2 gene (Zhou et al., 2016). The
results of the present study were consistent with these studies. In
addition, the phosphorylation level of ERK1/2 in SSCs treated
with CGA was significantly increased and further promoted
their proliferation. After Shp2 knockdown, ERK1/2
phosphorylation was significantly reduced and cell
proliferation was inhibited. Moreover, CGA had no
significant effect on ERK1/2 phosphorylation or the cell cycle
in the Shp2 knockdown SSCs. These results suggested that CGA
could enhance the phosphorylation of ERK1/2 by promoting
Shp2 expression and further accelerate SSC proliferation.

Approximately 35,000 SSCs are present in a mouse testis,
comprising approximately about 0.035% of all germ cells
(Tegelenbosch and de Rooij, 1993). In rodents, stem cell
activity is exhibited in a subpopulation of undifferentiated
spermatogonia that are present as As. As cells can divide to
produce separated As cells that retain stem cell activity, or they
can divide to produce pairs (Apr) and undifferentiated Aal

spermatogonia that increasingly lose stem cell activity
(Nakagawa et al., 2010; Hara et al., 2014). Aal cells proliferate

further by mitotic divisions and enter a differentiation program
that results in the formation of preleptotene spermatocytes that
undergo meiosis to produce haploid round spermatids that
mature and elongate to form spermatozoa. Markers of
undifferentiated spermatogonia that are conserved from
rodents to nonhuman primates to humans include GFRa1,
UTF1, PLZF, SALL4 and LIN28. C-KIT is a conserved
marker of differentiated spermatogonia (Fayomi and Orwig,
2018). In the present study, we detected the differentiation of
SSCs by analysing mRNAs and proteins of the marker genes
Gfra1, Plzf and c-Kit. The result indicated that, in both of mRNA
and protein levels, CGA could promote the expression of PLZF
and that C-KIT was inhibited. After Shp2 knockdown, the PLZF
expression was significantly decreased and C-KIT was
promoted. These results suggested that CGA inhibits SSC
differentiation and maintains self-renewal by regulating SHP2.

As one of the important sex hormones in mammals,
testosterone plays an important role in maintaining the
normal reproductive function of males. Testosterone affects
sex differentiation in the embryonic stage after initial oestrus,
regulates spermatogenesis and maintains male secondary sexual
characteristics (Smith and Walker, 2014; Skurikhin et al., 2017;
Rey, 2021). StAR assists cholesterol in entering the
mitochondria and this process is a rate-limiting step in
testosterone secretion (Hasegawa et al., 2000). In this study,
CGA induced the expression of SHP2 and StAR in leydig cells
and further enhanced testosterone secretion. After Shp2 gene
knockdown, CGA did not promote StAR expression or

FIGURE 8 |CGA activated the SHP2-StAR signaling pathway. TM3 cells and Shp2 knockdown TM3 cells (RNAi) were cultured with CGA (0.5, 1, 5, 10 and 50 μM)
for 36 h, and gene expression was measured by Western blot. (A) Western blot analysis of the effect of CGA on the SHP2-StAR signaling pathway. (B) The results of
statistical analyses. Values are expressed as the mean ± SD (n = 3). *p < 0.05, **p < 0.01 vs CGA 0 μM.
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testosterone secretion. In conclusion, CGA could promote the
expression of StAR through SHP2 and further enhance the
transport of cholesterol to improve the secretion of testosterone.

By flow cytometry, we found that CGA could promote the
proliferation of leydig cells, while cell proliferation was
inhibited with the knockdown of Shp2. These results
indicated that the effect of CGA on promoting the
proliferation of leydig cells were related to the Shp2 gene,
but the specific mechanism is still unclear, and is worthy of
further study.

CONCLUSION

In this study, we found that EF could promote the
spermatogenesis of mice in vivo. Furthermore, network
pharmacological prediction and bioactivity screening were
applied to obtain the main compounds that could promote
spermatogenesis. In subsequent studies, CGA, one of the main
spermatogenic active compounds of EF, could promoted
spermatogenesis in vivo, and promote SSC proliferation and
Leydig cell testosterone secretion through Shp2 gene-mediated
corresponding signaling pathways. Our study provided strong
evidence for elucidating the mechanism by which EF promotes
spermatogenesis in mice and a new theoretical basis for dealing
with the decrease in male reproductive capacity.
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