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Respiratory syncytial virus (RSV) infection is recognized as an important

risk factor for wheezing and asthma, since it commonly a�ects babies

during lung development. While the role of RSV in the onset of atopic

asthma is widely recognized, its impact on the onset of non-atopic asthma,

mediated via other and independent causal pathways, has long been also

suspected, but the association is less clear. Following RSV infection, the

release of local pro-inflammatory molecules, the dysfunction of neural

pathways, and the compromised epithelial integrity can become chronic

and influence airway development, leading to bronchial hyperreactivity and

asthma, regardless of atopic status. After a brief review of the RSV structure

and its interaction with the immune system and neuronal pathways, this

review summarizes the current evidence about the RSV-mediated pathogenic

pathways in predisposing and inducing airway dysfunction and non-allergic

asthma development.
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Introduction

Respiratory syncytial virus (RSV) is the most common respiratory pathogen in

infants and young children worldwide (1). Prospective epidemiologic studies support

the association between RSV infection and short-term pulmonary morbidities during

infancy, such as lower respiratory tract infections (LRTIs), and long-term pulmonary

morbidities during childhood, such as airway hyperresponsiveness, wheezing, and

asthma (2–9). Consistent literature findings evidence that RSV-caused asthma is closely

related to the atopic constitution since a T helper (Th)2 dominance in immune response

has been commonly reported. Studies support an intrisic “Th2-trophic” effects of the RSV

as it: (1) stimulates the T cell responses to inhalant allergens, by triggering the local Th2

cytokine at the airway mucosa; (2) promotes eosinophils recruitment at lesional sites in

the airway mucosa; (10, 11) and generates a Th2-polarized RSV-specific immunological

memory, which, following a RSV reinfection, leads to intense infiltrates of eosinophils

and Th2 cells secreting interleukin (IL)-4 in the lung tissue (12).

Whether the role of RSV in the onset of atopic asthma is widely recognized, its impact

on the onset of non-atopic asthma, mediated via other and independent causal pathways,
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has long been suspected, but the association is less clear (2–

9). The RSV-mediated persistent inflammation and airway

hyperreactivity probably result from changes in the local and

systemic immune response and alterations of the neural airway

pathways that can occur in parallel and/or at different times (13–

15). However, all these changes appear reversible, suggesting

a transient respiratory dysfunction rather than chronic and

irreversible damage, commonly featuring asthma (15). This

review aims to summarize the current evidence about the RSV-

mediated pathogenic pathways in predisposing and inducing

airway dysfunction and non-allergic asthma development.

RSV structure and host cell
interaction

Respiratory syncytial virus is a non-segmented,

negative-sense, single-stranded RNA virus belonging to

the Paramyxoviridae family whose genome is constituted

by ten sequentially arranged genes encoding the following

eleven proteins: three transmembrane surface glycoproteins

[attachment G protein, fusion (F) protein, the small

hydrophobic (SH) protein]; three genomic RNA-associated

proteins forming the nucleocapsid [large (L) polymerase, N

protein, phospo (P) protein]; two non-structural proteins (NS)

(NS1 and NS2); two transcription and replication factors (M2-1,

M2-2); and one unglycosylated matrix (M) protein (16, 17).

The L, N, P, M-1, and M-2 proteins and the genomic RNA

participate in creating the ribonucleoprotein (RNP) complex,

and they are required for viral transcription and replication.

The soluble form of G protein (Gs) and the NSs (NS1 and NS2)

proteins downregulate the antiviral response (18).

While the proteins G and F are crucial for virus attachment

and fusion, respectively; the SH protein, a pentameric ion

channel, is involved in permeabilizing cell membrane and

delaying apoptosis in infected cells (17).

Interestingly, the cytoskeleton plays a supporting role in

the infectious cycle of RSV (19). The cytoskeleton is made up

of the three following proteins: actin, intermediate filaments,

and microtubules. Accounting for 5–10% protein, actin is the

most abundant cytoskeletal protein, and it is present both in a

globular monomeric form (G-actin) and filamentous form (F-

actin) with a different polarity needed for intracellular transport.

In response to varying stimuli, actin microfilaments undergo

rapid cycles of polymerization/depolymerization to modulate

shape changes, cell contraction and migration (20–25). Neural-

Wiskott-Aldrich syndrome protein (N-WASP), a member of

the WASP family, and ARP2/3 complex have a regulatory

role in the actin polymerization (20–25). The role of actin

rearrangement in the RSV infection has been confirmed by the

evidence that by disrupting actin through cytochalasin D and

latrunculin A, a significant decrease in the viral load of RSV

occurred (21, 22). Actin is also involved in RSV endocytosis,

replication, gene expression, and cell-to-cell spread. Following

the virus entry, actin and actin-modulatory proteins facilitate

the RSV transcription. Profilin, an actin modulatory protein, is

also essential for RSV transcription. Via interaction with RSV

M protein, actin mediates budding and virion particle transport

(23–25). The crucial role of M protein in trafficking the viral

particles emerges from the evidence that the absence of M

protein leads to the accumulation of RNP complexes in the

cytoplasm; thus, the viral filaments cannot be synthesized (26).

The M-containing complex anchors the microtubule organizing

center (MTOC) and interacts with the mature RNP, creating a

M-RNPs which, in turn, complexes with the cytoplasmic tail of

G and F to form the buddingmature particles which will move to

the plasma membrane (27). While the G protein is not required

to generate progeny virus, the F protein is crucial, as the M

protein associates and sorts into detergent-resistant membranes

(DRMs) only when the F protein is present (27). Specifically,

the formation of RSV filaments depends on the F-protein

cytoplasmic tail (FCT), especially to a phenyalanine (Phe)

residue at position 22, as a mutation in Phe22 causes the inability

of RSV F to recruit viral proteins and form filaments (28). To

avoid any pitfalls in the spreading of the viral particles, RSV

modulates the cytoskeletal and actin rearrangement in creating

filopodia, finger-like projections constituted by polymerized

actin with free-barbed ends, at which can be added additional

actin monomers (29). Cdc42, a GTPase, Rac, Phosphoinositide-

3-kinase (PI3K), and Rho mediate the filopodia formation (24,

25, 29). The interaction between RhoA and F protein plays a

key role in driving the cell-to-cell spread of RSV and creating

syncytia, featuring the RSV infection. Higher expression of

RhoA and phospho-myosin light chain (pMLC2) were observed

following RSV infection, and the incubation with Rho kinase

(ROCK), a regulator of actin activity, reversed this effect (30).

Phosphoinositide-3-kinase, a family of cellular kinases, acts

as a secondary messenger in modulating the phosphorylation

of the serine/threonine kinase Akt. Several studies reported

that the viral penetration into host cells depends on PI3K

signaling activation, and the PI3K activity requires, in turn,

the activation of RhO-family GTPases and actin cytoskeleton

reorganization. The role of the PI3K signaling results from the

evidence that an impaired activity or inhibition of PI3K affects

RSV replication (31).

Lastly, the RSV acts by disrupting intermediate filaments to

weak the cell, enhance the cell lysis, and favor the release of the

viral progeny in the extracellular space (32).

RSV and immune-pulmonary
pathways

RSV infection and innate immune

Respiratory syncytial virus infection elicits a strong

systemic and airway immune response, involving neutrophils,

natural killers, dendritic cells (DCs), macrophages and
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monocytes, eosinophils, T lymphocytes, and inducing

the release of several pro-inflammatory cytokines and

chemokines (33).

Primarily, RSV targets nasal epithelial cells that release

pro-inflammatory mediators and recruit immune cells, such

as monocytes-macrophages and DCs (33). Monocytes play

two crucial roles: they induce the release of pro-inflammatory

cytokines, such as tumor necrosis factor (TNF)-α, IL-1, IL-6,

IL-8, IL-10, and IL-18; and promote a Th2-impaired immune

response with a parallel decrease in lymphocyte maturation

and interferon (IFN)-γ production, and a marked release of

IL-4 and IL-13 (34). Recent findings suggest that the human

innate lymphoid cells (ILCs), especially the type 2 ILCs (ILC2s),

promote also the release of IL-4 and IL-13 with a further enhance

of the Th2 immune response (33–35). Moreover, the Toll-

like receptors (TLRs) present on the membrane of monocytes,

trough the interaction with the RSV F protein, induce an

enhanced binding of environmental lipopolysaccharides to

airway epithelium, a mitogen-activated protein kinase (MAPK)

activation, and a further pro-inflammatory cytokine production

[(34, 35), Figure 1].

The RSV G protein affects the innate immune response

by binding the motif that resembles the CX3C chemokine

fractalkine (Fkn). Mutation or deletion of the CX3C-Fkn motif

is associated with higher production of IFNs and TNF-α in

response to RSV infection (36).

The SH protein is able to activate the inflammasomes which

recruit and activate caspase-1, which, in turn, processes pro-

IL-1ß and pro-IL-18 to their active forms (37). Moreover,

through inhibition of TNF-α signaling, SH protein delays

cellular apoptosis (37).

Through NS1/2, RSV blocks the release and acitivity of type

I and III IFNs (38). The crucial role of NS1 and NS2 is confirmed

by the evidence that the NS genes’ deletion significantly reduced

RSV replication in IFN-competent cells but not in IFN-deficient

cells (39). Moreover, NS1 and NS2 inhibited the IFN-signaling

pathway and the formation of “NS-degradasome,” a complex

with a protease/proteasomal activity involved in the suppression

of IFN signaling (38).

RSV infection and adaptive immune

After 4–7 days of infection, the adaptive immune response

is activated; however, studies revealed an impairment in T cells

response, DCs activity, and T–DC cells interaction, leading to an

ineffective memory T cell response to counteract RSV infection

(33, 34). Systemic T cell lymphopenia, especially in CD8+ and

CD4+, has been reported in patients with early RSV infection

compared to convalescence and in uninfected individuals (33,

34). Moreover, an inverse and significant correlation bewteen T

cells count and RSV infection severity has also been documented

(33, 34).

Given the G and F proteins, RSV elicits the adaptive

immune response by inducing the synthesis of RSV-specific

antibodies, immunoglobulin (Ig)A and IgG. The RSV-specific

IgA are responsible for the defense of the mucosal surfaces,

and, moreover, they downregulate the severity of the first

infection as well as prevent the reinfection of the upper

respiratory tract (40). The RSV-specific IgGs, produced after

the first infection, are involved in the viral clearance (41).

However, given to the high variability and glycosylation, RSV

can change the G protein profile and escape the immune

response. By binding the RSV-specific-IgGs, the soluble form

of the G protein reduces the serum concentrations of RSV-

IgG (42). Moreover, RSV F and G proteins inhibit mitogen-

induced T-cell proliferation and decrease T cells functions (39).

Lastly, RSV NS1 and NS2 proteins negatively impact the DC

maturation into monocyte-derived DCs and affect their ability

to interact with T-cell, resulting in a delay in the acquisition

of T-cell memory, thus, in a weak adaptive immune response

causing susceptibility to reinfection with RSV throughout

life (38).

RSV infection and lung epithelium

From the upper respiratory tract, the virus moves to the

lower airways, where it mainly targets ciliated cells and alveolar

type II (ATII) cells.

In response to RSV infection, several changes occur at the

airway epithelium. It produces cytokines and chemokines that

modulate the influx of inflammatory cells into the infected

lung tissue. Higher are the cytokines and chemokines levels in

the respiratory tract secretions, and more severe is the RSV

infection severity. Moreover, RSV, via the action of NS2 protein,

induces epithelial cell shedding, which, in turn, accelerates the

clearance of the virus-infected cells from airway mucosa but

contributes to acute obstruction of the distal airways (43). Also,

following the infection of basal cells, RSV promotes the IFN-

mediated formation of epithelium with a profound loss of

ciliated cells (44).

Intraepithelial DCs, alveolar type I (ATI) cells, basal

epithelial cells of the bronchial epithelium, and airway smooth

muscle (ASM) cells can also be infected by the virus (40). The

RSV-infected ciliated cells release pro-inflammatory cytokines

such as TNF-α, IL-33, and thymic stromal lymphopoietin

(TSLP), which, in turn, promote a Th2-mediated inflammatory

response and the recruitment of neutrophils and eosinophils

(45). The RSV activates the neutrophils expressing specific

activation markers, such as CD11b, CD18, and CD54, and

induces the release of neutrophil elastase by neutrophils.

Moreover, the neutrophil apoptosis and neutrophil extracellular

trap (NET) are active during infection, and the peak of these

activities coincides with the maximum in the viral load and

clinical severity (46). Similarly, eosinophils are activated by
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FIGURE 1

RSV receptors. Expression and function of RSV receptors.

the RSV and the high levels of leukotriene C4, eosinophil-

derived neurotoxin (EDN), and eosinophil cationic protein

(ECP) detected in the respiratory tract in RSV bronchiolitis

support their role during the acute phase of RSV infection (47).

Respiratory syncytial virus may also modulate the human

ASM (HASM) function by decreasing the synthesis of cyclic

adenosine monophosphate (cAMP) and affecting the ß-

2 adrenergic receptor (ß-2AR) functions (48). ß-adrenergic

receptors (ß-AR) are transmembrane glycoprotein structures

belonging to a major receptor family. They are coupled with

guanine nucleotide (GTP) binding proteins (G proteins) and

classified in the following three subtypes: ß-1, ß-2, and ß-3

(49). Looking specifically to the ß-2ARs, the latter are coded

on chromosome 5 and expressed on epithelial and endothelial

cells; eosinophils, lymphocytes, and mast cells; skeletal and

uterine muscles; mucous glands, and, predominantly, ATII

cells and ASM [(49), Figure 1]. The ß-2AR, existing both in

activated and inactivated form, is composed of eight alpha

helices; three of which are extracellular, and five intracellular.

ß-2 adrenergic receptor is attached to the cellular membrane

and transmits the signal intracellularly through heterotrimeric

Gs proteins, consisting of alpha, beta, and gamma subunits (49).

The catecholamines, such as epinephrine and norepinephrine,

are responsible for ß-2ARs stimulation. Additionally, synthetic

compounds, known as ß-2AR agonists, and classified in

accordance to their duration effects into short-acting, long-

acting, and ultra-long-acting drugs, have been tought to

stimulate ß-2ARs selectively (50). Following the binding of

the agonist ligand to the ß-2AR, the alpha subunit of the Gs

protein stimulates the conversion of adenosine triphosphate

(ATP) into cAMP, which, in turn, trough the catalytic subunit

of protein kinase A enzyme, reduces the intracellular Ca2+

concentration, leads to smooth muscle relaxation, and prevents

muscle contraction (50). Given their properties, the ß-2AR

agonists are part of an effective therapeutic approach to relieve

acute airway obstruction, such as during asthma exacerbation;

however, they appear less effective when airway obstruction is

caused by RSV infection (51). Despite evidence have shown

the presence of fully functional ASM also in the early years

of life (52, 53) as well as the efficiency of ß-2AR agonists also

in newborns and young children (54–56), several clinical trials

have failed to demonstrate a clinical benefit of ß-2AR agonists in

infants suffering from RSV-mediated bronchiolits (51, 57).

Firstly, Moore et al. (48) investigated the potential influence

of RSV on ß-2AR responsiveness by evaluating the isoproterenol

(ISO)-cAMP formation, the ß-2AR density, and the Gi

expression in HASM cells incubated with RSV. Their findings

showed that RSV-infected HASM cells inhibited the ISO-

induced cAMP production in a time- and dose-dependent

manner and induced a reduction in the ß-2AR density (48).

Supporting this evidence, authors showed that RSV could

induce an airway insensitivity to ß-2AR-agonists, both directly

and indirectly, by inducing heterologous keratinocyte cytokine

(KC)/CXCR2-mediated desensitization of epithelial ß-2AR (58,

59). Interestingly, the ß-2AR desensitization occurs in the

absence of internalization or degradation of the β2-AR as it

Frontiers in Pediatrics 04 frontiersin.org

https://doi.org/10.3389/fped.2022.998296
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org


Manti and Piedimonte 10.3389/fped.2022.998296

results from receptor uncoupling due to phosphorylation by

GRK2 (60). More recently, Harford et al. (61) investigated the

density and activity of ß-2AR in primary HASM cells derived

from pediatric lung tissue with RSV infection compared to

non-infected control cells. Their findings showed that RSV

induced simultaneously more effects, including a proteasome-

mediated cleavage of ß-2AR, a ß-2AR ligand-independent

activation of adenylyl-cyclase, and a decrease in cAMP release

compared to the control cells, and, lastly, increased intracellular

concentrations of Ca2+ resulting in ASM cells contraction

(61). Lastly, another explanation for the lack of effectiveness

of ß-2AR agonists in infants suffering from RSV infection

could be due to the fact that RSV not only induces muscular

constriction (bronchospasm) but also impacts the bronchiolar

caliber, inducing lymphoid hyperplasia, edema, and mucous

plugging, promoting an additional extrinsic compression. Thus,

administering ß-2AR agonists did not affect the RSV-mediated

airway obstruction (61).

RSV and neurological pathways

The RSV infection in early life causes airway hyperreactivity

and inflammation also attributed to an inappropriate neural

control of ASM (62, 63). The airway patency depends on

the activity and interaction between adrenergic, cholinergic

and non-adrenergic–non-cholinergic (NANC) pathways. The

adrenergic system, poorly present in the smooth muscle,

releases catecholamines and induces bronchorelaxation.

The cholinergic pathway releases acetylcholine and induces

bronchoconstriction. The NANC component is constituted

by inhibitory (NANCi) and excitatory (NANCe) sub-systems.

The first one regulates the relaxation of ASM mediated by

neurotransmitter vasoactive intestinal peptide (VIP) and nitric

oxide. The NANCe sub-system is constituted by unmyelinated

(C-type) sensory nerve fibers, and it causes bronchoconstriction

mediated by tachykinins such as neuropeptide substance

P, neurokinins A and B (63). Substance P acts by binding

NK-1, NK-2, and NK-3, three receptors with a rhodopsin-like

structure, also expressed in the immune cells. Among these

receptors, the NK-1 has a high affinity for substance P and

mediates its pro-inflammatory and immunomodulatory effects,

including an increased endothelial permeability; induction

of T cells, B lymphocytes, monocytes, and macrophages

proliferation and activities; chemotaxis-inducer effects; and

degranulation of mast cells. The disruption of the NK-1

protects an immune-mediated lung injury, supporting the

role of the P/NK-1 interaction in the RSV infection (59).

Moreover, the cells expressing NK-1 receptor also show

neural endopeptidase and kininase II, two peptidases that

cleave the carboxyl-terminal dipeptide of substance P, thereby,

inhibiting its actions. Piedimonte et al. (64, 65) showed

the effectiveness of the corticosteroids in preventing the

neurogenically-mediated vascular permeability of the airways,

as they increase the peptidase activity, and it was completely

reversed when both kininase II and neutral endopeptidase were

simultaneously inhibited.

The upregulation of nerve growth factor (NGF) and its

TrkA and p75NTR receptors has also been reported in a

vivo model infected with RSV (66). Together with brain-

derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3),

and neurotrophin 4/5 (NT-4/5), NGF is a neurotrophin (NT)

involved in the neuronal development, survival, and function,

such as synapse formation and plasticity (63, 67) (Table 1). The

NT-mediated effects are the result of their interactions with

the p75 neurotrophin receptor (p75NTR) and tropomyosin-

related kinase (Trk) family, which may work separately as

well as together. The p75NTR, belonging to the TNF receptor

superfamily, is a low-affinity receptor for NGF and a receptor

for the NTs precursor forms, and it mediates neurite outgrowth,

migration, survival, cell cycle arrest, and apoptosis (63, 67).

The Trk receptors, which include TrkA, TrkB, and TrkC,

interact with all NTs and lead to an activation of several

downstream signaling cascades, including PI3K/Akt (protein

kinase B a.k.a. PKB) and phospholipase Cγ (PLC) pathways

which, in turn, promote the neuronal development, axon and

dendrite growth, membrane trafficking, glial differentiation,

and interactions with adjacent neurons (67, 68). The crucial

role of the NTs and their specific receptors in the RSV-

mediated pathogenic mechanisms has been reported in several

studies. Increased NGF protein levels and TrkA expression were

detected in macrophages and airway epithelial cells in BAL of

infants with acute RSV infection requiring ventilatory support

(66). In addition, following RSV infection, NGF, by promoting

overgrowth of neurites with higher substance P content,

favored the sensory fiber responsiveness, acetylcholine and

pro-inflammatory peptides release, and long-term remodeling

of NANC in the airway (63, 66). Moreover, the NGF over-

expression might further affect the ASM tone dysregulation

via a decrease in catecholamine production, resulting from the

adrenal medulla cell differentiation into nerve cells (68–71).

The slow-conducting non-myelinated C-fibers represent

up to 75% of vagal bronchopulmonary afferents. They

innervate the airways from upper (nose, larynx, trachea)

to the lower tract, including the parenchyma and alveolar

wall. They express the transient receptor potential (TRP)

ion channel family, consisting of 28 ion channels and

classified, in accordance with their structure and activation

mechanisms, into six subgroups, including: ankyrin (TRPA, 1

channel), canonical (TRPC, 7 channels), melastatin (TRPM, 8

channels), mucolipin (PRTML, 3 channels), polycystin (TRPP,

3 channels), and vanilloid (TRPV, 6 channels) families (72).

Specifically, the TRPV family (TRPV1–6) are non-selective

cationic ligand-gated channels with high permeability to

Ca2+. They are commonly expressed by non-neuronal cells,

including immune cells and type C sensory nerve fibers of
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TABLE 1 The neurotrophins: their receptors and neuronal and immune e�ects.

Neurotrophins Receptors Neuronal effects Immune effects

NGF* Trk*A

p75NTR*

Growth and survival of neurons

Growth, survival, and differentiation

Eosinophils:

Survival and recruitment

BDNF* TrkB

p75NTR

Neuronal plasticity and morphogenesis Stimulate further NTs release

NT-3* TrkC

p75NTR

Growth of sympathetic axons

Increased synaptic strength in nerve-muscle synapses

Maturation of proprioceptive and nociceptive neurons

Expression of ion channels

Expression of neuropeptides

Higher excitatory postsynaptic flux in hippocampal areas

Lymphocytes:

Differentiation

CD80 and CD86 cell surface expression

Promote cytokines release

DCs*/T-cell interaction

Macrophages:

Modify macrophage phenotype

Inhibit monocyte migration

Inhibit antigen presentation

Modulate TLR pathways

NT-4/5 TrkBp75NTR Growth and survival of sensory neurons

Survival of dopaminergic and cholinergic neurons,

and motoneurons

Mast cells:

Survival

Promote mast cell tissue infiltration

Promote mast cell activation

Promote expression of proinflammatory mediators

NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; NT-3, neurotrophin 3; NT-4/5, neurotrophin 4/5; p75NTR, p75 neurotrophin receptor; Trk, tropomyosin-related

kinase; DCs, dendritic cells.

the respiratory tract, and neuronal cells [(73–75), Figure 1].

TRPV family is triggered by exogenous mediators, such

as high temperature, osmolarity, exposure to air pollutants,

cigarette smoke, allergens and viral agents, capsaicin (CPS);

and endogenous stimuli, such as bioactive pro-inflammatory

lipids [thromboxanes, prostaglandins E2 (PGE2), leukotrienes,

and arachidonic acid derivatives] (73, 74). Following exogenous

and endogenous stimuli, TRPVs allow extracellular Ca2+

entrance into neuronal cells, which, in turn, leads to the

release of neurotransmitters and result in contraction of ASM,

contributing to the onset of the airway mechanisms of defense,

such as mucociliary clearance, reflex bronchoconstriction,

airway irritation, neurogenic inflammation, and cough reflex

(76). Moreover, TRPVs act as receptors for “damage signals”

able to transfer the signal neuronal fibers to the immune cells,

thus, inducing and perpetuating a “pro-inflammatory status,”

also attributed to the release of IL-6 and neuropeptides substance

P (77).

Recently, the TRPV family has gained great interest from

researchers, which focused their attention, especially on the

functions of TRPV1 and TRPV4, mainly expressed in the

respiratory tract. Because TRPV1 channels are commonly

co-localized with sensory neuropeptides, including calcitonin

gene-related peptide (CGRP) and tachykinins, the TRPV1

activation causes a “neurogenic inflammatory reaction” featured

by bronchoconstriction, inflammatory cell chemotaxis, and

airwaymucosal oedema (78). TRPV4 is expressed inmammalian

tissues, including lung (human bronchial epithelial cells and

alveolar wall), brain, sensory neurons, sympathetic nerves,

salivary gland, sweat glands, inner ear, heart, kidney, intestine,

skin, endothelium, and fat tissue (79). The TRPV4 activation

induces both the activation of K+ and Ca2+ channels, resulting

in a further ASM contraction (80). Taking into account

their functions, it well appears how a prolonged and intense

stimulation of TRPV1 and TRPV4 plays a crucial role in the

pathogenesis of some airway diseases, such as chronic cough and

asthma, as well as viral-mediated airway damage, since TRPV1

and TRPV4 are both involved into host–pathogen contacts

including the binding, entry and replication of the viruses (81,

82). In this regard, in a vivo model, authors firstly reported

that the RSV induced a neurogenic inflammation mediated by

TRPV1 and capsaicin, resulting from the upregulation of NK-

1 both in the airway epithelium and vascular epithelium (83).

Later, the same authors reported that, during the RSV infection,

the stimulation of the TRPV1-expressing sensory nerves was

also involved in the overexpression of NK-1 receptors in CD4+

T cells and also showed chemotactic effects on this subset of

lymphocytes (84). Furthermore, inoculation of in vivo model

with RSV, induced over-expression of NGF, phenotypic switch

in tachykininergic innervation of the airways, and a long-

lasting airway inflammation (67, 85, 86). In line with these

findings, in a vitro model, Omar et al. (81) reported an up-

regulation in TRPV1 expression after 12 h post-RSV infection.

Interestingly, this effect was independent of replicating virus
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as the virus-induced soluble factors were sufficient to increase

channel expression. Moreover, the inhibition of RSV infection

by using capsazepine induced a down-regulation of TRPV1,

suggesting that these receptors have key role in virus-induced

airway damage (81). Similarly, Jing et al. reported a down-

regulation in the TRPV1 signaling pathway and in airway

inflammation and mucus hypersecretion when qingfei oral

liquid was administered to RSV-infected asthmatic mice models

(87). More recently, this evidence was confirmed in human

bronchial epithelium from children with asthma both at

baseline and after RSV infection (88). Specifically, children

with asthma were intrinsically reporting higher basal TRPV1

protein expression when compared to children without asthma;

moreover, a further increase in TRPV1 expression was also

noted in asthmatic children during RSV infection since the

virus promoted higher intracellular Ca2+ levels as well as

NGF overexpression (88). In addition to the asthma status, the

patient’s age is also a factor affecting the TRVP1 expression

during RSV infection (89). By comparing the TRPV1-mediated

Ca2+ changes in human bronchial epithelial cells from children

and adults with and without asthma, at baseline and after RSV

infection, authors noted that TRPV1 expression, localization,

and activity were higher in asthmatic children but not in adults,

supporting the evidence that RSV entry and/or replication is

more efficient in the bronchial epithelium from children but not

in adults, a population in which RSV did not affect the TRPV1

function regardless of the asthma status (89).

RSV and non-allergic asthma: In vivo

and human models

Since it commonly affects babies during lung development,

the RSV is widely recognized as an important risk factor

for wheezing and asthma. Although the role of RSV in the

onset of atopic asthma is widely recognized, its impact on

the onset of non-atopic asthma, mediated via other and

independent causal pathways, has long been also suspected but

the association is less clear. Following RSV infection, the release

of local proinflammatory molecules, the dysfunction of neural

pathways, and the compromised epithelial integrity can become

chronic and influence airway development, leading to bronchial

hyperreactivity and asthma.

In vivo models

Although human studies are essential to assess or refute

data from experimental models, many of RSV’s behaviors

have been reproduced and replicated in the murine models,

as they are highly susceptible to RSV infection, permissive

to viral replication, and are strictly reflecting the virus and

specific T and B cells interactions. In infected animals, RSV

infection causes pulmonary damage similar to that observed in

humans, featured by degeneration of nasal epithelial mucosa,

peribronchiolitis, interstitial pneumonitis, and perivasculitis (10,

11). Accordingly, several studies in animal model systems,

firstly, highlighted the key role of Th2-polarized response in the

immunopathogenesis of RSV-induced airway inflammation (10,

11). Later, an “asthma-promoting” effect of the RSV infection,

regardless of atopic status, has also been postulated (90). Studies

conducted on Balb/C model showed that a population of IFN-γ-

secreting CD8+ T cells, potentially attenuating the pathogenic

Th2 host response to the RSV G-protein, was involved in the

RSV-induced airways inflammation (91).

Authors postulated that the age at first infection determined

the type of cytokine production and, consequently, the disease

patterns during reinfection (12). To investigate the rechallenge,

mice were infected at 1 day or 4 or 8 weeks of age and

reinfected at 12 weeks. While neonatal priming produced

a more severe inflammatory cell recruitment, such as Th2

and eosinophils, delayed priming led to an increased IFN-

γ production and a less severe disease in later life. These

results showed the crucial importance of the age at the

first infection in determining the outcome of reinfection and

suggested that the environment of the neonatal lung is a major

determinant of cytokine production and disease patterns in

later life (12). In vitro studies have also shown that IFN-

γ activates eosinophils, prolongs their survival and promotes

the synthesis of leukotrienes from these cells. Considering

this evidence, Wedde-Beer et al. postulated that leukotrienes,

originating from the interaction between P-containing nerves

and mast cells, may be important mediators of RSV-induced

airway inflammation (92). Accordingly, rats were inoculated

at 2 or 12 weeks of age with RSV or virus-free medium

and treated with montelukast or its vehicle starting 1 day

before inoculation. The authors reported greater microvascular

permeability in the intrapulmonary airways of RSV-infected rats

not receiving montelukast treatment compared to the control

group. Moreover, a significant increase in 5-lipoxygenase-

encoding mRNA and cysteinyl leukotrienes levels and mast cells

was detected in the lung tissues of RSV-infected rats, suggesting

that the increase in vascular permeability might be promoted by

mast cells-derived leukotrienes (92).

The potential effect of the RSV-induced upregulation of

NGF must also be considered as a pathogenic mechanism in

the onset of non-atopic asthma. Because NGF is released from

airway epithelial cells, it increases the release of substance

P and other tachykinins from adult sensory neurons and

induces sensory hyperinnervation in the airways of transgenic

mice. Substance P, in turn, activates mast cells releasing

leukotrienes, which further sensitize C-type neurons to release

neurotransmitters, thereby reactivating the mast cells and

creating a vicious circle contributing to an exaggerated

inflammation of the lower respiratory tract (92). In a mouse

model, the expression of NGF, trkA, and p75 declined with
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age, but the RSV increased their levels both in weanling

and adult rats. Confirming the role of the NGF and its

receptors as major determinants of neurogenic inflammation

in RSV infection, authors also reported that exogenous NGF

upregulated NK1 receptor expression in the lungs and, on

the contrary, the anti-NGF antibody inhibited NK1 receptor

and, thereby, the neurogenic inflammation in RSV-infected

lungs (86). The evidence that NGF expression was inversely

correlated with the age, supported the hypothesis that this

neurotrophin is critical for the neuronal plasticity; thereby,

variations in its expression can result in permanent changes

in sensorineural lung pathways further contributing in airway

hyperresponsiveness and asthma susceptibility (93). These

findings were confirmed by Piedimonte et al. (79) that showed

an increase in NGF and neurotrophin receptor expression in

early life during RSV infection and a RSV-related abnormal

remodeling of neuronal networks in the respiratory tract,

resulting in bronchial hyperreactivity and airway obstruction.

Interestingly, the neurogenic inflammation and the bronchial

hyperreactivity were long lasting in mice up to 60 days

after intranasal inoculation of RSV (94). Confirming these

findings, animal data revealed that the RSV-induced airway

hyperreactivity was long-lasting for weeks after the inoculation

of the virus (95–97). This protracted inflammatory responsemay

be due to the persistence of viral genomic in mouse lung tissue,

which has been demonstrated to last for at least 67 days following

RSV inoculation (95–98).

New data support the Th17 cell differentiation during RSV

infection and Treg airway accumulation during RSV clearance

(99). In amicemodel, authors found that RSV infection, through

activationNotch-1/DLL3, increased themRNA expression of IL-

17A and IL-17A/Foxp3 and Treg levels in the hilar lymph nodes

and mesenteric lymph nodes. In contrast, the mRNA expression

of IL-4 and other Th2 cytokines was unchanged (100, 101).

Recently, it has been reported that RSV infection contributes

to the onset of asthma in later life by inducing High

Mobility Group Box-1 (HMGB1), as a result of necroptosis, a

programmed cell death of airway epithelial cells (102, 103). The

inhibition of necroptosis decreased the severity of bronchiolitis

by reducing viral load, prevented the airway epithelial cells

remodeling, and the asthma development in later life (102, 103).

In addition to the immune dysfunction and neurogenic

inflammation, non-atopic asthma would be the result of an

impaired relationship between epithelium and mesenchymal

structures. An exaggerated release and responsiveness to

trophic factors and a subsequent abnormal growth of smooth

muscle, nerves, and blood vessels are considered crucial events

in remodeling the airways. The barrier dysfunction could

enhance the sampling of luminal antigens by intraepithelial

DCs, and facilitate translocation of inhaled particles, allergens,

bacterial and viral pathogens through the lung, resulting in

an inappropriate immune response and airway inflammation

(104, 105).

The integrity of the airway epithelial barrier is regulated

by several mechanisms, including the assembly of the epithelial

apical junctional complex (AJC), which are composed of apically

located tight junctions (TJs) and underlying adherens junctions

(AJs), also containing adhesion, scaffolding, signaling, and

cytoskeletal proteins (104). The TJs limit the passage of ions

and uncharged solutes thanks to their adhesive properties.

Three major types of transmembrane proteins are described:

(1) members of the claudin family, (2) the TJ-associated

MARVEL proteins (TAMP) family, which includes occludin,

tricellulin, and Marvel D3, and (3) immunoglobulin-like

proteins, which include junctional adhesion molecule A (JAM-

A) and coxsackievirus and adenovirus receptor (CAR) proteins

(104, 105). The AJs are involved in starting and maintaining

of epithelial cell–cell contacts, and enabling TJ assembly.

The E-cadherin and nectins are the main transmembrane

adhesion proteins involved in forming epithelial AJs, cell–

cell adhesion, cell signaling, proliferation, and differentiation.

The cytoplasmic side of TJs is organized by multifunctional

scaffolding proteins of the zonula occludens (ZO) family,

whereas β-catenin, α-catenin, and p120 catenin form a

complex with the cytoplasmic domain of E-cadherin (106).

C57BL/6 mice, intranasally inoculated with RSV, showed a

significant peribronchial inflammation compared with non-

infected controls and UV-inactivated RSV-inoculated animals.

Moreover, RSV infection increased the permeability of the

airway epithelial barrier, decreased the expression of several

TJ proteins, and prevented the accumulation of cleaved

extracellular fragments of E-cadherin in BAL and tracheal

epithelial cells (107). Another study found that RSV infection

led to decreased mRNA expression of claudin-1 and occludin

in lung samples of wild-type BALB/c mice (108). These studies

supported the evidence that RSV induces a AJCs disorganization

and dysfunction, and it was likely a result of cortical F-actin

cytoskeletal remodeling, which is, in turn, is regulated by Protein

kinase D (PKD)-mediated phosphorylation of cortactin, an

actin-binding protein that regulates F-actin dynamics between

polymerization and depolymerization steps during plasma

membrane remodeling (109).

Globally, an abnormal remodeling of the airways

substructures, especially involving the mucosal neural

network, occurs when the airways are infected during

critical developmental windows in early life. However, because

these changes seem to be the result of a transient derangement

in airway development, these modifications would return to

baseline condition when the virus is cleaved, thereby, justifying

the evidence that some children with previous RSV infection

do not develop asthma. On the other hand, RSV-associated

long-term consequences have been reported in neonatal mice,

such as persistent mucus production, subepithelial fibrosis, and

increased collagen deposition, contributing to promoting and

maintaining airway remodeling also in later life (109–111).

Moreover, 30 days after inoculation, neither evidence of active
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RSV infection nor immunostaining and no viral nucleic

sequences were detected in a mouse model. In contrast, the

substance P in the lung and the capsaicin-induced plasma

extravasation were significantly higher in the infected mice

compared with pathogen-free rat, supporting the evidence that

the sensory innervation of airways remain susceptible to the

proinflammatory effects even if RSV infection is disappeared

(112). In conclusion, RSV seems to exert a dual influence: in

short-term postsynaptic manner, deriving from up-regulation

of the substance P, and in long-term presynaptic manner, by

remodeling sensory innervation (112).

In humans

Similarly to other viruses, RSV shows a close relantionship

with the development of wheeze and asthma in later life,

regardless atopic status (2, 113). Several birth cohort studies

reported that one-third of children with RSV developed

recurrent wheezing and asthma, but not allergic sensitization

(90, 114, 115). In line with these findings, the Tucson respiratory

study reported that children with a previous RSV infection were

commonly experiencing wheezing and lower forced expiratory

volume at first second (FEV1) by the age 6 years (90). Moreover,

the risk decreased significantly with the age and it was not

significant by age 13 (90). There was not any significant

relationship with atopic status development; as sensitization did

not appear as a risk factor for infants suffering from RSV-caused

wheezing (90, 116). By enrolling 95,310 children by Carroll et al.

(117) and Wu et al. (9), the Tennessee Asthma Bronchiolitis

Study (TABS) suggested a causal relationship between severe

RSV infection and the onset of asthma by age 5.5 years. They

also reported that during the winter months was recorded

the greatest number of bronchiolitis-related hospitalizations.

Moreover, the authors observed that children born 4 months

prior to the annual peak of bronchiolitis-related hospitalizations

were 29% more likely to develop asthma compared with infants

born 1 year from this time point. This trend was similar

troughout the 5-year study although the peak of bronchiolitis-

related hospitalizations shifted by up to 6 weeks. Furthermore,

if on one side the authors did not state if children were

infected with a specific virus, including RSV, on the other hand,

up to 70% of severe bronchiolitis were due to RSV infection

(118). In accordance with several longitudinal studies, these

changes appears to be transient rather than persisting over

the time. Pullan et al. (119) showed that children younger

than 1 year of age and with severe RSV infections experienced

wheezing primarily during the first 4 years of life, while,

by age 10 years, no significant difference in incidence are

reported compared to the control group. Similar results were

observed in the Tucson Children’s Respiratory Study of 1,246

children as children, who experienced a severe RSV infection

by up to 3 years of life, were at a significantly increased

risk of wheezing at ages 6 and 11 years. However, by age 13

years no significant differences were recorded compared to the

control group (120). These data were not confirmed by the

longitudinal study by Sigurs et al. (121). Authors described a

significant increase in asthma by age 13 years; probably, the

differential findings reported in the studies above reported are

due to several factors involved in the RSV-asthma relationship,

including genetic variability among investigated cohorts as

well as the difference in pathogenicity of circulating RSV

strains (121).

In two controlled, randomized, double-blinded trials

performed in preterm infants receiving palivizumab to prevent

RSV bronchiolitis, authors reported that the palivizumab

administration was protective against recurrent wheeze up

to 3 year of life; supporting the evidence that an early-

life RSV bronchiolitis can have a continuing causal impact

beyond infant infection (122, 123). Confirming these findings,

authors demonstrated that RSV prophylaxis in non-atopic

children decreased the risk of recurrent wheezing up to 80%

and, interestingly, it did not have effects on infants with a

positive family history for atopy (124). Later, a Finnish study

reported a significant association between RSV infection and

self-reported asthma in adolescents aged from 15 to 18 years

(125). In a 7 year follow-up study enrolling 127 steroid-naive

children, authors reported that the first severe RSV/rhinovirus–

negative wheezing episode was a risk factor for developing

non-allergic asthma, together with the age of first episode

of wheezing <12 months, and exposure to tobacco smoking

(113). Despite this increasing body of evidence supporting a

relationship between RSV infection and non-atopic asthma, it

remains unclear whether the virus contributes really to the

onset of asthma or is simple trigger in subjects with asthma

susceptibility (126). Authors hypothesized that probably the

association between RSV infection and asthma could be also

due to a shared genetic predisposition, as reported in a large

population of 8,280 twin pairs in Denmark (126). Furthermore,

genetic polymorphisms in the gene encoding IkBa, a negative

regulator of NF-kB, have been recently associated with RSV

and asthma (127). The gain-of-function polymorphisms in the

promoter region of IL-8, a chemokine secreted by epithelial

cells and macrophages, lead to an increase in RSV infection

severity and in developing wheezing and asthma (128–130).

Polymorphisms in other chemokines, such CX3CL1, CX3CR1,

and CCL5, seem further predispose to asthma onset (131, 132).

Mainly, CX3CR1, expressed in human airway epithelial, binds

RSVG protein andmediates the viral entry in the host cells; thus,

CX3CR1 mutations and/or complete or partial deletion of RSV

G protein results in a less efficient viral entry and a decreased

virus replication (133).

Gain-of-function polymorphisms in IL-4 and IL-13 cytokine

genes as well as deficit in IFN-γ expression have been also

associated with developing wheezing during at the age 6 years

(134, 135).
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Several mechanisms causing RSV-mediated long-term

pulmonary effects have also been investigated. The effects of

maternal RSV infection on postnatal offspring immunity and

neurotrophins release, ASM contractility, and development

of wheezing and asthma are still under debate. However,

the recent discovery that viral antigens can impact postnatal

immunity in vivo model and negatively affect the perinatal

period in humans showed the possibility that a challenge in

immunity can ocurr after postnatal virus (136, 137). In utero

exposure to RSV caused a chronic airway dysfunction by

influencing cell-mediated host immunity, local NGF expression,

neurotransmitters release and neuronal hyperreactivity, and

ASM contractility during RSV-mediated LRTIs in early-life

(66, 138–140). Neurotrophin levels and immunoreactivity for

neurotrophin-receptor were found to be strongly increased in

the BAL fluid of mechanically ventilated infants with severe

RSV infection (66). Children with severe RSV-bronchiolitis are

reporting an increased bronchial responsiveness and altered

epithelial immune response to the viral agents compared

with children without bronchiolitis (141). It seems that in

subjects with chronic obstructive pulmonary disease, the RSV

can persist contributing to the pathogenesis of stable disease

(142). Smyth et al. (143) studied the behavior of mediators

of lymphocyte activity [IL-4, CD25, and soluble intercellular

adhesion molecule 1 (sICAM-1)] in 94 children affected by

RSV-mediated bronchiolitis. Authors reported that the serum

CD25 levels were elevated during acute infection and they

remained raised during convalescence up to 150 days after

infection, also in absence of acute infection (143). This finding

was in contrast to the rapid decline in serum CD25 levels

recorded in children after acute infection mediated by other

viral agents, such as measles or dengue fever (143). Thereby,

RSV could mediate a persistent inflammatory response in the

airway that continues for longer than is generally believed.

Similarly, Pala et al. (144) compared the production of cytokines

of children 7 years after acute RSV bronchiolitis to healthy

children. The post-bronchiolitic children showed a significant

response in cells producing IL-4, suggesting the role of this

cytokine in the RSV-mediated long-term airway effects (144).

Moreover, since RSV induced a strong release of IL-10, IL-

11, and prostaglandin E2 (PGE2), molecules well-known for

their immunosuppressive effects, authors hypothesized that

these mediators might be responsible for the delayed protective

RSV specific immune response, further contributing to RSV-

mediated long-term damage in the airway (145). More recently,

Bertrand et al. (146) reported that the cytokine (IL-3, IL-4,

IL-10 and IL-13) and chemokine (IL-1β, IL-6, TNF-β, MCP-

1/CCL2, MIP-1α/CCL3, and IL-8/CXCL8) levels in the BAL

and nasopharyngeal aspirates of children with RSV-mediated

bronchiolitis were significantly higher compared to control

group, and, moreover, a direct correlation between IL-3 and

IL-12p40 levels and development of wheezing later in life was

also observed.

Other possible mechanism might include the “hitchhike

effect” yet described in patients suffering from chronic bacterial

colonization. Specifically, it seems that the neutrophilic airway

inflammation following a chronic colonization could contribute

to development asthma in the pediatric population (147).

Probably, the development of RSV-induced asthma requires

a “two-hit” model (148) featured by the co-existence of

at least two among individual (genetic, immune response

in the lung environment), developmental (lung remodeling),

and environmental (exposure to inhalants) factors (Figure 2).

Whether only one factor is present, the patient will not develop

chronic airway inflammation and asthma; conversely, whether

two factors are coexisting, the patient will report long-term

symptoms and/or asthma (148). This might explain why not all

children with severe RSV bronchiolitis develop asthma as well as

why other children with early wheezing show resolution of their

illness by their adolescence (148).

Future prospectives

Compared with other environmental factors, RSV infection

remains the main cause of LRTIs in infants, and wheezing

and asthma during childhood. Despite several experimental and

human studies have demonstrated a close relationship between

RSV infection and the subsequent lon-term airway effects,

to date, the exact mecahnism underlying the RSV infection

and asthma development remains to be elucidated. Respiratory

syncytial virus shows an intricate relationship with the local

and systemic immune response of the host. Consistent literature

findings evidence that RSV-caused asthma is closely related to

atopic constitution, since a Th2 dominance in immune response

has been commonly reported. Additionally, other important

cellular mediators of RSV-mediated inflammation and immune

responses are endothelial cells, lymphocytes, macrophages,

and mast cells. Moreover, despite its simple structure, RSV

shows a complex relationship also with neuronal pathway of

the airways. Respiratory syncytial virus makes the airways

abnormally susceptible to the RSV-caused proinflammatory

effects by upregulating NK-1 receptor gene expression and,

thereby, increasing the synthesis of the substance P and the

density of its receptors on target immune cells, including

lymphocytes, macrophages, mast cells, and endothelial cells.

Thus, RSV can establish crucial interactions between neuronal

airway system and immune response that result in long-

term airway dysfunction, predisposing to the onset and

maintaninance of chronic persistent airway hyperreactivity

and inflammation (149–151). Additionally, the RSV-immune

system-neuronal pathway interactions are influenced not only

by the viral factors but also by host factors, such as genetic

susceptibility, that modify the efficiency of the response to the

virus, viral replication, and virus-mediated injury to the airways.

All this may justify the differences in severity infection, damage
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FIGURE 2

The “Two-hit” hypothesis. The co-existence of at least two or more risk factors favors the asthma development following a severe RSV infection.

extention, and duration and magnitude of the RSV effects in

later life among the pediatric population. Thereby, due to the

pathophysiologic mechanisms involved in the RSV infection, it

is likely that future treatment strategies should be focused on

modulating the interactions between the virus, host immune

response and neuronal pathways. Currently, RSV-mediated

treatment is limited to supportive care; and no vaccine is licensed

to prevent RSV infection. The only prevention strategy available

is palivizumab, which is indicated only in a cluster of preterm

newborns or those with comorbidities. On the other hand,

vaccine development has encountered several challenges, such

as the immaturity of the immune response in infants; thus, most

newborns remain unprotected against RSV. It appears that the

two feasible strategies for protecting all infants against this virus

are maternal immunization and immunization of infants with

long-acting monoclonal antibodies (mAbs). The latter seems

to provide consistent protection against RSV for at least 5

months, covering the duration of the RSV season, offering great

flexibility in the timing of administration, and regardless of the

gestational age, presence of comorbidities, and maturity of the

immune system. Accordingly, using long-acting mAbs appears

to be the only available strategy for protecting all newborns

entering their first RSV. Moreover, using long-acting mAbs

could also postpone the risk of RSV-mediated bronchiolitis

throughout life. As reported above, the age at the first infection

represents one of the risk factors for developing non-allergic

asthma. Earlier the newborn meets the virus, more severe it

will be the airway damage. The early RSV-related abnormal

remodeling of neuronal networks in the respiratory tract will

lead to bronchial hyperreactivity and airway obstruction; thus,

the baby will experience early wheezing during the first 4 years

of life (12, 85, 113). On the contrary, if the child meets the

virus late, it is reasonable to hypothesize that the RSV-mediated

damage to the airways will be less severe. The baby will develop a

more mature immune response and will have an advanced lung

maturity; therefore, the onset of wheezing will be late, or it will

not occur (12, 85, 113).

Lastly, a global understanding of the principal mediators and

the risk factors for onset of wheezing and for its progression to

asthma is critical for prevention strategies after an initial RSV

infection as well as for the development of effective therapeutic

strategies for viral-induced wheezing/asthma, especially in the

pediatric population.
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