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ABSTRACT We report here the draft genome sequence of Pseudomonas putida
strain DRA525, isolated from mercury-contaminated soil. This strain shows resistance
to mercury and multiple antibiotics, and its genome sequence contains several gene
sets known to confer resistance to heavy metals enzymatically and through multi-
drug efflux pumps.

Pseudomonas putida is generally associated with the soil environment and has been
extensively studied due to its ability to tolerate and/or metabolize a variety of

environmental contaminants, including some heavy metals (1, 2). P. putida strain
DRA525 was isolated from soil sampled near an artisanal gold mining camp in Manica
Province, Mozambique, where mercury is commonly used in the gold mining process.
This strain was selected for further investigation because of its resistance to HgCl2
(100 �M) and multiple antibiotics, a commonly reported correlation (3–5). The draft
genome sequence of P. putida strain DRA525 has the potential to provide information
useful in addressing questions related to the correlation of heavy metal and antibiotic
resistance and the contributions to the mercury cycle made by similar bacteria in highly
contaminated environments.

The draft genome sequence of P. putida DRA525 was generated by ACGT, Inc.,
(Wheeling, IL) using the Illumina MiSeq platform derived from combined paired-end
and mate-paired libraries of 3,105,539 and 5,194,923 total read pairs, respectively.
Adaptors were trimmed and short reads filtered using Trim Galore version 0.3.7 (6) and
Sickle version 1.33 (7). Trimmed and filtered reads were assembled using SPAdes
version 3.5 (8) into a single closed contig sequence of 6,267,599 bases, with a G�C
content of 63%. The draft assembly was annotated using the Rapid Annotations with
Subsystems Technology (RAST) server (9), which identified 5,571 open reading frames,
and 78 tRNAs were identified using tRNAscan-SE 2.0 (10).

The average nucleotide identity (ANI) was calculated through one-way ANI and
two-way ANI between P. putida DRA525 and five P. putida strains, as previously
described (11). The ANI values range from 86.8% (strain W619) to 96.1% (strain S16),
with values of 89.6% (strain F1), 89.8% (strain KT2440), and 95.3% (strain HB3267) for
the remaining comparisons. As expected, we confirmed the presence of the mercuric
resistance (mer) operon (merD, merA, merC, merP, merT, and merR) in this strain. In
addition, two copies of a gene set containing arsH, acr3, arsC, and arsR suggest arsenic
resistance (12, 13), and multiple copies of genes related to the CzcC family of heavy-
metal RND efflux outer membrane proteins suggest resistance to cadmium, cobalt, and
zinc, among others (14). The MexE-MexF-OprN multidrug efflux system was also
identified in the genome, which likely contributes to this strain’s potential to tolerate
the stress of heavy metals and multiple antibiotics (15, 16).

Accession number(s). This draft genome sequence has been deposited in GenBank

under the accession number CP018743.
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