
RESEARCH ARTICLE

Searching for fat tails in CRISPR-Cas systems:

Data analysis and mathematical modeling

Yekaterina S. PavlovaID
1, David Paez-EspinoID

2,3, Andrew Yu. MorozovID
4,5*, Ilya

S. BelalovID
6*

1 Mathematics Department, Palomar College, San Marcos, California, United States of America,

2 Department of Energy, Joint Genome Institute, Walnut Creek, California, United States of America,

3 Mammoth BioSciences, South San Francisco, California, United States of America, 4 School of

Mathematics and Actuarial Science, University of Leicester, Leicester, United Kingdom, 5 Institute of Ecology

and Evolution, Russian Academy of Sciences, Moscow, Russia, 6 Laboratory of Microbial Viruses,

Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, Moscow, Russia

* am379@leicester.ac.uk (AYM); ilya.belalov@gmail.com (ISB)

Abstract

Understanding CRISPR-Cas systems—the adaptive defence mechanism that about half of

bacterial species and most of archaea use to neutralise viral attacks—is important for

explaining the biodiversity observed in the microbial world as well as for editing animal and

plant genomes effectively. The CRISPR-Cas system learns from previous viral infections

and integrates small pieces from phage genomes called spacers into the microbial genome.

The resulting library of spacers collected in CRISPR arrays is then compared with the DNA

of potential invaders. One of the most intriguing and least well understood questions about

CRISPR-Cas systems is the distribution of spacers across the microbial population. Here,

using empirical data, we show that the global distribution of spacer numbers in CRISPR

arrays across multiple biomes worldwide typically exhibits scale-invariant power law behav-

iour, and the standard deviation is greater than the sample mean. We develop a mathemati-

cal model of spacer loss and acquisition dynamics which fits observed data from almost four

thousand metagenomes well. In analogy to the classical ‘rich-get-richer’ mechanism of

power law emergence, the rate of spacer acquisition is proportional to the CRISPR array

size, which allows a small proportion of CRISPRs within the population to possess a signifi-

cant number of spacers. Our study provides an alternative explanation for the rarity of all-

resistant super microbes in nature and why proliferation of phages can be highly successful

despite the effectiveness of CRISPR-Cas systems.

Author summary

About half of bacterial species and most of archaea are equipped with CRISPR-Cas sys-

tems of adaptive immunity to protect them from their natural enemies—bacteriophages.

The memory of CRISPR-Cas contains a catalogue of the fingerprints of previously experi-

enced offenders which is passed down to the bacterial progeny. The microbial resistance

to viruses largely depends on the number of records in this CRISPR array. Our analysis
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combining metagenomics data and mathematical modelling shows that the size of

CRISPR arrays in microbial populations generally follows a power law distribution. Power

law distributions have been found in many other complex systems (earthquakes, financial

markets, animal movement). We argue that our model explains the presence of a power

law in CRISPR arrays and the rareness of all-resistant super microbes.

Introduction

The abundance of bacterial and archaeal populations in natural and anthropogenic environ-

ments is largely controlled by their natural enemies—bacteriophages. Over the course of long-

term evolution, however, prokaryotes have developed a number of efficient defence mecha-

nisms, among which is the adaptive immunity system CRISPR-Cas (about half of bacterial spe-

cies and most of archaea use CRISPR-Cas systems [1]). The CRISPR-Cas system learns from

previous phage infections and passes down this information to subsequent bacterial genera-

tions [2, 3]. The most important current application of CRISPR-Cas systems is the genetic

engineering of mammals and plants [4], with other applications including the release of modi-

fied CRISPR-Cas systems in natural and artificial environments [5–7]. A good understanding

of the effect of CRISPR on the abundance and diversity of microbial populations as well as the

consequences of the release of genetically modified bacteria into the environment can be only

achieved via an interdisciplinary approach combining experimental work, mathematical

modelling and extensive data analysis [8–12].

The CRISPR-Cas immune system contains a library of pieces of viral DNA (called spacers)

originating from previous attempts to infect the microbial organism [13]. Spacers are sepa-

rated by short identical sequences called the repeats. After transcription to RNA molecules

(crRNA) and processing, spacers in the form of crRNA are bound to the CRISPR associated

(Cas) effector proteins. In a second infection event from the same lineage of phage, Watson-

Crick base pairing between the crRNA and the protospacer in the phage genome targets the

offender for cleavage and subsequent degradation by Cas effector proteins [14, 15]. The ability

of an individual bacterium to effectively resist phage infection largely depends on the number

and degree of diversity of the spacers in its CRISPR-Cas system. Empirical data show a high

variability of spacer numbers (from the single digits to several thousand) and genetic diversity

in a typical bacterial population [16]. A central question then concerns the nature of the statis-

tical distribution of spacers both globally, and within a typical microbial population, as well as

the corresponding role of phage infections in shaping these distributions. In this paper, we use

mathematical modelling supported by data to address this fundamental question for the first

time.

The existing research into statistical distribution of spacers is mostly focused on the diver-

sity of spacer types within bacterial populations. It was shown that an increase in spacer diver-

sity generally affects population stability [10, 17] and that the effectivness of the spacers can be

strongly influenced by spacer diversity [16] in single phage experiments. Recently, rank abun-

dance curves of spacer types were constructed from a mathematical model of bacteria-phage

interaction in a chemostat [18], and the model was seen to show a quick drop in the abundance

of rare spacers. However, to the best of our knowledge, the quantitative aspect of spacer abun-

dance in microbial population, i.e. the distribution of the total number of spacers in CRISPR

arrays among individual bacteria, still remains largely unaddressed (but see [19] where Class I

CRISPR-Cas systems were found to tend to follow a geometric distribution, although the sam-

ple size was rather small). From the previous studies, it is known that the number of spacers
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increases as a result of interaction with microbial viruses and decreases due to non-specific

deletions during genome replication [20]. In a population of microorganisms, cells equipped

with long arrays against diverse phages may be expected to increase in numbers when phages

are present, due to new spacers acquired by each CRISPR. Also, the anti-selection of cells with

insufficient CRISPR arrays, i.e. those lacking an appropriate spacer, usually results in an

increase of the average length of CRISPR arrays in the surviving population. On the other

hand, the maintenance of large CRISPR arrays may impose higher metabolic costs [20], thus

reducing their replication rate [16].

One may expect that in a generic phage-microbe system the total number of spacers in

CRISPR arrays should cluster around some mean value and quickly decay away from it. Here

we show, however, that the statistical distribution of the number of spacers in CRISPRs in

both bacteria and archaea exhibits surprising ‘fat-tail’ behaviour. In this case, the probability of

observing a large number of spacers remains significant, since the number of spacers i is

described by a power law distribution p(i) * i−α. An important property of power law distri-

butions is the absence of statistical moments of order n, where n> α − 1 (i.e. if α< 2 the aver-

age is infinite). Fat tail patterns in statistical distributions have been previously observed in

various natural and artificial complex systems where rare catastrophic events cannot be dis-

counted as negligible, including financial markets, animal movement, earthquakes, and terror-

ist attacks [21].

Our study combines a thorough statistical analysis of metagenome data and the implemen-

tation of a mathematical model which fits the empirical data. The mechanism of the emer-

gence of the power law distribution predicted by the model is similar to that of the ‘rich-get-

richer’ paradigm reported in other systems. The model also suggests that a trade-off between

the CRISPR array length and the reproductive success of the cell prevents the proliferation of

all-resistant super microbes. We argue that this may explain the successful infection of bacteria

and archaea by phages, despite the presence and effectiveness of CRISPR-Cas immune

systems.

Materials and methods

Model equations

We construct a mathematical model where a stable distribution of the spacers in CRISPR

arrays emerges as a result of interaction between bacteria and phages. Our model takes into

account the key mechanisms of the molecular processes of spacer acquisition and loss as well

as host death and replication [2, 3, 13–17, 20, 22–26]. Note that for some bacteria possessing

spacers, their CRISPR machinery inside the cell can be non-active (e.g. orphan arrays, loss of

cas genes, decay in CRISPR repeats), so the cell will not able to acquire and actively uptake

novel spacers. [27] In our model, we always assume that all bacteria with CRISPR can actively

use this machinery.

For simplicity, the model assumes that each microbial genome contains a single CRISPR

array. Since our main focus is on the statistical distribution of the number of spacers present in

the CRISPR array, we do not distinguish here between different types of spacers or their origin.

We use a discrete time modelling approach based on Markov chains, following the model

flowchart provided in Fig 1. A detailed description of the model is given in the supplementary

material. We assume that the maximal number of spacers that the bacteria may have cannot

exceed some fixed large number N. We group all individual cells into classes corresponding to

the total number of spacers present in their CRISPR array, i 2 {1, . . ., N}. The abundance of

class i at time t is described by Fi(t). Numbers Fi(t) compose the state vector F(t) = hF1(t), . . .,
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Fig 1. Simplified flowchart of the mathematical model: Adjustment of class size i at time iteration t. The first half-iteration describes the

infection in the case the cell meets a phage (with probability p). Possible outcomes of this stage are: gaining j − i spacers (with probability Qi,j), death

of the cell, and survival without gaining any spacers (with probability 1 − p). The second half-iteration mimics the replication stage. Replication can

result in loss of i − j spacers in the daughter cell. The parent cell is assumed to always keep the same number of spacers. The loss or conservation of

spacers number at this stage are described, respectively, by Δj,i and Si. Details on the parameterization of Qi,j, Δj,i, and Si are provided in the

supplementary material.

https://doi.org/10.1371/journal.pcbi.1008841.g001
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FN(t)i. We assume the total population size is settled on some constant environmental carrying

capacity, i.e. Si Fi(t) = Fconst.
Each discrete time step t is split up into two stages (Fig 1). The first stage is related to infec-

tion by the phage, which can result in either failure or success of the immune defence; signify-

ing either death of the cell or its acquisition of spacers, respectively. The given stage is

modelled by:

Fðt þ
1

2
Þ ¼ FðtÞAð1Þ; ð1Þ

where non-zero elements of the transition matrix A(1) describe the probability of acquisition

of j − i spacers by cells from class i (terms Qi,j> 0, j> i), the probability that cells from each

class i die or the probability that the cell stays in the same class i (terms 1 − p). The latter case

accounts for microbes that simply did not encounter a virus at the considered time step.

The second stage consists of the replication of the surviving cells, continuing until the carry-

ing capacity is reached and the death of those cells whose immune systems failed to resist

infection is compensated for. We assume that during replication the parent cell—that inherit-

ing the leading DNA strand—does not lose any spacers. On the contrary, the daughter cell,

inheriting the lagging strand of the parent genome, may lose spacers. This is described by the

following equation

Fðt þ 1Þ ¼ Fðt þ
1

2
ÞAð2Þ ¼ FðtÞAð1ÞAð2Þ; ð2Þ

where the matrix A(2) is constructed of elements Δj,i> 0 describing the transition from upper

to lower classes (i< j) and the diagonal elements Si (i = j) giving the fraction of class i of cells

that keep the same number of spacers including the parent cells.

The elements of the transition matrices A(1) and A(2) depend on the number of spacers i as

well as model parameters. In the supplementary material, we show that under the model

assumptions, Qi,j, Δj,i, and Si can be parameterised as follows

Qi;j ¼ p½qifhPðmn; j � iÞ þ ð1 � hÞgPðmm; j � iÞÞg

þ ð1 � qiÞsPðmk; j � iÞ�;
ð3Þ

Di;j ¼ NnniPðmdðiÞ; i � jÞ; ð4Þ

Si ¼ 1þ NnniPðmdðiÞ; 0Þ; ð5Þ

where the constant parameters are: p, the probability to encounter a phage; h, the probability

that the protospacer exactly matches a spacer in the CRISPR array and the spacer works per-

fectly; this parameter also describes the scenario of infection by a non-functional virus. The

parameter s denotes the probability to survive a viral infection in the absence of spacers (for

example, this can be due to infection by non-functional virus inactivated by UV radiation,

working like an antidote [28, 29]); g is the probability that an inefficient spacer (e.g. effector

proteins bind with a lower affinity; the protospacer or PAM has mutated, the spacer is located

at the distal end of the CRISPR array, etc) does not cause the death of the cell. The parameters

depending on the number of spacers are as follows: νi are the replication rates of the bacteria,

which are scaled by the factor Nν to compensate for the number of deaths at each iteration (see

supplementary material); qi represents the probability that the CRISPR library contains a

spacer exactly or inexactly matching the protospacer from the genome of the given virus strain

infecting the cell. Note that qi, along with h and g, implicitly takes into account biodiversity of
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spacers since we assume that it is an increasing function of the array length i. The probabilities

P(μk, i − j), P(μm, i − j), and P(μn, i − j) describe spacer addition in the following three cases: (a)

no spacer is present (index k), (b) spacers are present, but can work inefficiently (index m), or

(c) the required spacer is present and it works perfectly (index n). The probability P(μδ(j), j − i)
denotes deletion of j − i> 0 spacers.

Our model does not differentiate spacers in regard to their position in the CRISPR array.

The assumption is supported by the work by McGinn and Marraffini [30] which shows that

spacers located downstream in the CRISPR array can still provide strong immunity when they

constitute some critical proportion of the culture infected (in this study we assume that this is

always the case).

We made the following assumptions. The number of spacers added during one iteration

event is assumed to be exponentially distributed, described by P(μk, i − j), P(μm, i − j), or P(μn,

i − j) with mean values given by μk, μm, and μn, respectively. The use of exponential law to

describe adding of spacers has some empirical support in the literature, for example, in the

study by Li and co-authors [31] the band intensity in the agarose gels is a monotonic function

of the number of DNA copies, it seems to behave in a similar way as the exponential distribu-

tion, at least qualitatively (see Fig 2B in the cited paper).

Microbial viruses have very high mutation rates and a single mutation in the protospacer or

the protospacer adjacent motif (PAM) in the phage genome may allow the virus to escape

detection [13, 26]. However, inefficient spacers containing several mismatches might prime

new spacer acquisition more efficiently, compared to naive adaptation [32]. In the case of the

perfect match of spacer and the phage protospacer we expect successful priming to occur (in

this case often referred to as Interference-driven spacer acquisition); this has empirical evi-

dence [25, 33]. In this light, we assume that μn� μm� μk. New spacers are recruited from dif-

ferent regions of the phage genome [16], so that a phage overcoming resistance of a host with

an initiated CRISPR array is very unlikely. During replication events we assume that the cell

inheriting the leading DNA strand does not lose any spacers. Daughter cells, inheriting the lag-

ging strand of the parent genome, lose spacers according to an exponential distribution with

mean value μδ(i) = SLi, where SL is the fraction of existing spacers that will be lost. The loss of

spacers is modelled via an exponential distribution which has partial support in previous stud-

ies. For example, the study by Kupczok and Bollback [34] combining a theoretical model and

empirical data shows that the maximum of the probability density function (known as the

mode of the distribution) of the loss of spacers is observed for either 0 and 1 spacers. Larger

numbers of lost spacers are also possible, but at a smaller probability (see also some empirical

demonstration of the possibility of loss of multiple spacers [35]). The exponential distribution

qualitatively describes this behaviour and we use it here for mathematical convenience.

The parameter values will generally vary across biomes and ecosystems, depending on the

abundance and diversity of viruses, mutation and replication rates, etc. We investigated the

dependence of the equilibrium probability distribution of the number of spacers i present in

CRISPR on the values of these parameters (for mathematical details see the supplementary

information). To compare our model with the empirical distributions more appropriately, we

address the case of bacterial and archaeal genomes where only a single CRISPR array is

present.

Finally, we should highlight that the above mathematical model can also describe a more

complicated scenario of the abortive infection mechanism of CRISPR. According to this mech-

anism, even for the perfect match of spacer, the phage would kill the infected bacteria but will

get a reduced burst size [27, 36]. In this case, instead of a single cell, our model will consider a

group of neighbouring cells as a combined entity. For such cells the probability to survive the

infection will be higher and will be determined by an averaged over space (volume)
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parameters. In this case, the spatial structure of the microbial community and spatial infection

patterns will be taken implicitly. The scale-invariance of the distribution of spacers can justify

this interpretations: the entire system behaves similarly to the subsystems even taken at the

microlevel.

Metagenomic samples used and collection of spacers

We used all publicly available (3,858) metagenomic datasets from the IMG/M system [37]. We

manually classified all samples into 13 distinct habitat types (Table 1) based on the associated

metadata, following the criteria described in IMG/VR [38]. 93% of the datasets contained a

geographic location (longitude and latitude) which is visualized in Fig 2A. Visualization was

done using the Processing programming language (https://processing.org) and a freely avail-

able equirectangular projection of the world map (http://eoimages.gsfc.nasa.gov) was used as a

background image. Sample points are positioned by latitude and longitude coordinates of Bio-

samples obtained from GOLD [39].

We used the total number of spacers per contig (CRISPR-Cas array) and per sample gener-

ated by the IMG/M system, that uses a modified version of the CRISPR Recognition Tool

(CRT) [40] algorithm described in [41].

Complete prokaryotic genomes

All available bacterial and archaeal (6,214) genomes were downloaded from GenBank [42].

We used the CRISPR Recognition Tool (CRT) [40] with default settings to detect CRISPR

arrays. As in the case of metagenomes Fig 3B shows the number of CRISPR arrays (y axis) pos-

sessing given number of spacers (x axis) regardless of the number of CRISPR-Cas systems in

genomes. Fig 3C shows the same data but only for genomes equipped with single CRISPR

array.

A better approach to the distribution of spacers would take into account the distribution of

the occurrence of CRISPR systems per genome. This can be done for complete genomes. We

should say, however, that the available database of completely sequenced prokaryotic genomes

in GenBank seems to be heavily biased towards a limited number of medically important and

model organisms [43]. Adjusting the effects of this bias from the empirical data is a non-trivial

Table 1. Metagenomic datasets classified by habitat types.

Metagenome Environment Number of Samples

Air 21

Aquaculture 2

Aquatic Sediment 82

Engineered 344

Fresh Water 599

Host (human) 503

Host (other) 289

Host (plant) 275

Marine 747

Non-Marine Saline and Alkaline 152

Terrestrial (soil) 638

Terrestrial (other) 56

Thermal Springs 152

Total 3,858

https://doi.org/10.1371/journal.pcbi.1008841.t001
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Fig 2. (a) World map displaying 3,585 out of 3,858 public metagenomic datasets, for which geographic location is reported, and classified into 13 distinct habitat

types (see the color code in the caption) from which we extracted the CRISPR spacer information provided by IMG/M. The total number of samples from a single

location is shown with different circle sizes, as indicated in the inset box. For more detail see Table 1 The World map taken from https://visibleearth.nasa.gov/

images/57752. (b) The presence of power law distributions of spacers within CRISPR arrays of individual metagenomes. Each point represents all the metagenomes

containing a given number of CRISPR arrays. The ordinate value shows the proportion of metagenomes for which either a truncated power law or a non-truncated

power law was the best fit.

https://doi.org/10.1371/journal.pcbi.1008841.g002
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task which itself can be subjective. Our metagenome dataset seems less biased (e.g. see

Table 1). In this case, however, extracting complete genomes would largely reduce the number

of points. Nevertheless, distributions in the three cases belong to the same family and are quali-

tatively identical (see the Results section).

Statistical analysis

Data on the number of spacers in CRISPR arrays in metagenomes, as well as in complete

genomes, were handled with Python. We used the Python package powerlaw [44] for analy-

sis of fat tailed distributions in order to adequately fit the patterns observed in natural

CRISPR arrays and our numerical simulations to appropriate probability density functions.

To generate the results in Figs 3 and 2B, we used the discrete powerlaw.fit object. The

goodness of the truncated_powerlaw fit was compared with other candidate heavy tailed

distributions using distribution_compare, which calculates Loglikelihood ratio for two

given distributions p1 and p2 as R ¼
Pn

i¼1
ðln ½p1ðxiÞ � p2ðxiÞ�Þ. P-value is calculated as

p ¼ 1ffiffiffiffiffiffiffiffi
2pns2

p
R � jRj
� 1

e
� t2
2ns2dt þ

R þ1
jRj e

� t2
2ns2dt

� �
¼ 2ffiffi

p
p

R þ1
R

s
ffiffiffi
2n
p

e� t2dt, where s2 ¼ 1

n

Pn
i¼1
ð½p1ðxiÞ �

p2ðxiÞ� � ½1n
Pn

i¼1
ln p1ðxiÞ � 1

n

Pn
i¼1

ln p2ðxiÞ�Þ [21, 44]. Loglikelihood ratios (positive if the

data is more likely in the truncated_powerlaw distribution) and significance p-values are

listed in Table 2. If p is small (common practice is to consider p< 0.05) then the value for R

Fig 3. Spacer distributions in empirical genome sequences generally exhibit power law behaviour. Statistical distribution of the number of spacers across CRISPR

arrays in the data combined from (a) 3,858 metagenomes, (b) 6,214 complete archaeal and bacterial genomes, (c) 237 complete genomes possessing only a single

CRISPR array. The curves are fitted using the power law function with an exponential decay p(i)* i−α e−λi and are shown by solid lines. The dashed line shows the

slope of the power law function. The shaded area shows 95% confidence bands.

https://doi.org/10.1371/journal.pcbi.1008841.g003
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is unlikely to be a chance result and its sign can be trusted as an indicator of which distribu-

tion fits the data better. Pure power law distribution is a subcase of truncated power law,

whereas exponential distribution is a subcase of stretched exponential. Thus the method has

to be correct for comparisons of both nested and non-nested distributions. Loglikelihood

ratio test is shown to be correct for both cases for the distributions we considered [45].

Mathematical model and simulations

Detailed derivation of the expressions for the components of the transition matrices in A(1,2) is

provided in the supplementary material. The iterative numerical simulation was implemented

in MATLAB. The maximal number of spacers was considered to be N = 1, 000, the total popu-

lation size was set as Fconst = 106. At each step, the replication rate was multiplied by the scaling

factor Nν to preserve the constant population density at Fconst; the value of Nν is computed

using the corresponding formula in the supplementary material. To find the stationary distri-

bution F� we both used direct iterations (after roughly t = 4000 the distribution becomes

approximately stationary) and solved the matrix equation F� = F�A = F�A(1) A(2). Note that

the actual value of Fconst does not affect the modelling results: its re-scaling by the factor of 10,

100, etc, does not modify the final distribution of spacers if the simulation time is large enough.

Moreover, the statistical distribution (measured as percentage of spacers) would remain the

same even in the absence of the upper bound for Fconst. Fitting of curves to stationary distribu-

tions obtained in the model was done using the Python package powerlaw [44]. The folder S1

Matlab Code contains a MATLAB code which produces the statistical distributions of spacers

corresponding to Fig 4 in the Results section.

Results

Revealing statistical distribution of spacers from data

We conducted extensive empirical data analysis of the statistical distribution of the number of

spacers across CRISPR arrays in 3,858 metagenomes [37] from various geographical locations

and ecosystem types (2,189,103 CRISPRs and 11,724,296 spacers in total). The results are pre-

sented in (Fig 3A). Fitting the data points with standard curves shows that the distribution fol-

lows a power law distribution with exponential decay given by p(i) * i−α e−λi, with α = 2.57

and λ = 0.004 ±0.0013. Our estimate for uncertainty of the power law exponent provide the

95% confidence interval to be 2.47< α< 2.67.

In order to exclude the influence of possible artefacts of sequencing or assembling tech-

nique for metagenomic reads, which may corrupt the resulting pattern, we also analyzed the

Table 2. Comparison of the truncated power law p(x)*x−α e−λx to other heavy-tailed candidate distributions in fitting empirical distribution of spacers. Positive

Loglikelihood ratios indicate that the Truncated Power Law fits the empirical data better than the candidate distribution function.

Metagenomes Complete Genomes

Loglikelihood ratio P-value Loglikelihood ratio P-value

Exponential

pðxÞ ¼ 1

l
ex=l

62981.65 0.0 3877.26 4.90x10−159

Stretched Exponential

pðxÞ � e� lx� b
1306.33 8.23x10−3 35.15 1.17x10−16

Longnormal, μ> 0

pðxÞ ¼ 1

xs
ffiffiffiffi
2p
p e�

ðln x� mÞ2

2s2

2909.08 1.47x10−56 150.64 7.82x10−28

Power Law

p(x)*x−α
536.83 0.0 58.05 0.0

https://doi.org/10.1371/journal.pcbi.1008841.t002

PLOS COMPUTATIONAL BIOLOGY Fat tails in CRISPR-Cas systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008841 March 26, 2021 10 / 21

https://doi.org/10.1371/journal.pcbi.1008841.t002
https://doi.org/10.1371/journal.pcbi.1008841


Fig 4. Statistical distribution of spacers in CRISPR array predicted by the mathematical model with linear parameterisations of qi and νi. In all graphs, colored

lines with dots represent the final distribution F� in the model. The thin, dashed, dotted, and dash-dotted lines show the fitting of the power law distribution with

exponential cutoff given by p(i)* i−α e−λi. In the labels, likelyhood stands for Loglikelyhood ratio of truncated power law distribution to the second best fit. (a,b) For

the fixed parameter values p = 0.7, h = 1, s = 0.4 and μn = 10, increasing the fraction of spacers lost during replication from SL = 1/8 to SL = 1/7.1 increases the power

law exponent from α from 1.03 to 3.1. (c) For the fixed parameter values p = 0.7, h = 0.8, s = 0.2, g = 0.6 and μn = 10, decreasing the average number of spacers gained

due to viral infection μn from 20 to 11.4 increases the power law exponent from 1.91 to 2.57. (d) For the fixed parameter values p = 0.7, h = 0.8, s = 0.2, SL = 1/6 and μn
= 14, decreasing the probability of survival in the case of a mutated protospacer from 0.799 to 0.7795 increases α from 1.85 to 2.57. In all of the above cases we assume

that 100μk = μm = μn. Decreasing the value of μm has a similar effect as decreasing μn (see Fig F in S1 Text).

https://doi.org/10.1371/journal.pcbi.1008841.g004
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distribution of spacers across CRISPR arrays in all complete archaeal and bacterial genomes

available in GenBank (6,214 genomes, 101,471 CRISPRs, 439,829 spacers) [42]. Our results are

shown in Fig 3B. We found that the distribution can be approximated by a power law with

exponential cutoff for the parameters α = 2.27, and λ = 0.004 ± 0.0014 (the 95% confidence

interval for α is 2.20< α< 2.34). We also plot the distribution of spacers for genomes where

only a single CRISPR array is available (237 genomes, 1,094 spacers) [42]. We found that for

bacteria and archaea, the power exponent is α = 1.95 ± 0.31 and the exponential decay factor is

λ = 0.005 ± 0.0027 (Fig 3C). The apparent disparity with the results obtained for complete

genomes with various numbers of CRISPR arrays and metagenomic data as well as a higher

confidence interval for α in Fig 3C is likely to be explained by the small sample size.

We examined the goodness-of-fit for the distributions of the exponential, lognormal,

stretched exponential and power law type (all frequently used in the literature [44]) and found

that the power law distribution with an exponential cutoff fits our data better than the other

distribution functions considered, with p-values well below 0.05 (Table 2). The exponential

cutoff in the observed power law distribution occurs due to the natural limitations to the num-

ber of spacers a CRISPR array may accumulate. Details on the statistical analysis and sample

collection are provided in Materials and Methods.

The power law behaviour and scale-invariance in the distribution of spacers in CRISPR can

also be seen directly when CRISPR arrays in individual metagenomes are compared to data for

the entire planet (Fig 2B). Individual metagenomes typically contain some number of CRISPRs

and distribution of spacers per array can be revealed even within single metagenome. We find

that in more than two-thirds of the individual metagenomes, the power law gives a better fit

than other heavy-tailed distributions. However, our analysis shows that the corresponding p-

value was< 0.05 in each comparison for only 7.75% of the datasets. This can be explained as a

result of the generally low signal-to-noise ratio when there are too few CRISPRs and spacers

within a metagenome.

Finally, we show (Fig 2A) the geographic location of the majority of the available metage-

nomic datasets (93%). The samples are classified according to the type of the habitats (13 types

overall), with the distribution of the metagenomic datasets across the habitat types shown in

Table 1. Thus our results regarding distributions of spacers hold for microbial communities

regardless of their geographic locations and/or habitat types (see also Table A in S1 Text). As

soon as the number of CRISPR arrays in the sample is sufficient for statistical inference, trun-

cated power law distribution is clearly observed, even within a single metagenomic sample.

Interestingly, combining data for several metagenomes into a single data set results in the

same pattern which can be explained by the fractal nature of the considered distribution type.

Spacer distribution predicted by the model

Using the introduced model, we run iterations for large times t until the distribution of spacers

becomes stationary. The eventual stationarity of F in the model is guaranteed since the com-

bined transition matrix A = A(1) A(2) is aperiodic and irreducible by construction. The station-

ary distribution F� is given by the principle eigenvector of A corresponding to the maximal

eigenvalue of 1. Here we investigate the possible distributions F� which emerge in various sce-

narios for the dependence of the replication rate νi and the spacer matching probability qi on

the array size i.
We first consider constant values qi = q and νi = 1, i.e. the replication rates and the effective-

ness of the immune system do not depend of the size of the CRISPR library. We find that the

resultant distribution F� is normal or skew normal in agreement with the central limit theo-

rem. We also observe that the average number of spacers in the array increases with an
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increase of the average spacer gain μn and with a decrease of the fraction of existing spacers

lost during replication SL. The corresponding graphs are shown in Fig D in S1 Text). Including

the dependence of qi on i (we consider a monotonically increasing function qi) results in a

right-centered distribution similar to a normal distribution (supplementary material Fig E(i)

in S1 Text). On the other hand, by keeping qi constant and assuming the replication rate to be

a decreasing function of i (e.g. a linear function), we obtain a left-skewed distribution F�; how-

ever, the distribution function still rapidly converges and does not exhibit fat-tailed behavior

(Figs E(ii), E(iii) and E(iv) in S1 Text).

We find that in order to obtain a power law-like distribution of spacers in the CRISPR

array one needs to assume dependence on i in both qi and νi. For example, by considering the

simplest (linear) parameterisations qi = (i − 1)/N and νi = (N + 1 − i)/N we observe power law

distributions with an exponential cutoff, as shown in Fig 4A and 4B. This observation can be

quantitatively verified by fitting the curves to the data points predicted by the model (the esti-

mated exponents α, and λ are shown in the figure). We also use statistical analysis to compare

some other candidates for heavy-tailed distributions using the maximum likelihood principle

[44]. We find that a power law with an exponential cutoff is the best fit in the case where a left-

centered heavy-tailed distribution emerges and persists under small variation of the parame-

ters. The fat tailed behaviour is not strongly dependent upon the concrete parameterisations of

qi and νi: the pattern persists for some monotonically increasing functions qi (e.g. logistic) and

monotonically decreasing functions νi (e.g., Gaussian centered at zero). The assumptions of

monotonicity in the dependence of qi and νi are natural since the possession of a large CRISPR

array may incur costs for the cell, and a longer CRISPR library would normally signify a larger

biodiversity of spacers, signifying a higher probability of finding an appropriate spacer [16,

20, 46].

Finally, we investigated the dependence of the spacer distribution exponents, α and λ on

key model parameters. Overall, we found that a truncated power law distribution can be

observed in the model within a large range of model parameters. An increase in the fraction of

spacers lost during replication SL, was seen to generally lead to a gradual increase in the power

law exponent α and a decrease in the maximum number of spacers in the population imax (i.e.
the number of non-empty classes Fi, see Fig 4A and 4B). An increase in the average number of

spacers gained μn generally leads to smaller power law exponents α (Fig 4C), and the same

dependence is found for variation of the parameters μm and μk (Fig K in S1 Text). A reduction

in g, the probability that an inefficient spacer does not cause the death of the cell, results in an

increase in α (Fig 4D). We should note that variation in the model parameters (SL, μn, μm, μk,
h, g) can result in either gradual or abrupt, bifurcation-like changes in the slope of the spacer

distribution. Corresponding examples are provided in the supplementary material (Figs F-K

in S1 Text). Finally, by varying key parameters, the model is able to reproduce the CRISPR

spacer distributions shown in Fig 3 for metagenomes (α = 2.57), all bacterial genomes (α =

2.27), and bacterial genomes with a single CRISPR array only (α = 1.95). The corresponding

graphs are provided in the supplementary material.

Discussion

Power law distributions characterised by heavy or fat tails are observed in a wide range of natu-

ral phenomena and complex systems from earthquake magnitudes [47] and energy cascades in

turbulent eddies [48] to individual net wealth [49], severity of terrorist attacks [50], and market

crashes [51]. Power law behaviour is also a well-known feature in biological systems, and

determining the mechanisms of its emergence and maintenance is critical for understanding

connections between different levels of biological organization in biochemistry, physiology,
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epidemiology (e.g. spread of infectious diseases including the current COVID-19 case [52])

and ecology, and it has important consequences for biological evolution [53–57]. In this paper,

we use a combined empirical and theoretical approach to reveal for the first time that patterns

of power law behaviour can be seen in CRISPR-Cas systems, which represent the main

immune defence mechanism for about half of all bacterial species and in about 90% of

archaea [1].

We investigated the number of spacers in CRISPR arrays across global metagenomes and

demonstrated that they follow a power law distribution with an exponential cutoff (Figs 3 and

2). Our estimates of the power law exponents showed close values for various ecosystems (nat-

ural, artificially engineered, or in humans), varying between α = 2 and α = 3, with only small

difference between geographic locations and climates (see supplementary material). Interest-

ingly, for some biological systems such as terrestrial non-soil ecosystems, the power law expo-

nent is estimated to be below 2, indicating that most cells are assigned to the tail of the

distribution in terms of their spacers (see supplementary material). Mathematically speaking,

for such distributions the average CRISPR size should be infinitely large, although in reality,

due to the exponential cut-off the average size is large but finite. Overall, our findings indicate

a very slow decay of the numbers of spacers in distributions and the existence of a non-negligi-

ble amount of microbes with a very large amount of spacers: the average number of spacers in

a CRISPR array was seen to be 12.73, with a standard deviation of 14.15. In our metagenome

data the maximum number of spacers found in a single CRISPR array is 1,131. Given estimates

of the number of prokaryotic cells on the Earth as being* 1030 [58, 59], and assuming a prob-

ability distribution function p(i) = i−2.57 e−0.004i, we can extrapolate that the longest possible

CRISPR on the Globe should contain approximately 11,300 spacers.

We found that the number of spacers in the distribution quickly decays when the array

length reaches several hundreds. This corresponds to more than 20,000 base pairs (bp),

whereas the longest prokaryotic protein coding gene does not exceed 6,000 bp [60]. The lon-

gest prokaryotic transcript deposited in GenBank is 18,651 nucleotides and belongs to high

GC content species [61]. Among other factors, insufficient processivity of RNA polymerase

may explain the observed drop in the number of spacers in the distribution. On the other

hand, one may expect a high processivity of RNA polymerase when the microbial genome con-

tains longer CRISPR arrays. This important observation should be taken for further studies

and used for applications, for example in biotechnology, since the high efficiency transcription

machinery is expected to be present in organisms which can afford high lengths of CRISPR

arrays.

Empirical distributions of spacers can be represented by the generic mathematical model

considered here (assuming that in all cells containing spacers, the CRISPR machinery is always

active). According to the model, the emergence of heavy-tailed behaviour is the outcome of

interaction between (i) the positive feedback between the number of spacers and the rate of

increase in the length of the CRISPR array, and (ii) the negative trade-off between the replica-

tion rates of cells and the CRISPR array length. This mechanism has a clear biological ratio-

nale: cells possessing a larger number of spacers will generally have a higher chance of

surviving phage infection, which should result in natural selection for such cells in the face of

persistent viral infection pressure [20]; however, fitness costs required to maintain large

CRISPR arrays would reduce the replication rate of such cells [16, 46]. Dilution of the most

useful effector Cas complexes in large CRISPR arrays has been suggested as one possible

source of a fitness cost of large spacer numbers [46].

The literature on the emergence of fat tail distributions in natural and engineered systems

identifies a handful of plausible scenarios [49]. The mechanism occurring in our CRISPR-Cas

model is somewhat close to the classical Yule model (also known as Yule-Simon scenario),
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which is known as the ‘rich-get-richer’ principle [49, 62]. According to this principle, the pop-

ulation of cities, number of citations of research articles, personal wealth, bestseller purchases,

etc should increase in proportion to their current numbers. In the CRISPR systems, spacers

addition is facilitated in cells with larger arrays: their survival rate is higher and mathematically

this is described by assuming the effectiveness of the immune system qi to be an increasing

function of i. Note that some more detailed mathematical models explicitly considering spacer

diversity confirm an increase (although nonlinear) of the efficiency of CRISPR with the size of

the system [63]. However, the mechanism of heavy tail formation in our model deviates from

the classical Yule-Simon scenario, in some respects. Indeed, having an increasing qi is not

enough: this would result in having a bias towards cells with very long CRISPR arrays

since only the ‘richest’ members of populations with i� N will dominate (see Fig D in S1

Text). Such a situation is not observed empirically (Fig 3). Introducing replication rates νi
decreasing with the number of spacers rectifies the situation and produces the observed heavy

tails.

Having fat tails in the distribution of spacers in CRISPR systems has its important biological

consequences which we need to know to better understand bacteria-phage interaction. In

microbial populations (using CRISPR as a defence mechanism) there will be always a consider-

able proportion of individuals with a large number of spacers. The accumulation of spacers in

the tail of the distribution is a direct consequence of the power law dependence (note that the

exponential cut-off reduces spacers numbers in the tail as compared to a ‘pure’ power law dis-

tribution). As such, in the case of an occasional heavy infection by phages, bacterial cells pos-

sessing large numbers of spacers will survive, assuming that CRISPR length positively

correlates with spacer diversity; these cells can then serve as an internal dynamic refuge for the

whole population. Metaphorically, one might imagine such cells performing a similar role to

microbial ‘stem cells’: after the disastrous phage infection, the entire population will be able to

recover. Such survival of the microbial population would not be possible in the case of a Gauss-

ian distribution of spacers with the proportion of cells with large number of spacers dropping

off very quickly (Fig D in S1 Text).

On the other hand, our model predicts that an increase in the metabolic costs of replica-

tion of cells with long CRISPR arrays should reduce the growth rate of such microbes. The

rate of mortality unrelated to infection in such bacteria can also be high. As a result, we can

hypothesise based on our mathematical model that all-resistant super microbes (among

those using CRISPR as a defence mechanism) should be very rare in nature, despite the pos-

session of a strong immune defence. All-resistant super microbes may be more vulnerable to

environmental challenges such as oil spills or climate change, etc. This is due to low fitness

(i.e. a low replication rate) of such microbes, and in the case of such challenge microbial pop-

ulation may go extinct as a result of subsequent phage invasion. This may explain the success-

ful proliferation of phages observed in the wild and in humans, despite the potential for cells

to build a long CRISPR library and become super resistant. As a general principle, the addi-

tion of 4-6 extra spacers should not affect microbial fitness in terms of growth rate (Dr.

Rodolphe Barrangou, personal communication). Although there is some available informa-

tion on possible trade-offs between the replication rate and natural mortality of microorgan-

isms and the size of the CRISPR system [16, 46], these remain poorly understood overall. We

should also admit that CRISPR is not the only mechanism of bacterial immunity and there

are several other means to mount resistance against phages, for example as phase variation,

and others [27, 64].

Another consequence of the power-law in CRISPR-Cas systems is the possibility of self-crit-

icality. Self-criticality phenomena occur when parameters of physical or biological system are

tuned, for example via a feedback with the environment, in such a way that the statistical
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distribution of the considered quantity in the system exhibits a power law [49, 65]. In our

model, however, we do not observe an exact phase transition phenomena as in the classical

self-criticality paradigm. However we did find that the transition to spacer distributions with a

pronounced power law structure generally occurs for a very small variation of model parame-

ters (see Figs G-I in S1 Text). Empirical data show robust fat tail patterns across many different

ecosystems. While our model parameters may be tuned to produce a variety of other out-

comes, it appears that the dynamics of real ecosystems impose parameter constraints that pro-

duce a fat tail distribution of spacers. This may be through coupling or feedback loops among

parameters that are held constant in our model.

Our model of CRISPR-Cas systems helps to better bridge two major hypotheses about

the driving forces of biological evolution and speciation: the Red Queen and the Court

Jester paradigms. According to the Red Queen model, the outcome of evolution primarily

occurs as a result of biotic interaction and competition, for example as in host-parasite

coevolution [66]. This is believed to be a relatively rapid evolutionary process. In the

CRISPR system, such coevolution is likely to be limited to the less-resistant subpopulation

with relatively few spacers. The resultant distribution of spacers (even taking into account

possible mutations in the phage population) will be at equilibrium for a relatively long time

period. According to the Court Jester paradigm, evolutionary changes such as speciation

occur as a rare event in response to an unpredictable change in the physical environment

[67]. For the CRISPR system, this would imply that alteration in the parameters caused by

environmental change should affect the entire microbial population, most severely affecting

those located in the tail of the spacer distribution. Such events may result in unpredictable

mass extinction of microbes. Newly established populations may reform the same ecosys-

tem, or they may organize into new interspecies relationships, which may create or

extinguish some ecological niches, depending on various biotic and abiotic factors. Thus,

our model has important implications for both the Red Queen and the Court Jester

scenarios.

Finally, we would like to mention a few immediate extensions of the current study both in

terms of theory and empirical work. Firstly, one can extend the current mathematical model to

explicitly include the impact of the diversity of spacers on their statistical distribution (the

importance of spacer diversity was emphasized in a few previous works) [16, 63]. For revealing

statistical distribution of spacers from data (GenBank), it would be important to take into

account the occurrence of CRISPR systems per genome. This will require to adjust the cur-

rently existing strong bias towards a limited number of medically important and model organ-

isms. Future experimental work should include a more detailed quantitative description of the

number of spacers lost or added at each survival of the viral attack, so we can justify the use of

a particular distribution (surprisingly enough, this is currently outside the mainstream of

CRISPR studies). We suggest that the correlation between the replication rate and the length

of CRISPR array should be explored experimentally and revealing a strong positive correlation

would support our conclusion of why supermicrobes are rare in nature. Conducting the men-

tioned experiments will allow us to provide an ultimate confirmation of the underlying mecha-

nism of the emergence of fat tail.

Also, a spatially explicit model—considering the spatial heterogeneity of cells—would be

essential to take into account the abortive infection scenario of CRISPR, for example building

on the study by Haerter and Sneppen [68]. It was recently shown that space structuring plays

an important role in CRISPR [69], therefore explicitly modelling spatial dynamics of bacteria-

phage interaction should be a vital continuation of the current study.
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Conclusion

In this paper, we show that the size of CRISPR arrays (the number of spacers) in microbial

populations generally follows a power law distribution with an exponential cut-off: here we

apply a combined metagenomics data and mathematical modelling approach. The main bio-

logical relevance of this finding is that we can now explain the rarity of all-resistant super

microbes (among those using CRISPR as a major defence mechanism): the model predicts

that strong immunity of such microbes should substantially reduce their fitness (replication

rates). We argue that the success of phages in nature to counterbalance an efficient immune

system such as CRISPR-Cas is possible because of (i) the rarity of microbes with long spacer

arrays and (ii) very low replication rates of such microbes. Important implication of our find-

ings is that microbial communities may become extinct due to phage invasions in the case of

environmental changes.
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