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Abstract: Oxide thin-film transistors (TFTs), including indium–gallium–zinc oxide (IGZO) TFTs, have
been widely investigated because of their excellent properties, such as compatibility with flexible
substrates, high carrier mobility, and easy-to-fabricate TFT processes. However, to increase the use
of oxide semiconductors in electronic products, an effective doping method that can control the
electrical characteristics of oxide TFTs is required. Here, we comprehensively investigate the effect of
silane-based self-assembled monolayer (SAM) doping on IGZO TFTs. Instead of a complex doping
process, the electrical performance can be enhanced by anchoring silane-based SAMs on the IGZO
surface. Furthermore, differences in the doping effect based on the structure of SAMs were analyzed;
the analysis offers a systematic guideline for effective electrical characteristic control in IGZO TFTs.

Keywords: SAM; IGZO transistors; N-doping; OTS; ODTS; carbon-chain; doping effect control

1. Introduction

Oxide semiconductors have been promising for various applications, e.g., thin-film
transistors (TFTs) for flexible [1–3] and transparent [2] display products, photodetec-
tors [3,4], and embedded sensors [5]. Compared with amorphous silicon (a-Si), oxide
semiconductors enable easy-to-fabricate processes and incur lower fabrication costs, ac-
companied by a reduced thermal budget required for three-dimensional integrations. As
an additional advantage, various morphological structures, such as nanoparticles [6], quan-
tum dots [7,8], and nanowires [9,10], can be developed to allow oxide semiconductors to
be used as high-aspect-ratio sensing layers [10]. Among oxide semiconductors, indium
gallium zinc oxide (IGZO) is the most promising candidate for next-generation applications
in various fields, such as active-matrix flat panel displays [11–13], new-concept switching
transistors [14], and neuromorphic devices [15,16]. In particular, over the past decade, sev-
eral research developments pertaining to IGZO-based devices have been reported owing
to excellent carrier mobility [17] with the aforementioned advantages.

Despite the advantages of oxide semiconductors, e.g., IGZO, it has been a challenge
to accurately control oxide-based TFT characteristics. Conventional silicon-based metal-
oxide-semiconductor field-effect transistors (MOSFETs) can control device characteristics
(i.e., threshold voltage (VTH) and carrier mobility (µ)) by doping, i.e., ion implantation.
However, appropriate doping technologies compatible with oxide semiconductors have not
been well-developed. The optimization and control of device characteristics were reported
by controlling the thickness [18] of oxide semiconductors or deposition parameters (i.e.,
temperature [19], pressure [20], or gas rate [1,21–23]). In addition, as reported previously,
inserting components such as Ga, Sn, and Si into oxide semiconductor bulks helped
tune device parameters [24]. Remote doping was proposed as the third approach. By
coating or depositing an additional layer, an increase or decrease in charge transport in
the semiconductor can be tuned. Self-assembled monolayers (SAMs) have been used as
remote doping layers [25]. They have molecular assemblies that form a chemical bond on
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the oxide surface, enabling a highly uniform and oriented domain morphology. In spite of
the trial of SAM-based doping on oxide semiconductors, accurate control of doping effects
and improvisation are still required.

Here, we present a systematic control of the SAM-based doping technique based on
molecular chain length control and annealing temperature conditions (TA = 120, 150, and
200 ◦C). We fabricated octyltrichlorosilane (OTS) and octadecyltrichlorosilane (ODTS)-
treatment-doped IGZO TFTs. With an increase in TA, we investigated the electrical char-
acteristics of the TFTs, including the carrier mobility, VTH, subthreshold swing (SS), and
on–off current ratio. This method can help control electrical properties. The length of the
carbon chain was modulated. Furthermore, we investigated the mechanism of the OTS and
OTDS doping effects by means of surface energy extraction and contact resistance analysis.

2. Materials and Methods
2.1. Device Fabrication

The device exhibited an IGZO semiconductor-based top-contact bottom-gate structure.
Figure 1a shows an optical microscope (OM) image of the devices. The SiO2/Si surface
was cleaned and sonicated in 99% acetone for 20 min. IGZO was deposited by sputtering
on a SiO2/Si substrate at 9.33 mbar in pure argon using 60 W of plasma. Then, 50 nm of
titanium was deposited as a source/drain using e-beam evaporation. All the evaporation
materials were patterned using a metal shadow mask. The channel length (L) and width
(W) of the IGZO TFT were 100 µm and 1000 µm, respectively.
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Figure 1. Image of transistor: (a) Optical microscopy image of IGZO TFT designed for experiment;
(b) image of pristine TFT; (c) image of IGZO TFT treated with OTS; (d) TFT image with ODTS treatment.

2.2. SAM Treatments

OTS (Sigma-Aldrich St. Louis, MO, USA) and ODTS (Sigma-Aldrich) have additional
8 and 18 carbon chains in trichlorosilane (HCI3Si), respectively. We prepared 5 mL of a 1%
v/v solution by mixing OTS and chlorobenzene (C6H5Cl) (Sigma-Aldrich) [26]. Moreover,
ODTS was mixed using the same method with a 1% v/v concentration. The solutions were
mixed for 6 h at room temperature using a magnetic stirrer. To perform the SAM treatment
on top of IGZO surfaces, we applied UV-ozone treatment to the IGZO surface. UV-ozone
treatment induces covalent bonding between the IGZO surface and trichlorosilane by
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forming OH on the IGZO surface. A solution of OTS and ODTS was spin-coated at
3000 rpm for 10 s on the IGZO surface where OH was formed. After the coating was
complete, the TFT was dried in air for 20 min on a hot plate at 120 ◦C [25]. These processes
were simply shown in Figure 2a.
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Figure 2. (a) Schematic of SAM treatment processes of IGZO-based transistor; (b–d) SEM image of the IGZO surface with
the SAM treatment after dry at 120 ◦C.

2.3. Annealing Process and Characterization

The samples were annealed in air for 30 min at TA = 150 and 200 ◦C and given enough
time to cool down to room temperature before measurement. All measurements were per-
formed in air at room temperature with a Keithley 4200 semiconductor parameter analyzer.

3. Results and Discussion
3.1. Electrical Properties of IGZO-Based TFTs by SAM Doping Effects

First, we prepared an IGZO-based TFT for SAM treatment. The semiconductor IGZO
was deposited on Si/SiO2 via sputtering. Then, the source and drain were deposited
using the e-beam evaporation method. Before spin-coating, we performed the UV-ozone
treatment to attach SAM to the IGZO surface. The OTS and ODTS solutions were spin-
coated on the IGZO surface (Figure 2a). Figure 1b–d shows the OM images of the pristine
IGZO, OTS-treated IGZO, and ODTS-treated IGZO TFT, respectively. We also characterized
the surfaces of the respective devices using a scanning electron microscope (SEM) to
investigate the morphological change by the SAM treatment. Figure 2b–d shows the SEM
images of the pristine IGZO, OTS-treated IGZO, and ODTS-treated IGZO, respectively,
which exhibited negligible variation due to the thin nature of the SAM layer [27].

Next, we investigated electrical characteristics of the fabricated TFTs depending on the
SAM’s carbon change length and TA. We measured both transfer and output characteristics
of the devices, and, after the respective SAM treatment (i.e., OTS or ODTS), we measured
the corresponding devices under the same measurement condition (Figure 3a–f). Compared
to the measured electrical characteristics of the pristine IGZO TFT, the OTS-treated IGZO
TFT at TA = 120, 150 ◦C provided the increase of the VTH and accordingly, the decrease of
the on-current (at VG = 40 V). However, at TA = 200 ◦C, we observed an enhancement of
the electrical characteristics; the on-current was doubled (64–121 µA) (Figure 3b,c). The
ODTS-treated IGZO at TA = 200 ◦C showed further improved characteristics. To be specific,
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the on-current was improved (×5.38 times higher from 40 ± 9.27 µA to 214 ± 0.37 µA)
compared to the counterpart of the pristine (Figure 3d–f). This effect was caused by the
alignment of trichlorosilane carbon chains (Figure 4a). When the carbon chains are aligned
by the high temperature annealing, a dipole is formed on the IGZO surface, and electrons
are injected into the channel, increasing the on-current.

To verify reliability and uniformity of the SAM treatment doping effects, we performed
the statistical experiments by measuring 8 devices for each condition. Figure 4b–d show
the trend of the device parameters (i.e., VTH, effective carrier mobility, and SS) as a function
of TA and the SAM carbon chain length. Interestingly, after the SAM treatment, the OTS
and ODTS-treated TFTs, VTH increased, and the on-off current ratio decreased, which can
be explained by the following: As the OTS or ODTS combined with Si-O-H, HCl was
generated, and HCl still remained at 120 ◦C, possibly acting as a charge trap [28]. However,
after annealing at TA = 200 ◦C, the dipole formed by the aligned carbon chain reduced VTH
and improved the effective carrier mobility. The OTS-treated TFT was 1.3 times increase
in effective carrier mobility (1.63–2.14 (cm2/VS), in saturation region). Especially, ODTS-
treated TFTs showed 2.5 times larger (2.68–4.27 (cm2/VS), in saturation region) increase
in effective carrier mobility compared with the pristine TFT. Through the above results, it
was concluded that the doping of the OTS and ODTS treatments was effective.

Regarding the difference between the doping effects of OTS and ODTS, OTS and ODTS
had carbon chain lengths of 8 and 18, respectively. The observed higher improvement by
ODTS compared to that by OTS indicated the difference in the doping effect according to
the length of the carbon chain; as a relatively larger dipole is formed by the long carbon
chain, thereby controlling the doping effect [29–31].
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3.2. Contact Resistance Analysis

To investigate the doping effects in terms of contact resistance (RC), we used the
transfer line method (TLM). Figure 5a shows a huge resistance, observed in the undoped
transistor (2RCW = 33.06 kΩ·cm at VG = 10 V; 2RCW = 13.35 kΩ·cm at VG = 20 V). How-
ever, OTS- and ODTS-doped transistors provided a lower Rc compared with the coun-
terpart of the pristine TFTs (OTS-treated TFT: 2 RC·W = 5.75 kΩ·cm at VG = 10 V and
2 RC·W = 3.24 kΩ·cm at VG = 20 V, in Figure 5b) (ODTS-treated TFT: 2 RCW = 1.34 kΩ·cm
at VG = 10 V and 2 RCW = 859 Ω·cm at VG = 20 V, in Figure 5c). The observed Rc reduction
resulted from the thinner Schottky barrier by the dipole effect of the SAM treatment; the
SAM bonded to the upper surface of the IGZO, thereby inducing energy band bending
by the positive dipole effect, and the contact resistance was reduced due to the thinner
Schottky barrier, which is consistent with the results of previous studies [29–31]. As a
result, ID increased due to the decrease in RC, thereby increasing the on–off current ratio
occurring. Figure 5d shows the influence of the transition of the chain length and contact
resistance. Based on the above results, it was concluded that RC and the SAM treatment
doping are significantly related. The electrical characteristics of the TFTs can be modulated
based on the carbon chain length of the trichlorosilane carbon chains with the variable TA.
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3.3. Contact Angle and Surface Energy Analysis

In this study, we analyzed the contact angle and surface energy. Deionized water and
formamide were used to measure the contact angle and surface energy. The surface energy
was derived from the equation below [32,33]:

γsv = γsl + γlv·cosθ (1)

where θ = contact angle, γsl = the solid/liquid interfacial free energy, γsv = the solid surface
free energy, γlv = the liquid surface free energy.

Figure 6 shows the transition of the contact angle and surface energy depending on
the SAM treatment and TA. As shown in Figure 6a,b, the contact angle increased in the
OTS and ODTS-treated IGZO surface more than the counterpart in the pristine IGZO
surface [33,34] and increased further at TA = 150 ◦C and 200 ◦C (i.e., the OTS-treated IGZO:
60.38–103.68◦, the ODTS-treated IGZO: 60.38–112.70◦, by DI water droplet), and the surface
became hydrophobic as a function of TA, which was also supported by the extracted surface
energy values; From the baseline of the surface energy (42.26 mJ/m2), the OTS treatment at
TA = 200 ◦C reduced the surface energy value to 15.76 mJ/m2 while the ODTS treatment at
TA = 200 ◦C reduced the surface energy value to 9.9 mJ/m2. These results indicated that
both OTS and ODTS SAM treatment enabled the surface to be hydrophobic as the SAM
molecules became aligned with increasing TA.
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4. Conclusions

In summary, we demonstrated the systematic control of the SAM-based doping tech-
nique based on molecular chain length control and annealing temperature conditions
(TA = 120, 150 and 200 ◦C). By simply spin-coating OTS and ODTS on top of the prefabri-
cated IGZO transistors, the n-doping effects were obtained. As TA increased and the carbon
chain length became larger, the electrical properties were enhanced, providing increased
effective carrier mobility, lower VTH, and lower SS. Furthermore, the mechanism of the
doping method was investigated by means of the contact resistance analysis and surface
energy measurement. The control of the SAM doping through the study is expected to
offer a helpful guideline for obtaining high-performance doping techniques using SAMs.
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authors have read and agreed to the published version of the manuscript.
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