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Air pollution threatens human health, necessitating effective and convenient air quality monitoring.
Recently, there has been a growing interest in using camera images for air quality estimation. However, a
major challenge has been nighttime detection due to the limited visibility of nighttime images. Here we
present a hybrid deep learning model, capitalizing on the temporal continuity of air quality changes for
estimating outdoor air quality from surveillance images. Our model, which integrates a convolutional
neural network (CNN) and long short-term memory (LSTM), adeptly captures spatial-temporal image
features, enabling air quality estimation at any time of day, including PM2.5 and PM10 concentrations, as
well as the air quality index (AQI). Compared to independent CNN networks that solely extract spatial
features, our model demonstrates superior accuracy on self-constructed datasets with R2 ¼ 0.94 and
RMSE ¼ 5.11 mg m�3 for PM2.5, R2 ¼ 0.92 and RMSE ¼ 7.30 mg m�3 for PM10, and R2 ¼ 0.94 and
RMSE ¼ 5.38 for AQI. Furthermore, our model excels in daytime air quality estimation and enhances
nighttime predictions, elevating overall accuracy. Validation across diverse image datasets and
comparative analyses underscore the applicability and superiority of our model, reaffirming its appli-
cability and superiority for air quality monitoring.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Outdoor air quality monitoring is important to ensure public
health and mainly relies on measurements from ground stations.
Ground station-based monitoring is the most common measure-
ment method, which has high precision and stability. However, the
extensive deployment of these ground stations is impeded by the
high cost of instruments, resulting in limited monitoring areas.
Therefore, a low-cost and high-precision measurement method is
urgently required for measuring ambient air pollution.

Air pollution can be roughly distinguished through visual
observation; for example, air quality can be evaluated simply based
on sky color (blueness) or the edges of distant buildings. This
phenomenon is a consequence of the way light interacts with
airborne particles, predominantly through atmospheric scattering,
ing Normal University, Nanj-
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influencing the process of visual perception [1]. The light reflected
by the object's surface is attenuated and observed after being
scattered by the atmospheric particles. Likewise, ambient light
scatters upon encountering these particles, reaching the observer,
resulting in the loss of object information and color deviation in
imaging [2,3]. The degree of scattering varies with the size and
concentration of the particles in the air, resulting in diverse visual
effects [4]. Consequently, this observation has inspired researchers
to use visual images captured by cameras to infer air quality levels
around the range of the camera's view. Owing to its convenience
and low cost of data acquisition, image-based air pollution detec-
tion has become an important development direction in recent
years. This method can monitor air quality in areas lacking moni-
toring stations or during station malfunctions.

Accordingly, several studies have proposed efficient and accu-
rate methods for estimating air quality based on visual images
captured by portable cameras, smartphones, or surveillance cam-
eras. These approaches can be roughly divided into three cate-
gories. (1) Physical model-based methods, where the atmospheric
iety for Environmental Sciences, Harbin Institute of Technology, Chinese Research
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reflectance or medium transmission is calculated from images ac-
cording to physical theories and models, such as the atmospheric
scattering model [1] or dark channel prior [3], followed by the
implementation of a simplified particulate matter model [5] or
establishment of a linear relationship to determine PM2.5 or PM10
concentrations [6e8]. This type of method is implemented with
reliable theoretical support, but its estimation accuracy remains
unsatisfactory due to the use of simplified models. (2) Traditional
machine learning-based methods focus on the statistical relation-
ship between visual image features and air quality data. According
to atmospheric scattering theory, the size and distribution of at-
mospheric particulate matter affect the characteristics of the
collected images [4]. Therefore, researchers have previously
deduced air quality based on the differences in the image features
under different air pollution conditions, such as image color [9,10],
saturation [11,12], contrast [13,14], and edges and textures [15e17].
These studies mostly adopted linear regression [18,19], random
forest [20], support vector regression (SVR) [13,16], and decision
trees [10,17] to establish statistical models between image features
and particulate matter indicators such as PM2.5, PM10, or the air
quality index (AQI), which is a comprehensive measure of air
cleanliness or pollution in a particular area and calculated by
measuring the concentration of several harmful pollutants in the
air, including O3, PM2.5, PM10, CO, SO2, and NO2. While these ma-
chine learning-centric methods are straightforward and effective,
the choice of image attributes for modeling varies and is often
subjective across different studies. (3) Deep learning-based
methods. To avoid subjectivity in feature selection, deep learning
has gainedwidespread acceptance for air pollution estimation from
images due to its capacity to autonomously learn image features.
Recently, researchers have used deep learning methods to accu-
rately classify the air quality level (AQL) using images [21e24].
Additionally, these techniques have been employed to obtain ac-
curate quantitative assessments of particulate matter (PM) con-
centrations or AQI by modifying the objective and activation
functions of the deep neural network [25e28], even to estimate
ultrafine particle pollution by combining the street-view images
and satellite or audio data [29,30].

Image-based air quality monitoring has thus shown remarkable
progress; however, certain shortcomings remain. The predominant
focus of prevailing methods, whether traditional or deep learning
methods, revolves around estimating air quality based on the
spatial features of a single image taken at a certain moment, while
only a few studies [31,32] considered the temporal dependency of
the air pollution image changes. In addition, those studies simply
focused on estimating daytime air quality. Some image features,
such as transmission and color, can be effectively calculated and
extracted from daytime images. However, they cannot be gleaned
from nighttime images with low intensity due to environmental
illumination, including sunlight and skylight, being minimal at
night, and bright spots in the scene mainly comprise light sources
such as street lamps and the windows of lit rooms [4], which es-
timates nighttime air quality remains a challenge. Kow et al. [32]
attempted to estimate air quality at night, but daytime and night-
time air quality were predicted based on two separate models.
Therefore, there is an urgent need to develop a comprehensive
method to estimate air quality at any time during a day.

Indeed, air pollution is not a static process d existing temporal
continuity in its revolution from one moment to the next, and the
same is true for air quality images taken over time. Thus, image-
based air quality estimation should be treated as a time series
problem rather than a static image problem. Images of previous
phases can provide useful information to help infer the air quality
of the next phase. Therefore, we propose a hybrid deep learning
model that takes image sequences as an input, applies a
2

convolutional neural network (CNN) to extract the spatial features
of each image, and integrates long short-term memory (LSTM) to
learn temporal information from sequential images, to improve air
quality estimation at any time during a day.

The main contributions of this study cover the following:

(1) Three time-series image datasets were constructed with
PM2.5, PM10, and AQI labeled for air quality assessments,
covering both daytime and nighttime images captured by
surveillance cameras. The Shanghai dataset was used to test
the model's effectiveness, and two other datasets were used
to test applicability.

(2) Considering the temporal correlation of air quality changes, a
hybrid deep learning model was designed to improve the
estimation accuracy of air quality at any time, especially at
night, by incorporating CNN and LSTM to learn the spatio-
temporal features of image sequences and build a regression
relationship between features and air quality.
2. Materials and methods

2.1. Datasets

There are few publicly available time-series datasets for image-
based air quality assessments, so three image datasets (I, II, and III)
based on surveillance cameras were constructed, where each image
corresponded to three air quality indicators (PM2.5 concentration,
PM10 concentration, and AQI). Dataset I contained a total of 8132
hourly imageswith the scene of Lujiazui extracted from thewebsite
of the Shanghai Municipal Bureau of Ecology and Environment
(https://sthj.sh.gov.cn/) using web crawler technology, spanning
between 00:00 on January 1 and 23:00 on December 31, 2021,
including 4353 daytime (06:00e18:00) images and 3779 nighttime
(19:00e05:00) images (the time division references Kow et al.
[32]). Dataset II contained a total of 2691 hourly images with the
scene of the Xianlin Campus of Nanjing Normal University captured
by our surveillance camera hourly from 00:00 on July 26 to 23:00
on December 31, 2021, including 1413 daytime images and 1278
nighttime images. Dataset III contained a total of 6623 hourly im-
ages with the scene of a nearby community provided by the
Department of Ecology and Environment of Jiangsu Province; im-
ages were taken from 00:00 on January 1 to 17:00 on November 21,
2021, including 3801 daytime images and 2822 nighttime images.
Fig. 1 a, b, and c show the image scenes of the three datasets,
respectively.

The corresponding air quality data for each image were
collected from the historical hourly data of the air quality moni-
toring station closest to the photographing location published by
the China National Environmental Monitoring Centre. The relative
positions of each camera point to its nearest air quality monitoring
stations are presented in Fig. 1 d, e, and f, respectively. The distance
between the three photographing points and their monitoring
stations was <4 km and within the general spatial representative
radius of urban monitoring stations, which is defined by the tech-
nical regulation for selection of ambient air quality monitoring
stations [33], demonstrating the rationality of taking the mea-
surement data of these nearest monitoring stations as the labels of
the images.

There was a small amount of missing data in the images and air
quality data throughout the year. To avoid uncertain errors, we
removed the hour records containing confidential data. Then, we
classified the preprocessed data by daytime and nighttime and
calculated the maximum value (Max), minimum value (Min), mean
value (Mean), and standard deviation (Std) of each air quality

https://sthj.sh.gov.cn/


Fig. 1. Image scenes and data acquisition locations of the three image datasets. aec, The image scenes of Datasets I (a), II (b), and III (c); def, The location maps of the image
photographing points and their nearest air monitoring stations of Datasets I (d), II (e), and III (f).
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indicator within the respective datasets. The calculation formulas
of these metrics are shown in equations (1)e(4).

xmax ¼maxðx1; x2;…; xNÞ (1)

xmin ¼minðx1; x2;…; xNÞ (2)

x¼ 1
N

XN

i¼1

xi (3)

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðxi � xÞ2
vuut (4)

In these equations, N is the sample size, xi is the value of the ith
sample (i ¼ 1; 2;…;N), and xmax, xmin, x, and s are the maximum
value, minimum value, mean value, and standard deviation of the
sample set fx1; x2; …; xNg, respectively. Finally, the specific data
statistics are presented in Table 1. The mean and standard deviation
of the three datasets in Table 1 imply that the values of PM2.5, PM10,
and AQI are mainly distributed in the low values. As also can be
seen, Dataset I has the widest value ranges for the three air quality
indicators among the three datasets. The value range of PM2.5 in the
Table 1
Data statistics of the three image datasets.

Indicator Time Dataset I Da

Max Min Mean Std Ma

PM2.5 (mg m�3) Daytime 140 1 27.85 20.21 12
Nighttime 159 1 28.02 20.71 13
Whole day 159 1 27.93 20.45 13

PM10 (mg m�3) Daytime 834 1 44.06 37.48 18
Nighttime 559 1 42.78 37.17 17
Whole day 834 1 43.47 37.34 18

AQI Daytime 500 11 49.36 30.49 16
Nighttime 459 10 47.76 30.47 18
Whole day 500 10 48.61 30.49 18

3

daytime is slightly smaller than that in the nighttime, whereas the
value ranges of the other two indicators are larger in the daytime,
especially that of PM10. There is a small difference between the
daytime and nighttime data ranges for each air quality indicator in
Dataset II, while each air quality indicator in Dataset III has a larger
value range in the daytime.

Then, we analyze the temporal correlations among the air
quality time series according to autocorrelation functions [34]. As
shown in Fig. 2, an obvious descending trend is observed with the
lag time, reflecting that earlier status has a weaker influence on the
current status. Additionally, the autocorrelation coefficients are
higher than 0.5 when the time lag is less than 10 h, indicating a high
temporal correlation. These findings can help select the appropriate
sequence lengths for our estimation tasks. In this study, we
employed these three datasets for different purposes. Dataset I was
used to test the model performance, while Datasets II and III were
employed to verify the applicability of the model's methodology.

2.2. CNN-LSTM model

We designed a hybrid deep learning model, namely CNN-LSTM,
to construct robust regression relationships between images and
multiple pollutants. This model facilitates the estimation of air
quality at any time by integrating CNN and LSTM networks. This
taset II Dataset III

x Min Mean Std Max Min Mean Std

7 2 25.79 18.33 151 2 31.63 21.18
6 2 27.06 20.07 133 1 33.87 22.02
6 2 26.40 19.19 151 1 32.58 21.57

0 2 53.22 28.72 551 2 66.55 45.04
8 2 57.39 32.16 499 1 69.59 46.71
0 2 55.20 30.47 551 1 67.85 45.78

8 11 53.50 23.34 451 10 61.09 30.64
0 9 51.75 23.17 399 9 60.98 31.21
0 9 52.67 23.28 451 9 61.04 30.88



Fig. 2. The variations of the autocorrelation coefficient under different time lags.

Fig. 3. The framework of the proposed CNN-LSTM model (VGG16 as CNN extractor for
example).
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integration enables the model to learn the spatiotemporal infor-
mation of images. The proposed method is briefly described as
follows.

CNN models have been identified as effective deep neural net-
works that can learn robust spatial features from images for object
recognition and classification tasks. However, all images input into
a CNN are considered independent of each other, disregarding any
contextual relationships between them. Recurrent neural networks
(RNN) are specifically designed to compensate for this inadequacy,
and the LSTM network is the most popular RNN for learning long-
term and short-term dependencies between sequential data.
Owing to the strong temporal continuity of air pollution changes,
CNN and LSTM can be combined to learn the differences in visual
features and temporal correlation between consecutively acquired
images to improve image-based air quality evaluations, especially
the estimation of nighttime air quality.

The overall framework of the proposed CNN-LSTM model is
presented in Fig. 3. First, the CNN architecture without fully con-
nected layers and an output layer was used to extract the spatial
features of images. We aimed to exploit LSTM to learn the
contextual information between serial images; thus, in contrast to a
general CNN that uses a single image with dimensions ðH;W ;CÞ as
its input, an image sequence with dimensions ðT ;H;W ;CÞ consist-
ing of multiple images taken in succession served as the input for
our CNN extractor, where H, W , and C are the image height, width,
and the number of color channels, respectively, and T is the length
of an image sequence. The time gap of T determines the temporal
resolution of the model. Given that the data we gathered in this
investigation are recorded at hourly intervals, the temporal reso-
lution of the predictions aligns with this hourly frequency.

Then, we seamlessly fused the CNN and LSTM networks; more
specifically, the LSTM architecture was directly linked behind the
processed CNN architecture and received the spatial features
output from the CNN extractor as its input. These spatial features
were stored and written to the memory cells of LSTM, and the
temporal information was read and transferred via the interacting
layers (known as “gates”) in the hidden state of each cell. There-
after, two fully connected layers were added to synthesize and map
the spatiotemporal features extracted by LSTM to the target vector.
The activation function nested in the final fully connected layer was
set as the sigmoid function to fit the nonlinear relationship be-
tween the spatiotemporal features and the target labels normalized
4

to accelerate model convergence. The proposed CNN-LSTM
network is a multivariate output regression model that yields
three estimated values (PM2.5, PM10, and AQI) simultaneously
because each target label contains three air quality indicators.

In practice, customizing a new CNN and optimally adjusting its
parameters is a complex and difficult process. Additionally, a suf-
ficiently large dataset is required to initialize the model weights.
Thus, we utilized a pre-trained CNN based on the transfer learning
method as the feature extractor to reduce the cost of building and
training a new CNN architecture. This study tested two common
pre-trained CNN schemes: VGG16 and ResNet50. These architec-
tures had their model weights initialized using the ImageNet
dataset, a large benchmark dataset for image classification and
detection. Moreover, we added the same global average pooling
(GAP) as the ResNet50 network at the end of the architecture when
using the VGG16 network as the feature extractor, which could
reduce the dimensions of the feature maps and the number of
model parameters to avoid overfitting.
2.3. Model training

The models in our work are implemented using Python 3.7 and
the TensorFlow deep learning framework, and the server configu-
ration for training the model is Intel(R) Xeon(R) Silver 4216 @
2.10 GHz CPU, NVIDIA GeForce GTX 2080Ti GPU, and Window 10
system. Some parameters need to be initialized before training the
model. The loss function was set as the mean squared error (MSE)
to measure the accuracy of the model training. The learning rate
was set to 0.00001 through trial and error and was used to update
the model weight. The batch size was set to 8, representing the
number of samples utilized in one iteration and can consume
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excessive computer memory if too large. Then, all images were
resized to 224� 224 pixels to agreewith the input image size of the
CNN. To accelerate the convergence of the model training, the pixel
values of each image in our dataset were scaled from 0e255 to 0e1,
and the PM2.5, PM10, and AQI values were normalized to 0e1 ac-
cording to their respective upper limits (for example, the upper
limit of AQI was 500).

Furthermore, we used two-fold cross-validation for model
training and testing. More specifically, assuming a total of N image
sequence samples of length T ,N=2 samples were randomly selected
as the training set, and the other N=2 samples were used as the
testing set. Then, the two sets were switched, taking the second set
as the training set and the first as the testing set. The average cross-
validation result was regarded as the final prediction result of the
model.

2.4. Evaluation metrics

Two common regression metrics were used to evaluate the
prediction accuracy of the proposed CNN-LSTM model: the coeffi-
cient of determination (R2) and rootmean squared error (RMSE). R2,
falling within the range of 0e1, reflects the closeness of fit between
the ground truth data and the estimated values for air quality in-
dicators; RMSE is used to calculate their errors. These metrics are
defined as follows: n is the number of samples, yi and y0i are the ith
ground truth and the corresponding estimated value (i ¼ 1;2;…;n),
and y is the mean of all ground truth data. A higher R2 value and
lower RMSE value indicate better model prediction performance.

R2 ¼1�
Pn

i¼1
�
yi � y0i

�2
Pn
i¼1

ðyi � yÞ2
(5)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

�
yi � y0i

�2
vuut (6)

3. Results and discussion

3.1. Overall results

3.1.1. Model accuracy
We applied the pre-trained VGG16 and ResNet50 as CNN ex-

tractors in the CNN-LSTM network to obtain two schemes, VGG16-
LSTM and ResNet50-LSTM, and tested and compared thesewith the
independent VGG16 and ResNet50 models on our constructed
Shanghai dataset (Table 2). Independent CNNs demonstrated a
moderate estimation accuracy, whereas the proposed hybrid model
exhibited superior performance in comparison, with more than
0.12 higher at R2 and ~3.5 mg m�3 lower at RMSE for PM2.5, more
than 0.19 higher at R2 and more than 8.3 mg m�3 lower at RMSE for
Table 2
Prediction accuracy (R2 and RMSE) of different models on the constructed air quality
image dataset.

Model PM2.5 (mg m�3) PM10 (mg m�3) AQI

R2 RMSE R2 RMSE R2 RMSE

VGG16 0.82 8.61 0.73 19.46 0.77 14.68
ResNet50 0.79 9.34 0.62 23.13 0.71 16.56
VGG16-LSTM 0.94 5.11 0.92 11.16 0.94 7.91
ResNet50-LSTM 0.92 5.87 0.88 13.18 0.92 8.73

5

PM10, and more than 0.17 higher at R2 and more than 6.7 lower at
RMSE for AQI. These results demonstrate the feasibility and effec-
tiveness of our proposed CNN-LSTM model based on surveillance
images for air quality estimation, and the accession of the LSTM
network significantly improved the accuracy of estimation.

All hourly estimates (7213 samples) of each air quality indicator
derived from VGG16-LSTM and ResNet50-LSTMwere close to those
of ground-based measurements; most data samples were evenly
scattered around the 1:1 line, with strong slopes (~0.89e0.93) and
small intercepts (approximately 3.7e9.1), especially for the low-
value range with the greatest data density (Fig. 4). However, the
estimation accuracy of each model for PM2.5 was higher than those
for PM10 and AQI; this resulted from the larger range of PM10 and
AQI values but the small sample size of high values, according to the
data distribution in Section 2.1. It can be seen from the best-fit lines
that the proposed CNN-LSTMmodel somewhat underestimated the
air quality values on average, which was also caused by the high-
value samples. The small number of samples for high-pollution
cases hindered the ability to train the model, resulting in a
serious underestimation of the high concentrations and increased
estimation error.

Overall, the hybrid CNN-LSTM network has a strong predictive
ability for PM2.5, PM10, and AQI, and the combination of CNN and
LSTM efficiently improved the model's performance. VGG16-LSTM
demonstrated the best results among the two CNN-LSTM schemes
and served as the CNN-LSTM model in the following performance
analyses.

3.1.2. Daytime and nighttime estimation
It is challenging to estimate nighttime air quality based on im-

ages owing to the low intensity of these images. Compared with the
performance for daytime data, the accuracy of nighttime estima-
tion decreased significantly, resulting in a low overall accuracy; this
was confirmed by the separate assessment of daytime and night-
time estimates from VGG16 (Table 3). Table 3 also presents the
estimation results of VGG16-LSTM using daytime and nighttime
data for the three air quality indicators; the results demonstrate
that VGG16-LSTM worked well regardless of the time of day, with
R2 values > 0.93 and RMSE values < 5.2 mg m�3 for PM2.5, R2

values > 0.89 and RMSE values < 12.5 mg m�3 for PM10, as well as R2

values > 0.92 and RMSE values < 8.5 for AQI. Furthermore, night-
time estimates for PM10 and AQI derived from VGG16-LSTM were
more accurate than daytime estimates. This can be explained by the
daytime and nighttime data distribution in Table 1, where it is
shown that the cases with extremely high concentrations mainly
occurred in the daytime for PM10 and AQI, but these high values had
a smaller sample size, causing larger errors in their estimation.

We also depicted the dynamics of ground truths and estimated
air quality values (PM2.5, PM10, and AQI) derived from VGG16-LSTM
for 120 h over five consecutive days (March 26e30, 2021), as shown
in Fig. 5. Close fits were observed between the ground truths and
estimated values among the different air quality indicators, even
during the transition from day to night and from night to day.
Although high values were underestimated (see the right side of
Fig. 5), the increases and decreases in air quality were perceived
promptly and accurately.

The proposed CNN-LSTM model thus enhanced nighttime pre-
diction accuracy and improved the overall model performance. This
illustrates that temporal information is crucial in air quality esti-
mations and should be carefully considered when introducing
regression models for correlating images and air quality.

3.1.3. Comparison of different methods
We compared the performance of the proposed method with

other traditional machine learning and deep learning methods



Fig. 4. Density scatterplots of the results for three air quality indicators estimated by two CNN-LSTM models. aec, PM2.5 (a), PM10 (b), and AQI (c) hourly estimates derived from
VGG16-LSTM. def, PM2.5 (d), PM10 (e), and AQI (f) hourly estimates derived from ResNet50-LSTM. Dashed lines denote 1:1 lines, and solid lines denote best-fit lines from the linear
regression. The search radius for data density is two units.

Table 3
Statistical results of daytime and nighttime estimation derived from VGG16 and
VGG16-LSTM.

Indicator Time VGG16 VGG16-LSTM

R2 RMSE R2 RMSE

PM2.5 (mg m�3) Daytime 0.829 8.35 0.937 5.07
Nighttime 0.816 8.89 0.938 5.15
Whole day 0.823 8.61 0.937 5.11

PM10 (mg m�3) Daytime 0.773 17.85 0.895 12.42
Nighttime 0.675 21.16 0.940 9.46
Whole day 0.729 19.46 0.916 11.16

AQI Daytime 0.818 13.01 0.926 8.43
Nighttime 0.711 16.39 0.945 7.26
Whole day 0.768 14.68 0.935 7.91
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[13,17,26,28]. Our experimentation employed an image dataset
provided by Liu et al. [13], consisting of only 1954 daytime images
(from 08:00 to 16:00) with the same scene as Dataset I. These
images were solely annotated with PM2.5 concentrations, ranging
from 0 to 200 mg m�3. Due to the poor temporal continuity of the
images in this dataset, we only generated 1032, 689, and 439
sequence samples with lengths 2, 3, and 4, respectively. Subse-
quently, we applied the VGG16-LSTM model to predict. Among
these compared methods, Zhang et al. [28] and our method only
depend on sequence images without using supplements of any
other data. However, our combined model structure is generally
more straightforward than the DCCN-ALSTM, which combines the
DenseNet-121 architecture with a stacked module of three LSTM
layers based on an attention mechanism. The comparative results
on this daytime dataset are shown in Table 4. Our proposedmethod
outperforms the conventional feature-based machine learning
methods and even exceeds other hybrid models, such as the
6

combination of traditional machine learning and deep learning
methods or the combination of different deep learning methods,
thereby further demonstrating the superiority of the proposed
method.

3.2. Performance analysis

3.2.1. Influence of image sequence length
In time-series models such as LSTM, the length of the input

sequence is a key parameter. To this end, we analyzed the influence
of image sequence length employed in the LSTM module of our
proposed hybrid model on prediction accuracy. According to the
temporal correlation of the air quality time series in Fig. 2, we set
the length of the image sequence (T) to 2e9. Consequently, our
dataset produced corresponding sequence samples amounting to
7957, 7791, 7633, 7486, 7346, 7213, 7082, and 6957. These sequence
samples of different lengths were then separately input into the
VGG16-LSTM model for training and testing, and the estimated
results with different sequence lengths are shown in Fig. 6. To make
a clearer comparison, the results of VGG16, which takes a single
image as input, were depicted at T ¼ 1 in the figure. The results
show that even if the sequence length (T) was set to the minimum
of 2, the prediction accuracies still exceed those of the independent
CNNs whose input is a single image. This further supports the
assertion that the deep learningmodel combining CNN and LSTM is
extremely effective.

In addition, the estimated accuracy of VGG16-LSTM under
different sequence lengths showed the same trend for the three air
quality indicators. Specifically, as the sequence length increased,
the performance initially exhibited a rapid increase, then reached a
stable phase, and eventually demonstrated a slight decline. This can
be attributed to the inadequate temporal information provided by
excessively short sequence length, whereas the events with a long-



Fig. 5. Dynamics of ground truth data and estimated air quality values from VGG16-LSTM for five consecutive days. The two color-coded grid lines represent the time-dividing lines
from night to day and day to night, respectively.

Table 4
Performance comparison of our method with other methods on the same PM2.5 daytime image dataset.

Method Algorithm Additional data R2 RMSE (mg m�3)

Liu et al. [13] SVR Relative humidity and solar zenith angle 0.76 13.65
Luo et al. [26] CNN-GBM Weather conditions and photographing time 0.85 10.02
Wang et al. [17] GBDT Relative humidity, photographing month, and time 0.88 10.42
Zhang et al. [28] DCCN-ALSTM (T ¼ 4) - 0.71 14.07
This study VGG16 - 0.84 11.86

VGG16-LSTM (T ¼ 2) - 0.92 7.37
VGG16-LSTM (T ¼ 3) - 0.93 6.50
VGG16-LSTM (T ¼ 4) - 0.90 7.53

Fig. 6. Variations in the prediction performance by the image sequence length. The
points at T ¼ 1 are from the results of VGG16. The unit of RMSE of PM2.5 and PM10 is ug
m�3.
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time lag have weak effects in a long sequence and may make the
model unnecessarily complex; both extremes hinder the prediction
accuracy. Accordingly, setting an appropriate sequence length for
time-series models is important. By comparing the experimental
7

results in Fig. 6, the sequence lengths of 5e8 seem to be appropriate
for our model, under which the estimated R2 of all air quality in-
dicators is higher than 0.9. Then, a sequence length of 7 was
selected for this work because PM2.5, PM10, and AQI can obtain the
highest average accuracy at T ¼ 7. Unless otherwise specified, the
experiments in this study were based on this configuration.
3.2.2. Influence of the ratio of daytime and nighttime images in a
sequence

There are large differences in spatial features between daytime
and nighttime images. It remains uncertain whether predictions
can be affected by the presence of both daytime and nighttime
images in a sequence, as well as whether the ratio of the two image
types in the sequence affects the estimation accuracy. To answer
these questions, we analyzed the prediction results of VGG16-LSTM
with an image sequence length of T ¼ 7 to explore the influence of
the ratio of the number of daytime and nighttime images in the
sequence and provided the results of VGG16 at the corresponding
predicted time for comparison, as shown in Fig. 7.

The prediction accuracies of VGG16-LSTM under different ratios
were clearly stable without large fluctuations and consistent with
the overall accuracy shown in Section 3.1.1. This indicates that the
ratio of daytime and nighttime images in the sequence had no
obvious effect on the performance of VGG16-LSTM. Additionally,
according to the results of VGG16 and VGG16-LSTM at multiple
timings, VGG16-LSTMwasmore robust than VGG16; this result was



Fig. 7. Estimation accuracies of different ratios of daytime and nighttime images in a
sequence: a, PM2.5; b, PM10; c, AQI. The labels on the horizontal axis refer to the ratio of
the daytime to nighttime images in the sequence and the corresponding predicted
time. For example, "1:6 (6)" indicates that the ratio of daytime images to nighttime
images in the sequence used for a prediction at 06:00 is 1:6.
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observed as the prediction accuracy of VGG16 is easily affected by
image changes caused by non-air pollution factors, as it is highly
dependent on the spatial features of images. However, the CNN-
LSTM model could perceive such changes and reduce their effects
by learning the temporal information from the image sequence.
3.2.3. Key spatial features extracted from images
As mentioned in the Introduction, air quality variation can be

evaluated by the sky color or building edge; thus, it is important to
further explore the specific spatial features within the image scene
that our model primarily relies on. We visualized the spatial fea-
tures of images extracted by different vgg blocks in the CNN
module. Table 5 shows the feature examples of the daytime and
nighttime images taken at 13:00 on January 01, 2021, and 01:00 on
September 02, 2021, respectively. A comparative analysis revealed
that the features of the daytime images were indeed more obvious
and clearer than those of the nighttime images, which is why the
accuracy of the daytime estimation is higher than that of the
nighttime estimation in the independent CNN results. The low-
level features extracted by the initial vgg block have more
obvious textures and edges, while the high-level features extracted
8

by the deeper vgg blocks are increasingly more abstract. However,
both low-level and high-level features extracted by our model are
mainly concentrated on the building regions in the image,
regardless of whether the images are from daytime or nighttime.
Thus, it can be concluded that building features are the key spatial
features learned by the proposed model for capturing air quality
variations. This observation can be further confirmed by relevant
studies [17,23,26,32].

3.2.4. Applicability of the proposed method
The viability of the suggested model necessitates validation

across diverse datasets encompassing varied scenarios. Therefore,
we incorporated Datasets II and III into our study. Initially, all im-
ages were resized to dimensions of 224 � 224. This yielded 2256
image sequences from Dataset II and 4852 image sequences from
Dataset III. However, air quality images and pollution trends exhibit
regional disparities due to distinct regional climatic and atmo-
spheric conditions [32]. Consequently, the model trained on Data-
set I, collected at a fixed location, may not achieve the expected
accuracy when directly applied to the datasets collected in other
regions. Therefore, it needs to be retrained and adjusted with local
data for other regions. To this end, we adopted two training stra-
tegies to test the applicability of the proposed model on Datasets II
and III: one that employed the same strategies mentioned in Sec-
tion 2.3 for both training and testing and another that utilized 10%
of the new data to fine-tune the trained model on Dataset I and
tested it with the remaining data as referenced in Luo et al. [26].
The validation results for Datasets II and III based on the two
training strategies are shown in Fig. 8. Although the total sample
sizes of Datasets II and III were much smaller than that of Dataset I,
VGG16-LSTM nonetheless achieved adequate results for the two
datasets with the same training strategy being applied, where the
overall R2 of the three air quality indicators on Dataset II was >0.84
and that on Dataset III was >0.89. Decent results were also obtained
based on the second training strategy, with R2 values greater than
0.65 on Dataset II and greater than 0.68 on Dataset III. These results
suggest that the proposed model applies to surveillance cameras
with different scenes or regions. When applying our model in other
regions, the model can be retrained from scratch if sufficient local
data is available. Otherwise, it would be a good choice to fine-tune a
trainedmodel with a small amount of data, and then apply it for the
air quality estimation.

4. Conclusion

The present study proposed a hybrid CNN-LSTM deep learning
network for image-based air quality estimation, wherein LSTMwas
integrated with a CNN to learn the spatial and temporal features
between image sequences to improve the estimation accuracy at
any time of the day. Three air-quality image datasets with different
surveillance scenes were compiled to evaluate the performance of
the proposed method. The experimental results on these datasets
show that our method enhances the estimation of nighttime air
quality, improves the overall accuracy, and surpasses independent
CNNs focused solely on extracting spatial image features, as well as
other existing machine learning and deep learning methods. This
confirms that integrating CNN and LSTM can effectively improve
prediction accuracy and the temporal information is extraordi-
narily useful for air quality estimation.

In summary, based on the captured sequential images, the
proposed CNN-LSTM network can simultaneously estimate high-
precision PM2.5, PM10, and AQI data at any time, providing a
promising solution for reliable and fast multi-pollutant estima-
tions. Further investigations may involve extending this easily
scalable measurement method from a single camera to multiple



Table 5
Feature examples of the daytime and nighttime images extracted by different layers of the proposed model.

Original image (224 � 224) The output of the first vgg block
(224 � 224)

The output of the second vgg
block (112 � 112)

The output of the third vgg block
(56 � 56)

Daytime
(January 01, 2021 13:00)

Nighttime
(September 02, 2021 01:00)

Fig. 8. Estimation results of the two other datasets based on two training strategies: a,
Dataset II; b, Dataset III. S1 and S2 represent strategies 1 and 2. The unit of RMSE of
PM2.5 and PM10 is ug m�3.
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cameras to aid ground monitoring stations and enable regional air
quality monitoring with a high spatio-temporal resolution.
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