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Abstract

There are limited data examining the consequences of environmental exposure to arsenic

on the immune system in adults, particularly among smokers. Smoking has been shown to

exacerbate or contribute to impaired immune function in men chronically exposed to arse-

nic. In contrast, vitamin D (VitD) is known to have a positive influence on innate and adaptive

immune responses. The effect of circulating VitD on arsenic-associated immune dysfunc-

tion is not known. Here we examine the relationship of arsenic exposure and T cell prolifera-

tion (TCP), a measure of immune responsiveness, and circulating VitD among adult men

and women in Bangladesh. Arsenic exposure was assessed using total urinary arsenic as

well as urinary arsenic metabolites all adjusted for urinary creatinine. TCP was measured ex

vivo in cryopreserved peripheral blood mononuclear cells from 614 adult participants

enrolled in the Bangladesh Health Effects of Arsenic Longitudinal Study; serum VitD was

also evaluated. The influence of cigarette smoking on arsenic-induced TCP modulation was

assessed only in males as there was an inadequate number of female smokers. These stud-

ies show that arsenic suppressed TCP in males. The association was significantly strong in

male smokers and to a lesser extent in male non-smokers. Interestingly, we found a strong

protective effect of high/sufficient serum VitD levels on TCP among non-smoking males.

Furthermore, among male smokers with low serum VitD (t20 ng/ml), we found a strong sup-

pression of TCP by arsenic. On the other hand, high VitD (>20 ng/ml) was found to attenuate

effects of arsenic on TCP among male-smokers. Overall, we found a strong protective effect

of VitD, when serum levels were >20 ng/ml, on arsenic-induced inhibition of TCP in men,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0234965 June 23, 2020 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Burchiel SW, Lauer FT, Factor-Litvak P,

Liu X, Islam T, Eunus M, et al. (2020) Arsenic

exposure associated T cell proliferation, smoking,

and vitamin D in Bangladeshi men and women.

PLoS ONE 15(6): e0234965. https://doi.org/

10.1371/journal.pone.0234965

Editor: M. Firoze Khan, University of Texas Medical

Branch at Galveston, UNITED STATES

Received: April 22, 2020

Accepted: June 6, 2020

Published: June 23, 2020

Copyright: © 2020 Burchiel et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The DOI/link for the

data set is: https://doi.org/10.6084/m9.figshare.

12176688.v2

Funding: R01ES023888 (MFP) Arsenic Exposure,

Impaired Respiratory Function &

Immunosuppression R01ES019968 (SWB)

Synergistic Immunosuppression by PAHs &

Arsenite P42ES010349 (ANA) Health Effects &

Geochemistry of Arsenic S10OD16384 (JG) Perkin

Elmer NexION 300 Inductively Coupled Mass

http://orcid.org/0000-0001-9509-0149
https://doi.org/10.1371/journal.pone.0234965
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234965&domain=pdf&date_stamp=2020-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234965&domain=pdf&date_stamp=2020-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234965&domain=pdf&date_stamp=2020-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234965&domain=pdf&date_stamp=2020-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234965&domain=pdf&date_stamp=2020-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234965&domain=pdf&date_stamp=2020-06-23
https://doi.org/10.1371/journal.pone.0234965
https://doi.org/10.1371/journal.pone.0234965
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.12176688.v2
https://doi.org/10.6084/m9.figshare.12176688.v2


irrespective of smoking status. To our knowledge this is the first large study of immune func-

tion in healthy adult males and females with a history of chronic arsenic exposure.

Introduction

Environmental exposure to arsenic has many health effects in chronically exposed populations

[1, 2]. Surprisingly, there have been only a few population-based studies that have examined

the effects of arsenic on the immune system of humans. These studies, all with relatively small

sample sizes, have focused on PBMC obtained from adults and children [3, 4], or on cord

blood leukocytes [5, 6]. The sole study on adults was conducted among individuals with arse-

nic induced skin lesions, an indirect measure of arsenic exposure [3].

Previous work from our labs has shown that arsenic modulates various immune functions

measured in cryopreserved peripheral blood mononuclear cells (PBMC) obtained from men

chronically exposed to arsenic in Bangladesh [7, 8]. Those studies were limited to 181 males

equally divided between smokers and never smokers as well as low and high arsenic exposure.

We measured TCP in stimulated PBMC, but we did not find any significant associations with

arsenic.

In the present study, we recruited 614 smoking and non-smoking adults from the Health

Effects of Arsenic Longitudinal Study (HEALS) cohort in Bangladesh. The current study has a

cross-sectional design. Historically, the HEALS participants were chronically exposed to arse-

nic, though mitigation strategies have reduced exposure during the past decade [9]. PBMC

were isolated from the blood samples and assayed for TCP by using two mitogens: anti-CD3/

CD28 and phytohemagglutinin (PHA) as well as no mitogen (to measure unstimulated prolif-

eration). Previous ex vivo studies have revealed differences between the effects of in vitro expo-

sures to arsenic for these two mitogens [10]. In the present study we also investigated the role

of serum VitD on TCP, as VitD has been associated with immune status and modulation in

past population studies [11, 12]. To our knowledge, there has not been any study that exam-

ined TCP in a large healthy population with individual assessment of multiple measures of

arsenic exposure.

Methods

Study population

Prior to the start of this study, ethical clearance was obtained for the study protocol from the

Bangladesh Medical Research Council and was approved by Columbia University’s Institu-

tional Review Board. To ensure that the translation of the consent forms and recruitment

materials were accurate they were translated into Bengali and back translated into English. A

village health worker from the area was made available for any person unable to read the

informed consent or requiring explanation of procedures. Each participant provided either

verbal or written consent in the presence of a witness. The protocol for analyses of the biologi-

cal samples was approved by the Health Science Center’s Human Rights Protection Office of

the University of New Mexico.

Healthy men and women between the ages of 35 and 65, regardless of smoking status, and

living in the study area were eligible for this study. Using eligibility criteria, a list of 2,197

potential participants was generated from the HEALS central database. Initial steps in the

recruitment process included a home visit by a field team. Upon the visit to the home potential

participants were deemed ineligible due to the following: death (3), migration out of the study
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area (21), suffering from a serious or multiple chronic illnesses (52), illness or symptoms

related to immune function disruption (48), taking medication(s) that might have an impact

on immune function (27), and 341 were not at home. Our field team also found that 803 indi-

viduals were using a different source of drinking water (tube well) from what they had

reported at the time of initial recruitment to the HEALS. Of the 902 eligible participants, 791

agreed and visited the study clinic whereas some eligible participants (19) missed their

appointment due to conflict with their work schedule, or because their work location was out

of the study area and they could visit the study clinic only over the weekends. There were no

significant differences in age and sex between the individuals who agreed and refused to par-

ticipate in the study. Blood and urine samples were collected from each participant. Hematol-

ogy tests, such as full blood count and blood glucose levels were conducted. Twenty-five

individuals were excluded due to: abnormal blood sugar levels (8), suffering from urinary tract

infection (9) or lymphocytosis (2). Furthermore, three samples were excluded at time of

PBMC isolation due to hemolysis and another three for low cell count and low viability. A

total of 766 PBMC samples were shipped to University of New Mexico using dry nitrogen

shippers. Upon thawing of PBMC, 147 samples were found to have viabilities less than 80%

and four samples had low cell numbers and were not assayed for TCP. At the time of analysis,

arsenic exposure data was missing for one sample. Thus, 614 samples were analyzed for TCP.

Measurement of arsenic exposure

Urine samples (15 ml) were collected at the study clinic at Araihazar, Bangladesh. Total arsenic

in urine was accessed by graphite furnace atomic-absorption spectrophotometry (GFAAS) as

previously described [7, 8]. Urinary creatinine, quantified by a colorimetric method based on

the Jaffe reaction, was used to correct urinary arsenic (UAs) and metabolites. All the exposure

measures, including total urinary arsenic and metabolites were expressed as μg/g of creatinine.

Collection and cryopreservation of peripheral blood

Approximately 10 ml of blood was collected at the field clinic by technicians proficient in

blood collection. Detailed procedures [13] were followed for PBMC isolation, freezing, and

storage. Dry shippers (Cryoport, Irvine, CA) that maintain the temperature at or below -150˚C

were used to ship samples from Bangladesh to the United States. Upon arrival samples were

stored in liquid nitrogen until thawed. Samples were thawed quickly in a 37˚C water bath. Cell

counts and viabilities were acquired with a Nexcelom Cellometer Auto 2000 Cell Viability

Counter using acridine orange and propidium iodide (AO/PI; Nexcelom Bioscience, CS2-

0106) according to manufacturer’s directions. Cells with viabilities exceeding 80% were used

for immune function testing.

T cell proliferation assay

A standard mitogenesis assay using tritiated (3H) thymidine previously described [7] was used

to access T lymphocyte proliferation. Briefly, cells were plated into six replicate wells at 1x105

cells/wells (for each mitogen) in a 96 well, flat bottom tissue culture plates. PBMC were then

stimulated with each mitogen; anti-CD3 antibody (0.5 μg/ml (in DPBS) [clone OKT3 func-

tional grade eBiosciences, 16-0037-85]) and anti-CD28 antibody (2 μg/ml per well [clone

CD28.2 functional grade eBiosciences, 16-0289-85], PHA (5μg/ml per well [phytohemaggluti-

nin-M from phaseolus vulgaris] Sigma Millipore 11082132001) or media as a “no stimulation”

control (to evaluate background stimulation). Plates containing cells and mitogen were incu-

bated for 72 hr in a humidified incubator with 5% CO2 at 37˚C. Following incubation, cultures

were pulsed with 1 μCi/well 3H thymidine and returned to the incubator for overnight
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incubation (16–18 hr). Individual wells were harvested onto angel hair filters using a Brandel

96 well harvester (Gaithersburg, MD). Filters were air-dried for at least 1.5 hr at RT, then

placed into scintillation vials containing scintillation fluid. A Beckman Coulter LS6500 Multi-

purpose Scintillation Counter was used to count each sample for 1.5 min. The data is reported

here as counts per minute (CPM).

Measurement of serum 25-hydroxyvitamin D concentrations

Sample serum 25-hydroxyvitamin D (the sum of D2 and D3) levels were assayed in the Depart-

ment of Medicine at the Columbia University Medical Center. 25-hydroxyvitamin D2 (ergo-

calciferol; 25(OH)D2) and 25-hydroxyvitamin D3 (cholecalciferol; 25(OH)D3) were measured

using Ultra-Performance Liquid Chromatography- mass spectrometry (LCMS/MS) as

described previously [14, 15]. Briefly, 25(OH)D2 and D3 were extracted from human serum

samples using liquid–liquid extraction. LCMS analysis was done using a triple quadrupole Agi-

lent 6410 (Agilent, Santa Clara, CA) mass spectrometer. Chromatographic separation was per-

formed on a Poroshell 120 EC-C18 column (3.0 x 50mm, 2.7 μm) using a gradient of 70%-90%

methanol containing 0.1% formic acid. The mass spectrometer was operated under multiple

reaction monitoring (MRM) mode with positive electrospray ionization with the following

MRM transitions: 413->395 for 25(OH)D2, 401->383 for 25(OH)D3 and 407->389 for d6-25

(OH)D3. Lower limit of quantitation for the assay for both 25(OH)D2 and 25(OH)D3 was 1.0

ng/ml. Intra-day precision was 2.4% for 25(OH)D2 and 3.5% for 25(OH)D3. Inter-day preci-

sion was 8.1% for 25(OH)D2 and 5.5% for 25(OH)D3. Calibrators were standardized against

the NIST standards and the assay passed the proficiency testing of international DEQAS. Cali-

brators are standardized against the NIST standards and the laboratory participated in the

international DEQAS proficiency scheme. In the U.S. the normal reference range for total

25-hydroxyvitamin D (25(OH)D) is 30–100 ng/mL [16].

Statistical analysis

We excluded 7 smoking women from analyses. The final dataset included a total of 607 sam-

ples. To describe the sample characteristics, we calculated percent for categorical variables and

means for quantitative variables. ANOVA test was used to detect group differences, especially

for the variables included in TCP, serum VitD, and total UAs and UAs metabolites (Inorganic

arsenic (InAs; arsenite and arsenate), monomethylarsonic acid (MMA) and dimethylarsinic

acid (DMA)) adjusted for urinary creatinine. Spearman correlation coefficients were used to

describe bivariate associations among these quantitative variables. Scatterplots were used to

describe the preliminary relationships between the exposures of interest (e.g. UAs and UAs

metabolites) with T-cell function stimulated by anti CD3/CD28, and thus inform the specifica-

tion of statistical model.

We used generalized additive models (GAM) to evaluate possible non-monotonic relation-

ships between T-cell proliferation, as the outcome, and UAs as well as the metabolites, as the

exposures. GAM allowed for both a parametric component of exposure (which assesses a lin-

ear relationship) and non-parametric components, which assesses non-monotonicity.

We fit linear regression models for all T-cell function outcomes using each an exposure var-

iable as the primary predictor; all models were adjusted for age and body mass index (BMI).

We stratified regression models by smoking status and sex (not for women, there were only 7

smokers). To reduce the impact of extreme variables and improve model fitting, we trans-

formed the exposure variables with right skewed distributions with the logarithmic function.

We extended our analyses by adding serum VitD concentrations into the linear regression

models. To test whether VitD status modified the associations between arsenic and T-cell
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function, we stratified VitD into two groups with low/deficient serum levels (t20 ng/ml) and

high/sufficient levels (>20 ng/ml) and tested the interaction between vitD status and arsenic.

SAS version 9.4 was used for statistical analysis. R version 3.5.1 was used to create figures

for this manuscript.

Results

Characteristics of the study population

A total of 614 individuals were enrolled in this study, of which 392 were non-smokers and 222

were smokers; 48.2% were men and 51.8% women (Table 1). The average age of study popula-

tion was 50 years; male smokers were slightly older (53 years) than non-smoking males (52

years) and females (47 years). There were only 7 female smokers out of a total of 222 smokers

(3.15%); therefore, it was not possible to compare the effects of smoking on TCP in men and

women and we excluded smoking women from all analyses. The average total urinary arsenic

concentrations across samples was 135 μg/g urinary creatinine and did not differ between

smokers, non-smoking males, or non-smoking females. However, the levels of MMA, were

significantly higher among male smokers compared to non-smoker males and females. Simi-

larly, the serum level of VitD was also higher among male smokers than non-smoker males

and females. In these studies, we found that some men and women were VitD deficient, but

they were otherwise generally healthy. This provided us with an opportunity to assess immune

function (TCP) in Vit D sufficient and deficient men and women. BMI levels in male smokers

were lower than those of non-smoking men and women.

Effect of arsenic on TCP

Among all the study participants (n = 607), we observed negative associations between all mea-

sures of arsenic exposure and TCP activated with anti-CD3/CD28 in models adjusting for age

and BMI (Table 2). We did not observe an effect of arsenic on TCP among non-smoking

women. We observed similar point estimates of the associations in the male smoking and non-

Table 1. Sample characteristics.

All samples (n = 614) Non-smoking Women (n = 311) Non-smoking Men (n = 81) Smoking Men (n = 215) p-value

Demographic

Age (years) 50 47 52 53 p<0.0001

Women (%) 51.80

BMI 23.02 24.02 22.50 21.81 p<0.0001

Smoking (%) 50.65 13.19 35.01

Average Arsenic Exposure Conc.

(μg/g)

Urinary arsenic 134. 78 140.75 105.08 137.26

Inorganic arsenic 13.83 13.23 10.67 15.84

MMA 16.46 15.12 12.09 19.94 p = 0.001

DMA 86.79 91.69 68.26 86.68

Proliferation (counts per minute)

CD3-CD28 105,763.5 109,147.5 100,742.7 102,543 p<0.0001

PHA 66,407.1 67,831.5 63,114.3 65,130.5

No-stimulation 996.80 985.5 834.7 1073.3

Vitamin D (ng/ml) 22.65 19.28 25.64 26.43 p<0.0001

p-values were from ANOVA test for differences in quantitative variables among three groups (smoking men and non-smoking men and women)

https://doi.org/10.1371/journal.pone.0234965.t001
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smoking groups but results were only statistically significant in the male smokers. In the male

smokers (n = 215), we observed a strong negative effect on TCP for all arsenic exposure mea-

sures (p<0.05) in adjusted models. We conducted analysis to check for an interaction between

arsenic and smoking, no interaction was detected.

Protective effect of vitamin D on arsenic induced TCP

In models with the additional predictor of VitD, we did not observe any significant changes in

the arsenic and TCP associations. However, VitD was positively associated with TCP for all

groups and strongly associated in males, both smoking and non-smoking (Table 3). Among

non-smoking males compared to smoking males, the positive associations between vitD and

TCP was stronger, regardless of the As exposure variable used in the models (p<0.05). When

stratifying VitD into low/deficient and high/sufficient levels (Table 4) we did not see significant

changes in the associations of arsenic with TCP in non-smoking women. However, among

non-smoking males with low/deficient VitD, arsenic was found to significantly suppress TCP

(p<0.05) (Table 4). In smoking males with low/deficient VitD level the inhibition of TCP by

arsenic exposure remained significant (p<0.05). In contrast, high/sufficient VitD found to sig-

nificantly attenuate effect of arsenic on TCP in smoking men such that As exposure becomes a

Table 2. Estimated coefficient of arsenic exposure in linear models for CD3-CD28 stimulated T cell proliferation.

All participants (n = 607) Non-smoking Women (n = 311) Non-smoking Men (n = 81) Smoking Men (n = 215)

Exposurea

Urinary arsenic -1495.4 (-3312.3, 321.3) 243.4(-2422.1, 2909.0) -3645.4 (-008.0,1717.1) -2972.0 (-5786.3, -157.7)�

Inorganic arsenic -948.8 (-2506.7,609.0) 861.5 (-1391.5,3114.7) -2172.6 (-6707.9,-362.7) -3048.6 (-5506.7,-590.5)��

MMA -764.6 (-2322.1,792.8) 594.2(-1693.1, 2881.6) -1183.8 (-946.1,3578.4) -2559.5 (-4960.3,-158.6)�

DMA -1597.7 (-3411.5, 215.9) 246.4 (-2399.0, 2891.9) -3476.2 (-684.3,1731.8) -3234.9 (-6076.8,-393.0)�

a Linear regression models were run separately for different arsenic exposure measures (log transformed) and adjusted for age and BMI; Values are B (95% confidence

Intervals) p-values:

�p < .05,

��p<0.01

https://doi.org/10.1371/journal.pone.0234965.t002

Table 3. Estimated coefficients of arsenic exposure and Vitamin D (VitD) in linear models for CD3-CD28 stimulated T-cell proliferation.

All participants (n = 607) Non-smoking Women (n = 311) Non-smoking Men (n = 81) Smoking Men (n = 215)

Exposurea

Urinary arsenicb -1760.2 (-3581.6, 61.2)� 121.5 (-2596.8, 2839.8) -3775.5 (-7747.9, 196.8) -2999.6 (-5896.1,-103.0)�

VitD 341.2 (117.5, 564.4)�� 248.6 (-97.1, 594.4) 689.71 (127.2, 1252.1)�� 310.99 (-41.0, 663.0)

InAsb -1088.5(-2646.2,469.2) 884.8 (-1418.8, 3188.5) -1659.0(-6082.8,764.8) -3036.7(-5564.0, -509.5)��

VitD 326.3 (102.9, 549.7)�� 229.1 (-116.3, 574.6) 651.1 (86.2, 1216.1)� 308.2 (-41.1, 657.6)

MMAb -1043.2(-2610.2, 523.7) 460.6 (-1891.3, 2812.6) -1044.5(-5691.8, 3602.7) -2683.4(-5180.0, -186.8)�

VitD 337.7 (113.1, 562.2)�� 239.9 (-107.6, 587.4) 664.5 (97.4, 1231.6)� 325.5 (-27.1, 678.2)

DMAb -1950.5(-3774.3, 26.7)� 100.4 (-2465.1, 2666.0) -3441.4(-8601.9, 1719.0) -3462.5(-6394.6, -530.3)�

VitD 350.2 (126.1, 574.2)�� 248.7 (-97.9, 595.3) 692.8 (129.9, 1255.7)�� 334.97 (-17.4, 687.3)

a Linear regression models were run separately for different arsenic exposure measures (log transformed) and are adjusted for age, BMI and VitD; Values are B (95%

confidence Intervals); p-values:

�<0.05,

��<0.01
b Arsenic exposure measures were log-transformed

https://doi.org/10.1371/journal.pone.0234965.t003
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non-statistically significant predictor. A binary depiction of the relationship between total uri-

nary arsenic and TCP by VitD strata in male smokers and non-smokers is shown in Fig 1.

Phytohemagglutinin (PHA) induced TCP was not inhibited by arsenic

We previously found that activation of TCP by PHA was more sensitive than anti-CD3/CD28

activated TCP during in vitro exposure of PBMC to MMA+3 [10]. Therefore, we compared

Table 4. Estimated coefficient of arsenic exposure in linear models for CD3-CD28 stimulated T-cell proliferation by low and high vitamin D (VitD) levels.

All participants (n = 607) Non-smoking Women (n = 311) Non-smoking Men (n = 81) Smoking Men (n = 215)

Arsenic Exposurea and Vitamin Db

Urinary arsenic

Low VitD -778.9 (-4014.2, 2456.3) 2115.5 (-1674.5, 5905.6) -11196.0 (-18193.1, -4199.0)�� -9871.9 (-17703.8, -2039.9)�

High VitD -1197.9 (-3410.4, 1014.5) -1859.7 (-5610.4, 1890.8) -184.7(-7205.3,6835.8) -2244.0 (-5108.7,620.6)

InAs

Low VitD -1206.3 (-3868.6, 1455.9) 1153.6 (-1851.8, 4159.0) -8451.4 (-14429.4, -2473.4)� -8005.6 (-14820.5, -1190.7)�

High VitD -722.5 (-2689.1, 1244.1) 508.4 (-2919.4, 3936.2) 1448.4 (-4483.1, 7380.0) -2583.7(-5088.1,-79.3)�

MMA

Low VitD -746.9 (-3488.5, 1994.7) 1558.2 (-1592.8, 4709.3) -8339.4 (-15114.1, -1564.6)� -6803.0 (-13480.7,-125.3)�

High VitD -915.7 (-2855.5, 1024.0) -771.3 (-4146.7, 2603.9) 2211.3 (-3857.9, 8280.6) -2304.0 (-4749.6, 141.5)

DMA

Low VitD -1042.1 (-4295.5, 2211.1) 1502.5 (-2226.9, 5232.0) -11199.1 (-18051.9, -4346.4)�� -11147.4 (-19554.6,-2740.1)��

High VitD -1210.6 (-3412.7, 991.3) -1325.3 (-5101.0, 2450.3) -351.7 (-7194.5, 6491.0) -2632.7 (-5471.5, 205.9)

a Linear regression models were run separately for different arsenic exposure measures (log transformed) adjusted for age and BMI; Values are B (95% confidence

interval); p-values: p < .05�, p < .01��

b VitD level [low/deficient: t20 ng/ml; high/sufficient: >20 ng/ml]

https://doi.org/10.1371/journal.pone.0234965.t004

Fig 1. Age and BMI adjusted association of urinary arsenic with T cell proliferation (TCP) in male smokers and non-smokers with sufficient or deficient

serum VitD levels. Male Smoker (n = 173) and Male Non-smoker (n = 61) by High/sufficient VitD serum concentration (>20 ng/ml), indicated by black solid

line, and low/deficient serum VitD (<20 ng/ml) by broken line. Approximately 20% of male smokers and non-smokers in both groups were found to be VitD–

deficient.

https://doi.org/10.1371/journal.pone.0234965.g001
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PBMC stimulated with anti-CD3/CD28 with those stimulated with PHA. We found that PHA-

induced TCP was not associated with total UAs, InAs, MMA, or DMA in male or female

regardless of smoking status (S1 Table). Additionally, we found that baseline proliferation of

PBMC in the absence of mitogen activation was not sensitive to arsenic or metabolite expo-

sures (S2 Table). Therefore, anti-CD3/CD28 appears to be an appropriate T cell mitogen to

assess the effects of arsenic on TCP from donors exposed in vivo.

Discussion

Arsenic has complex effects on immune responses measured in animal models and human

lymphoid cells exposed in vitro [17]. One of the difficulties in assessing immune effects of arse-

nic in human populations is that multiple functional assays must be performed to measure

effects on the myriad of immune mechanisms associated with innate and adaptive immunity.

Various measures of adaptive immunity [7, 10, 18–21] and innate immunity [22–24] are sup-

pressed by arsenic exposure.

TCP is critical for cell activation, effector, and helper cell functions [25]. TCP is a simple

measure of immune function that has previously been used in in a few population-based stud-

ies to study arsenic related immunomodulation [3, 4]. In the present study, we found that total

UAs, as well as InAs, MMA, and DMA were associated with a decrease in anti-CD3/CD28

stimulated TCP in smoking males, and to a lesser extent in male non-smokers but not females.

We did not observe any effects of arsenic on non-smoking women, although they were

exposed to similar level. We are unaware of any study that examined effects of arsenic on TCP

by smoking status or sex. An earlier study of 38 adults did not examine effects of arsenic on

TCP by gender or smoking status (Biswas 2008).

In this study, we did not find an effect of arsenic on PHA- stimulated TCP. The result dif-

fers from our previous work, where we described PHA-stimulated TCP as being more sensitive

to MMA+3; however, the past study was performed in vitro among 30 donors with much lower

arsenic concentrations [10].

The mechanism(s) associated with arsenic immunosuppression are likely due to a combina-

tion of genotoxic and non-genotoxic actions on lymphoid cells. The consequences of immuno-

suppression produced by arsenic include an increased susceptibility to infections [3, 24, 26,

27]. The genotoxic actions of arsenic are likely due to increased DNA damage and oxidative

stress [21, 28–32]. The non-genotoxic actions of arsenic are associated with altered signaling

pathways [33, 34].

In non-smoking males with low serum VitD, arsenic exposure was associated with a sup-

pression of TCP (p<0.02). On the other hand, smoking men with high serum VitD were

found to have a noticeably reduced association between arsenic and TCP. The findings clearly

demonstrate a harmful effect of low serum VitD and a beneficial effect of high serum VitD on

TCP in arsenic exposed males. However, there was no association seen in females. Overall lev-

els of VitD were higher in males than females, presumably due to their outside work and sun

exposure [35]. Males also had slightly higher levels of urinary arsenic, perhaps due to increased

consumption of drinking water or arsenic exposure in cigarettes. Because we observed impor-

tant differences between arsenic-induced immunosuppression in males and females, it is

important to examine potential mechanisms responsible for these observations. 1,25-dihyroxy-

vitamin D3, the biologically active form, is a well-known modulator of T cell function [11, 12,

36, 37] and T cell development [38, 39]. VitD receptors (VDR) are known to be expressed on

human T cells, and they play a role in T cell activation [40]. Heterogeneity in VitD responses

may be due to VDR polymorphisms [41–43]. VitD therapy has been attempted for certain

autoimmune diseases [44–46], based on results in animal models showing that VitD can
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increase the ratio of Treg to Th17 cells [47, 48]. During the past decade there have been

numerous clinical trials to restore immune health in people exposed to HIV [49, 50] and other

infectious diseases [51] using VitD supplementation.

A limitation of the study is that effects of smoking on arsenic induced TCP were assessed

among males only because only a few number of females were smokers. Other studies will

need to be conducted to determine whether there are sex differences in smoking and non-

smoking populations.

T cells are one of the most important components of the adaptive immune system. They are

essential for an adaptive immune system and immune response. T cells play a major role in

protecting against many adverse health outcomes. Low T-cell counts or inhibition of func-

tional activity may increase the risk of intracellular pathogens such as viruses, protozoa and

intracellular bacteria, and in immunity to extracellular pathogens by providing help for the

antibody response. It is unclear why the TCP responses to arsenic differed between men and

women in the current study. It is well known that arsenic metabolism involves methylation,

which is associated with homocysteine and folate pathways that significantly differ in men and

women [52, 53]. Therefore, the sex-related differences in immunosuppression produced in

males and females may in part be due to altered metabolism of arsenic.

The public health significance of this work relate to the following observations. Our find-

ings demonstrate that T cell responses to arsenic differ by sex, men being more susceptible,

particularly smokers. We show that VitD may be an important modulator of immune

responses. VitD levels significantly modified effects of arsenic on TCP; high VitD was protec-

tive and low VitD was harmful, which were only apparent in men. Our results suggest in arse-

nic exposed populations, smoking cessation and VitD supplementation might be beneficial for

T cell function and subsequent health effects.
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