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Université de Genève,
Switzerland

*Correspondence:
Wei-Pin Chang

wpchang@tmu.edu.tw
Wei-Chiao Chang
wcc@tmu.edu.tw

Specialty section:
This article was submitted to

Autoimmune and
Autoinflammatory Disorders,

a section of the journal
Frontiers in Immunology

Received: 12 June 2021
Accepted: 15 September 2021

Published: 13 October 2021

Citation:
Adikusuma W, Irham LM,

Chou W-H, Wong HS-C, Mugiyanto E,
Ting J, Perwitasari DA, Chang W-P

and Chang W-C (2021) Drug
Repurposing for Atopic Dermatitis
by Integration of Gene Networking

and Genomic Information.
Front. Immunol. 12:724277.

doi: 10.3389/fimmu.2021.724277

ORIGINAL RESEARCH
published: 13 October 2021

doi: 10.3389/fimmu.2021.724277
Drug Repurposing for Atopic
Dermatitis by Integration of Gene
Networking and Genomic Information
Wirawan Adikusuma1,2, Lalu Muhammad Irham1,3, Wan-Hsuan Chou1,
Henry Sung-Ching Wong1, Eko Mugiyanto4,5, Jafit Ting1, Dyah Aryani Perwitasari 3,
Wei-Pin Chang6* and Wei-Chiao Chang1,7,8,9,10*

1 Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan, 2 Department of
Pharmacy, Faculty of Health Science, University of Muhammadiyah Mataram, Mataram, Indonesia, 3 Faculty of Pharmacy,
University of Ahmad Dahlan, Yogyakarta, Indonesia, 4 Ph. D. Program in the Clinical Drug Development of Herbal Medicines,
College of Pharmacy, Taipei Medical University, Taipei, Taiwan, 5 Department of Pharmacy, Faculty of Health Science,
University of Muhammadiyah Pekajangan Pekalongan, Pekalongan, Indonesia, 6 School of Health Care Administration,
College of Management, Taipei Medical University, Taipei, Taiwan, 7 Taipei Medical University (TMU) Research Center of
Cancer Translational Medicine, Taipei, Taiwan, 8 Department of Pharmacy, Wan Fang Hospital, Taipei Medical University,
Taipei, Taiwan, 9 Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan,
10 Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan

Atopic Dermatitis (AD) is a chronic and relapsing skin disease. The medications for treating
AD are still limited, most of them are topical corticosteroid creams or antibiotics. The
current study attempted to discover potential AD treatments by integrating a gene
network and genomic analytic approaches. Herein, the Single Nucleotide
Polymorphism (SNPs) associated with AD were extracted from the GWAS catalog. We
identified 70 AD-associated loci, and then 94 AD risk genes were found by extending to
proximal SNPs based on r2 > 0.8 in Asian populations using HaploReg v4.1. Next, we
prioritized the AD risk genes using in silico pipelines of bioinformatic analysis based on six
functional annotations to identify biological AD risk genes. Finally, we expanded them
according to the molecular interactions using the STRING database to find the drug target
genes. Our analysis showed 27 biological AD risk genes, and they were mapped to 76
drug target genes. According to DrugBank and Therapeutic Target Database, 25 drug
target genes overlapping with 53 drugs were identified. Importantly, dupilumab, which is
approved for AD, was successfully identified in this bioinformatic analysis. Furthermore,
ten drugs were found to be potentially useful for AD with clinical or preclinical evidence. In
particular, we identified filgotinub and fedratinib, targeting gene JAK1, as potential drugs
for AD. Furthermore, four monoclonal antibody drugs (lebrikizumab, tralokinumab,
tocilizumab, and canakinumab) were successfully identified as promising for AD
repurposing. In sum, the results showed the feasibility of gene networking and genomic
information as a potential drug discovery resource.
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INTRODUCTION

Atopic Dermatitis (AD), also called atopic eczema, is a common
chronic or relapsing skin inflammatory disease with characteristic
acute flare-ups of eczematous pruritic lesions and dry skin (1, 2).
AD is the most common skin disease in children; the prevalence is
15%~20% in children and 1%~3% in adults (1). Approximately 80
percent of the young patients remain symptomatic in adulthood,
and they are mostly presented with lesions affecting the flexures,
head, and neck (3). Both genetic and environmental factors have
been reported to be involved in the pathogenesis of AD (4, 5). AD
is a multifactorial disease with immunological processes, including
type 1 IgE dysfunction, cell-mediated immune response defects,
and barrier dysfunction changes (5). Genome-wide association
studies (GWAS) and genetic association studies have reported
many single nucleotide polymorphisms (SNPs) that were
associated with AD pathogenesis, including Toll-like receptors
(TLRs), IRF2, IL-4, IL-13, IL-25, IL-31, IL-33, IL1RL1/IL18R1/
IL18RAP, STAT6, ORAI1 and TSLP (6–11). Findings from GWAS
have shown the complex role of multiple loci in human AD
susceptibility. New insights concerning the genetic, immunological,
and environmental impacts of AD provide novel therapeutic
strategies against AD (12).

Management of AD is dependent on the severity of the
disease. Epidermal obstructions play an essential role in the
onset of AD (13). Two drugs have been approved by the U.S.
Food and Drug Administration (FDA), which have increased
treatment options for eczema. First of all, 2% Crisaborole
ointment is approved for mild to moderate AD in children (14,
15). Furthermore, dupilumab is approved for adults with
moderate to severe AD (16). However, these drugs are effective
in only about 20% of moderate to severe AD patients (17).
Therefore, developing new drugs for AD is urgent. Traditional
drug discovery requires a long process (10~17 years) from an
idea in the laboratory to a marketed drug with less than 10%
overall probability of success (18). There are notable advantages
of drug repurposing over the traditional drug discovery process;
for instance, repurposed drugs have already passed clinical trials
for their first indications, which is more time and cost efficient for
drug development (19, 20). In addition, drug repurposing is able to
reduce safety and pharmacokinetic uncertainties (21). An example
Abbreviations: AD, Atopic Dermatitis; AURKB, aurora kinase B; BIRC5,
baculoviral IAP repeat containing 5; B2M, beta-2-microglobulin; CDK2, cyclin
dependent kinase 2; cis-eQTL, cis-expression quantitative trait loci; EGFR,
epidermal growth factor receptor; HLA-DRB1, major histocompatibility
complex, class II, DR beta 1; IL-13, interleukin-13; IL-4, interleukin-4; IL-6R,
interleukin-6 receptor; IL1R1, interleukin-1 receptor type I; IL1B, interleukin-1
beta; IUIS, international union of immunological societies; IRAK1, interleukin 1
receptor associated kinase; IL2RA, interleukin 2 receptor subunit alpha; IL2RB,
interleukin 2 receptor subunit beta; IL2RG, interleukin 2 receptor subunit gamma;
IL6, interleukin 6; IL1B, interleukin 1 beta; IL6R, interleukin 6 receptor; IL1RN,
interleukin 1 receptor antagonist, IL2, interleukin 2; JAK, Janus Kinase; KEGG,
Kyoto encyclopedia of genes and genomes; KOmice, knockout mouse phenotypes;
MP, mammalian phenotype ontology; NHGRI, National Human Genome
Research Institute; ORA, over-representation analysis; PIDs, primary
immunodeficiency’s; PPIs, protein-protein interactions; PKMYT1, membrane
associated tyrosine/threonine 1; SNPs, Single nucleotide polymorphisms; TTD,
therapeutic target database.
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of clinically successful drug repurposing is ketoconazole for
Cushing syndrome, initially used for fungal infection. Another
example is raloxifene used initially for osteoporosis and is now
successfully repurposed for breast cancer (22).

In 2014, Okada et al. proposed bioinformatics drug discovery
methodologies for rheumatoid arthritis (RA). Data from GWAS
meta-analysis in RA was applied to identify risk loci for
functional annotations and drug repurposing. Results were
further applied to investigate potential candidate drug targets
for RA (23). In the current study, we aimed to implement this
bioinformatics strategy and identify AD’s biological candidate
genes through an integrative gene network. Six functional
annotations (missense mutations, cis-expression quantitative
trait loci (cis-eQTL), a molecular pathway analysis,
proteinprotein interactions (PPIs), genetic overlap with a
knockout mouse phenotype, and primary immunodeficiencies
(PIDs)) were used to discover biological AD risk genes.
METHODS

Study Design
A descriptive scheme of the current drug repurposing study for
AD was shown in Figure 1. The SNPs with significant
association with AD (p < 10-5) were queried from the National
Human Genome Research Institute (NHGRI) GWAS catalog
database (http://www.ebi.ac.uk/gwas) (24) on January 7, 2019.
The SNPs adjacent to the AD associated SNPs were included
based on Linkage Disequilibrium (LD) characteristic to define
the AD risk SNPs. It was conducted using HaploReg (v4.1) (25)
with the criterion of r2 ≥ 0.8 in Asian (ASN) populations from
the 1000 Genome Project Phase I data. The AD risk SNPs were
classified into missense (or nonsense), synonymous or non-
coding (with or without cis-eQTL) SNPs. In addition, the
genes encoded by the AD risk SNPs will be used for further
analyses. The AD risk genes were subsequently prioritized based
on six functional annotation criteria. Accordingly, those genes
with one functional annotation obtained one point (score), and
those genes which met criteria with a score of ≥ 2 were defined as
“biological AD risk genes”. In our analyses, we set the threshold
of biological score ≥ 2 to find a much higher number of genes as
the biological AD risk genes. The STRING database (26) was
used to expand biological risk genes. The extended list was
further defined as drug target genes. We mapped those drug
target genes to DrugBank (27) and Therapeutic Target Database
(TTD) (28). The drugs identified were examined for their clinical
status, according to ClinicalTrials.gov.

Functional Annotation of AD Risk Genes
Six biological functional annotations were used to build a scoring
system representing the most probable candidate genes as AD
targets. The six biological functional annotations were as follows:
(i) missense or nonsense variants: We used RStudio v3.4.3 and
the HaploR package (29), which contain annotations of
functional consequences from a database of SNPs (dbSNPs) to
perform this biological functional annotation. Missense or
October 2021 | Volume 12 | Article 724277
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nonsense variants can be one method for functional annotation
because the change in the amino acid sequence may affect
protein function (30). If a gene had any missense or nonsense
AD risk SNP, it was assigned with one point; (ii) cis-eQTLs: A
SNP with cis-eQTL effect is associated with the expression of the
gene at where the SNP is located. The polymorphism is
associated with the change in gene expression in the target
tissue, resulting in biological implications. If a gene had any
AD risk SNP with cis-eQTL effect in the whole blood, it was
assigned one point; (iii) KO mice: The gene from human
Ensemble ID was converted to mouse Ensemble ID using
BioMart to query the mouse phenotype (31). The data source
was Mammalian Phenotype Ontology (MP), with information
on mice and other mammal phenotypes (32). The gene set, with
an FDR of < 0.05 in the enrichment analysis, were considered
significant. (iv) gene ontology: The data source was the biological
process category of Gene Ontology (GO). The significance of an
FDR < 0.05 was set (33); (v) molecular pathways: Enrichment
analysis was performed on molecular pathways using the Kyoto
Encyclopedia of Genes and Genomes (KEGG), an online
biochemical route database. The genes enriched in the KEGG
pathway (FDR < 0.05) were assigned with one point (33); and
(vi) PID: The PID was the final annotation to prioritize the AD
risk genes. PID genes were collected by the IUIS until 2013 (34).
Enrichment analysis on the data was conducted using a
hypergeometric test; a p-value < 0.05 was used in this step as
the significance criterion.

Expansion Network by STRING Database
The AD biological risk genes were expanded using the STRING
database to obtain more candidate drug target genes. The
purpose of the STRING database (https://string-db.org/) is to
integrate functional interactions related to protein expression by
including and arranging predicted protein-protein association-
related data (26). We inputted the list of biological AD risk genes
Frontiers in Immunology | www.frontiersin.org 3
selected in the previous steps and set the criterion of 50
interactions. In this way, we were able to increase the number
of genes. A larger number of disease-protein networks have
greater potential to identify novel therapeutic targets for
diseases (35).

Identification of Drug Target Genes by
Using Drugbank and TTD
After completing gene expansion based on PPI information from
the STRING database, we conducted an overlapping analysis.
The sources of data for the overlapping analysis were the
DrugBank database and TTD. Drugbank 5.0 database (www.
drugbank.ca) containing around 17,000 associations of drug
targets and data on more than 10,000 drug compounds (27).
TTD (http://bidd.nus.edu.sg/group/cjttd/) provides information
about the 3,101 targets of 34,019 clinically approved and
experimental drugs (28). The target genes were used to query
the databases according to several parameters, such as drugs with
pharmacological activity, human efficacy, and annotations of
approved, in clinical trials or experimental drugs.

Prioritization of Drug Repurposed for AD
All drug targets for AD were confirmed in ClinicalTrials.gov
(https://clinicaltrials.gov/) on January 7, 2019 to check whether
each drug is under clinical investigation for AD or other diseases.
ClinicalTrials.gov is a comprehensive database that documents
drugs under clinical investigations in human subjects.
RESULTS

AD Risk SNPs and Genes Detected
by GWAS
The bioinformatics drug discovery methodologies for AD was
shown in Figure 1. This study obtained 70 AD associated SNPs
from the NHGRI with GWAS p-values of less than 1 x 10-5

(Supplementary Table 1). The selection of SNPs was based on
the disease/trait attribute of “Atopic dermatitis.” Next, we
expand the number of SNPs by HaploReg v4.1 based on the
characteristic of r2 > 0.8 in Asian populations; hence, we
obtained 94 AD risk genes (Supplementary Table 2).

Functional Annotation of AD Risk Genes
Six biological functional annotations were applied to prioritize
biological AD risk genes. One point was given for each functional
annotation. We scored each of the 94 candidate genes by
adopting the following six criteria: (1) genes with any missense
AD risk variant (n=11); (2) cis-eQTL genes (n=20); (3) genes in
any enriched knockout mouse phenotype (n=19); (4) genes
involved in the enriched GO terms (n=26); (5) genes involved
in any enriched KEGG pathway (n=19); and (6) PID genes (n=3)
(Supplementary Table 3). Thus, each gene earned a score based
on the number of criteria fulfilled (score ranging from 0 to 6 for
each gene). As shown in Figure 2, 48 genes are with a score of
0, 19 genes with a score of 1, and 27 genes with total scores ≥ 2.
The 27 genes with a score ≥ 2 were defined as “biological AD
FIGURE 1 | An overview of drug repurposing for atopic dermatitis (AD). The
study design utilizing by GWAS Catalog and various databases: DrugBank
database, Therapeutic Target Database (TTD), ClinicalTrial.gov, and PubMed.
October 2021 | Volume 12 | Article 724277
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risk genes.” As shown in Table 1, the top five biological AD risk
genes include interleukin 7 receptor (IL7R), interleukin 6
receptor (IL6R), interleukin 18 receptor 1 (IL18R1), interleukin
2 receptor subunit alpha (IL2RA), and signal transducer and
activator of transcription 3 (STAT3).

Expansion Network by STRING Database
We utilized the STRING database to integrate publicly accessible
sources of information on direct (physical) and indirect
(functional) protein-protein interactions (26). Twenty-seven
biological AD risk genes were expanded by using the STRING
database. Fifty interactions were selected to perform the
calculation and expand the number of genes. This study
obtained 76 genes as the drug target genes through the
STRING database (Supplementary Table 4). These drug target
genes were used for further analysis.

Prioritization of Drug Repurposed for AD
In this step, we obtained 2053 interaction pairs with 76 drug target
genes from the curated PPI networking (Supplementary
Table 5). Furthermore, 76 drug target genes were mapped to
DrugBank and TTD. However, not all drug target genes are
druggable; only 25 drug target genes were found to bind to 53
drugs based on DrugBank and TTD. The identified target-drug
pairs are listed in Supplementary Table 6. Among them,
Frontiers in Immunology | www.frontiersin.org 4
dupilumab was clinically approved for AD (Figure 3);
dupilumab blocks interleukin-4 (IL-4) and interleukin-13 (IL-
13) signaling by binding to interleukin 4 receptor (IL4R). IL-4 and
IL-13 are the main drivers of the clinical symptoms of AD (36). It
is noteworthy that dupilumab is an effective drug for moderate to
severe AD (16). As dupilumab was identified from our analysis,
the feasibility of gene-based drug repurposing was confirmed.
TABLE 1 | Biological atopic dermatitis risk genes.

Gencode Id Gencode Name Score Biological criteria

Missense/Nonsense Cis-eQTL KO mice PPI KEGG PID

ENSG00000168685 IL7R 6
ENSG00000160712 IL6R 5
ENSG00000115604 IL18R1 4
ENSG00000134460 IL2RA 4
ENSG00000168610 STAT3 4
ENSG00000169194 IL13 4
ENSG00000092020 PPP2R3C 3
ENSG00000109471 IL2 3
ENSG00000113520 IL4 3
ENSG00000115594 IL1R1 3
ENSG00000134954 ETS1 3
ENSG00000138684 IL21 3
ENSG00000157456 CCNB2 3
ENSG00000172673 THEMIS 3
ENSG00000227507 LTB 3
ENSG00000258366 RTEL1 3
ENSG00000026036 RTEL1 2
ENSG00000113522 RAD50 2
ENSG00000115602 IL1RL1 2
ENSG00000115607 IL18RAP 2
ENSG00000168477 TNXB 2
ENSG00000182261 NLRP10 2
ENSG00000196126 HLA-DRB1 2
ENSG00000197114 ZGPAT 2
ENSG00000204315 FKBPL 2
ENSG00000204525 HLA-C 2
ENSG00000213654 GPSM3 2
October 202
1 | Volume
 12 | Article 724
Cis-eQTL, cis-expression quantitative trait locus; KO mice, knockout mouse phenotype; PPI, protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; PID,
primary immunodeficiency.
Summary scores obtained from 6 criteria are shown. Filled boxes indicate fulfilled criteria.
FIGURE 2 | Histogram distribution of gene score. The figure showed that genes
with a score of 0 were 48, while those with a score of 1 were 19, and there were
27 genes with total scores ≥ 2 were described as “Biological AD risk genes”.
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In addition, as shown in Table 2, ten drugs were found to be
potentially useful for AD with clinical or preclinical evidence.
Among them, seven drugs were approved for diseases other than
AD, including baricitinib (NCT03334422, NCT03334396),
tofacitinib (NCT02001181), ruxolitinib (NCT03745651,
NCT03745638), upadacitinib (NCT04195698), lebrikizumab
(NCT04392154), tralokinumab (NCT03160885), and pitrakinra
(NCT00676884). Furthermore, the usage of tocilizumab was
supported by case series (42). The effectiveness of momelotinib
and canakinumab on AD were supported with animal studies
(43, 44). These drugs correspond to 5 gene targets, Janus kinase 1
(JAK1), IL13, IL4, IL6R, and 1L1B, which have the potential to be
repurposed for the treatment of AD (Figure 4). Examples of
repurposed drugs are ruxolitinib and momelotinib, which are
approved for myelofibrosis, targeting the JAK1/JAK2 gene
pathway. Ruxolitinib is under clinical investigation for AD in
phase III trials (NCT03745651, NCT03745638), while
momelitinib has been reported to be repurposed for AD
therapy in preclinical investigations (44). Both ruxolitinib and
momelitinib are selective inhibitors of JAK1 and JAK2 that
showed the potential inhibition for proinflammatory cytokine
signaling in AD’s pathogenesis (Table 2).
Frontiers in Immunology | www.frontiersin.org 5
Importantly, we further found 42 unknown anti-AD drugs
mapping to 17 drug targets prioritized in our study. The 17
targets are interleukin 1 receptor-associated kinase 1 (IRAK1),
interleukin 2 receptor subunit alpha (IL2RA), interleukin 2
receptor subunit beta (IL2RB), interleukin 2 receptor subunit
gamma (IL2RG), interleukin 6 (IL6), epidermal growth factor
receptor (EGFR), interleukin 1 beta (IL1B), interleukin 6 receptor
(IL6R), interleukin 1 receptor antagonist (IL1RN), interleukin 2
(IL2), Janus kinase 1 (JAK1), major histocompatibility complex,
class II, DR beta 1 (HLA-DRB1), protein kinase, membrane-
associated tyrosine/threonine 1 (PKMYT1), cyclin-dependent
kinase 2 (CDK2), baculoviral IAP repeat-containing 5 (BIRC5),
beta-2-microglobul in (B2M ) , and aurora kinase B
(AURKB) (Figure 5).
DISCUSSION

This study focused on repurposing AD drugs based on candidate
gene prioritization from the GWAS-identified loci. Using in
silico pipelines, we built a scoring system that used six
functional annotation for candidate drug prediction. We
FIGURE 3 | Connections between biological AD risk genes and drugs available for AD. Representative connections between AD biological genes (green); genes in
PPIs (yellow); target drugs (blue); indication (orange).
TABLE 2 | Pharmacological therapies in development for the treatment of Atopic Dermatitis.

Drug candidate Target Possible mechanism of action on Atopic Dermatitis Disease indication Level of
evidence

NCT Number/
PubMed ID

Baricitinib JAK1/
JAK2

Inhibitor of JAK1 dan JAK2 mediated signaling in the immunopathology
of AD (37)

Rheumatoid arthritis Phase III
completed

NCT03334422,
NCT03334396,

Tofacitinib JAK1/
JAK2

Inhibitor of JAK1 and JAK2 inhibits cytokine IL-4 directly (38). Rheumatoid arthritis Phase II
completed

NCT02001181

Tralokinumab 1L13 Inhibitor of IL-13 by maintaining inflammatory reaction and major skin
effects (39).

Asthma Phase III
completed

NCT03160885

Ruxolitinib JAK1/
JAK2

a selective inhibitor of JAK1 and JAK2 potently inhibits proinflammatory
cytokine signaling (40)

Myelofibrosis Phase III
ongoing

NCT03745651,
NCT03745638

Upadacitinib JAK1 a selective inhibitor of JAK1 inhibited the production of proinflammatory
Th2 cytokines such as IL-4 (41).

Rheumatoid arthritis Phase III
ongoing

NCT04195698

Lebrikizumab IL13 Inhibitor of IL-13 by maintaining inflammatory reaction and major skin
effects (39).

Asthma Phase III
ongoing

NCT04392154

Pitrakinra IL13/
IL4

IL-4/IL-13 inhibitory activity may reduce inflammation caused by
allergens (39).

Asthma Phase II
completed

NCT00676884

Tocilizumab# IL6R inhibits IL-6 binding to soluble IL6R (42). Rheumatoid arthritis Case series 21962991
Canakinumab* IL1B IL-1b induced TSLP production and stimulated keratinocytes (43). Familial Cold

Autoinflammatory Syndrome
(FCAS)

– 30937919

Momelotinib* JAK1/
JAK2

JAK1 and JAK2 inhibitor could reduce inflammatory cytokine
expression, including IL4, IL5, IFN-g, and TSLP (44).

Myelofibrosis – 30544712
October 20
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successfully identified the AD-approved drug, dupilumab, in our
study. Furthermore, another ten drugs identified are potentially
useful for AD according to preclinical and clinical trial evidence,
including baricitinib, tofacitinib, ruxolitinib, upadacitinib,
lebrikizumab, tralokinumab, pitrakinra, tocilizumab, momelitinib,
and canakinumab, as depicted in Table 2. As such, our genetic-
driven drug discovery method indicated that a combination of
GWAS-based approaches and six functional annotations is able to
identify potential candidate drugs for AD effectively.

Among the targets identified, the roles of IL1B and EGFR in
AD have been supported by preclinical evidence. Schwartz et al.
reported that anti-IL-1b antibody is able to alleviate dermatitis in
the mice model (43). Furthermore, previous studies showed that
EGFR is involved in the pathogenesis of AD (45). In this study,
several drugs are linked to EGFR. An example is foreskin
keratinocytes, a type of skin cell-cultured as a wound healing
and closure. Foreskin keratinocytes are a key component of a
number of skin replacements utilized for various indications
(46). Keratinocytes are generated from neonatal foreskins and
utilized to make a drug called Apligraf, which is a mixture of
neonatal foreskin fibroblasts and keratinocytes. Orcel is another
skin substitute that combines fibroblasts and keratinocytes
produced from the neonatal foreskin, similar to Apligraf (47).
In mice model of acute AD, EGFR signaling significantly
decreases allergen-induced IL-6 production and Th17
responses in the skin, demonstrating that EGF has an
immunomodulatory impact and is protective in the inflamed
skin tissue (45). In addition, our bioinformatic networking
analysis specifically identified JAK as a potential target for AD.
JAK1 is an upstream regulator of cytokine secretion and immune
activation. Hence, the effects of JAK inhibitors targeting the
multiple immune pathways are a critical mechanism for AD (48).
Consistent with previous findings, a preclinical study
demonstrated that disrupting JAK1 signaling is helpful to
reduce persistent itch through sensory neurons and immune
pathways involving TH2 cytokines (49).

Indeed, from the drugs identified through our analysis, five
small molecule drugs targeting JAK have been supported with
FIGURE 4 | Connections between biological AD risk genes and drugs are potentially useful for AD. Representative connections between AD biological genes
(green); genes in PPIs (yellow); target drug for drugs under clinical trial (blue); the drug was supported by case series (pink), and drugs with preclinical data for AD
(grey); indication (orange). Grey lines indicate connections. All other biological gene-drug connections are through the PPI network.
Frontiers in Immunology | www.frontiersin.org 6
FIGURE 5 | Connections between biological AD risk genes and drugs that
were approved for other indications. Representative connections between AD
biological genes (green); genes in PPIs (yellow); target drugs (blue); indication
(orange). Grey lines indicate connections. Only IL1R1, BIRC5, B2M, and
AURKB are directly connected to a biological gene-drug (anakinra, reserpine,
berberine, copper, hesperidin); all other biological gene-drug connections are
through the PPI network.
October 2021 | Volume 12 | Article 724277
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clinical and preclinical data in AD. These JAK inhibitors are
ruxolitinib, baricitinib, upadacitinib, tofacitinib, and
momelitinib. JAK inhibitors have emerged as a promising
therapy option for AD (50). Both oral or topical applications
have dramatically improved the clinical outcomes of individuals
with insufficient responses to previous medicines in randomized
controlled trials (51). In light of the importance of JAK/STAT
pathways for AD (52), filgotinib and fedratinib were identified as
high potential drugs to repurpose for AD in this study. Filgotinib
is a selective inhibitor of JAK1 approved for RA treatment,
similar to the marketed drug upadacitinib (53). In phase III
randomized controlled trials, upadacitinib was shown to be more
effective and well-tolerated than dupilumab for moderate to
severe AD (NCT03738397). On the other hand, fedratinib is a
selective inhibitor of JAK2 with a similar mechanism of
ruxolitinib (54). Ruxolitinib is a selective JAK1 and JAK2
inhibitor. Topical Ruxolitinib Evaluation in Atopic Dermatitis
studies (TRuE-AD) demonstrated the safety and efficacy from
clinical trials (55).

Another category of drugs identified is monoclonal antibody
(mAb) drugs. Four monoclonal antibody drugs (lebrikizumab,
tralokinumab, tocilizumab, and canakinumab) were successfully
identified as the most promising drug for AD repurposing.
Lebrikizumab (NCT04392154) and tralokinumab (NCT03160885)
are human monoclonal antibodies targeting IL-13 under phases III
clinical trials for AD. Tocilizumab is IL-6R inhibiting monoclonal
antibodies and is commonly used in RA. Importantly, functional
IL-6 receptor (IL6R) variant have already reported as a risk variant
that was associated with persistent AD (56). Thus, blocking of IL-6
signaling is very likely as a novel therapeutic approach for AD. The
other mAb is canakinumab (anti-IL-1b) that has been reported as a
potential treatment of inflammatory disorders (57).

Although our approaches indicated that the utilization of
GWAS data is a potential way of drug mining, there were some
limitations. First, by using GWAS data, some SNPs are without
biological relevance, and not all drug target genes we identified
are directly druggable. Secondly, therapeutic drugs identified
through in silico pipelines have not been validated in molecular
mechanisms or animal models. Therefore, further investigations
are necessary to determine the effects of candidate drugs in
clinical applications.
CONCLUSION

Drug repurposing offers valuable advantages in the drug
development process, such as reduced time and cost, and
Frontiers in Immunology | www.frontiersin.org 7
increased success rates. In the current study, we combine the
drug repurposing pipeline with integrative bioinformatics
methodologies to identify drugs with novel indications for AD.
We found JAK1 inhibitors are particularly important with their
involvement in several immune pathways. The results further
confirms the feasibility of the application of gene networking and
genomic information for drug repurposing.
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